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Abstract. This manuscript associates with a study of general-Appell Polyno-
mials. In this research work, we construct a new sequence of Szász-Schurer type

operators via general-Appell Polynomials to discuss approximation properties

for the Lebesgue integrable functions (L1[0,∞)). Further, estimates in view of
test functions and central moments are studied. Next, rate of convergence is

discussed with the aid of Korovkin theorem and Voronovskaja type theorem.
Moreover, direct approximation results in terms of modulus of continuity of

first and second order, Peetre’s K-functional, Lipschitz type space, and the rth

order Lipschitz type maximal functions are investigated. In subsequent sec-
tion, we present weighted approximation results, and statistical approximation

theorems are discussed.

1. Introduction and Preliminaries

The development of operator theory gained momentum in the late 19th century.
A crucial aspect of approximation in this field is finding simple, computationally
efficient approximations that capture the essential properties of complex functions.
These approximations have numerous applications in fields like quantum mechanics,
signal processing, and control theory, providing powerful tools for problem-solving
and system analysis.

In recent years, research in approximation theory within operator theory has
continued to evolve, with a focus on advanced techniques applicable to data science
and machine learning. The Weierstrass approximation theorem, formulated by
Weierstrass [1] in 1885, is a foundational result in approximation theory. This
theorem has been the subject of interest for many prominent mathematicians, who
have sought to provide more straightforward and comprehensible proofs.

One notable contribution is the work of Bernstein [2], who developed a sequence
of polynomials known as Bernstein polynomials in 1912. These polynomials pro-
vide a concise demonstration of the Weierstrass approximation theorem using the
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binomial distribution as follows:

Bκ(g̃;u) =

κ∑
ν=0

g̃
(ν
κ

)( κ
ν

)
uν(1− u)κ−ν , u ∈ [0, 1], (1.1)

where g̃ is a continuous and bounded function on [0, 1]. The sequences of operators
in (1.1) restrict the approximation for continuous functions on bounded interval
[0, 1]. In order to discuss approximation properties on unbounded interval [0,∞),
Szász [3] provided the modifications to the sequences in (1.1) which has a significant
role to the evolution of operator theory as follows:

Sκ(g̃;u) = e−(κ+s)u
∞∑
ν=0

((κ+ s)u)ν

ν!
g̃

(
ν

κ

)
, κ ∈ N, (1.2)

where real valued function g̃ ∈ C[0,∞). As given in (1.2), linear positive operators
are limited solely to a continuous functional space. Many integral variants of these
sequences of operators are obtained in order to approximate the longer class of
functions, i.e., the space of Lebesgue measurable functions. Moreover, in order
to discuss better approximation properties, Schurer [4] in 1962 constructed a new
sequence of Bernstein operators [2] is given as Bm,p : C([0, 1 + s]) → C([0, 1]) and
defined by:

Bκ+s(g̃;u) =

κ+s∑
ν=0

g̃
(ν
κ

)(
κ+ s
ν

)
uν(1− u)κ+s−ν , u ∈ [0, 1 + p], (1.3)

where s ∈ N ∪ {0} and g̃ ∈ C[0, 1 + p].

Further, many mathematicians, e.g., Braha et al. ([5], [6]), Aslan ([7], [8]),

Mohiuddine et al. ([9], [10]), Mursaleen et al. ([11], [12]), Özger et al. ([13], [14]),
Acu et al. ([15], [16]), Ayman Mursaleen et al. ([17], [18]), Ansari et al. ([19],[20]),
Khan et al. [21], Nasiruzzaman [22], Rao et al. ([23], [24]), and Jha et al. [25]
provided a number of generalizations for these kinds of sequences to investigate
flexibility in approximation properties across several functional spaces. Recently,
Raza et al. [26] provided a class of sequence of operators Gκ,A(.; .), κ ∈ N, given
by the formula

Gκ,A(g̃;u) =
e−κu

Λ̃(1)ξ̃(h, 1)

∞∑
ν=0

Ap,ν(κu, h)

ν!
g̃

(
ν

κ

)
, u ∈ R+

0 , (1.4)

where Ap,ν is the two variable Appell polynomials (see [26]).
The operators given by (1.4) are positive and linear. The basic information

about positive linear operators, including their generalizations and applications
can be observed in [29].

As the operators described in (1.4) are limited for continuous function only,
we present a sequence of positive linear operators to provide approximations in
larger class of functions. To achieve better approximation properties in various
functional spaces we introduced the Szász-Schurer operators in context of general
Appell Polynomials as:

RAκ+s(g̃;u) =

∞∑
ν=0

Apν((κ+ s)u, h)g̃

(
ν

κ+ s

)
, for u ∈ R+

0 , (1.5)
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where

Apν((κ+ s)u, h) =
e−(κ+s)u

Λ̃(1)ξ̃(h, 1)

Ap,ν((κ+ s)u, h)

ν!
.

Lemma 1.1. The sequence of operators introduced in (1.5) are linear.

Proof. In view of (1.5), we have

RAκ+s(λ1g̃1 + λ2g̃2;u) =

∞∑
ν=0

Apν((κ+ s)u, h)

(
λ1g1

(
ν

κ+ s

)
+ λ2g2

(
ν

κ+ s

))

= λ1

∞∑
ν=0

Apν((κ+ s)u, h)g1

(
ν

κ+ s

)
+ λ2

∞∑
ν=0

Apν((κ+ s)u, h)g2

(
ν

κ+ s

)
= λ1RAκ+s(g̃1;u) + λ2RAκ+s(g̃2;u).

�

Lemma 1.2. As discussed by Raza et al. in [26], we can have the following equal-
ities:

∞∑
ν=0

Ap,ν(κu, h)

ν!
= Λ̃(1)eκuξ̃(h, 1);

∞∑
ν=0

ν
Ap,ν(κu, h)

ν!
=

[
κuΛ̃(1)ξ̃(h, 1) + Λ̃(1)ξ̃

′
(h, 1) + Λ̃

′
(1)ξ̃(h, 1)

]
eκu;

∞∑
ν=0

ν2Ap,ν(κu, h)

ν!
=

[
(κ2u2 + κu)Λ̃(1)ξ̃(h, 1) + (2κu+ 1)[Λ̃(1)ξ̃

′
(h, 1)

+ Λ̃
′
(1)ξ̃(h, 1)] + 2ξ̃

′
(h, 1)Λ̃

′
(1) + ξ̃

′′
(h, 1)Λ̃(1)

+ ξ̃(h, 1)Λ̃
′′
(1)

]
eκu.

Lemma 1.3. Let g̃s(y) = ys, s ∈ {0, 1, 2} be the test functions by (1.4). Then, we
have

RAκ+s(1;u) = 1;

RAκ+s(y;u) = u+
1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
;

RAκ+s(y
2;u) = u2 +

1

κ+ s
u

(
2
ξ̃
′
(h, 1)

ξ̃(h, 1)
+ 2

Λ̃
′
(1)

Λ̃(1)
+ 1

)
+

1

(κ+ s)2

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)
+ 2

ξ̃
′
(h, 1)Λ̃

′
(1)

ξ̃(h, 1)Λ̃(1)
+
ξ̃
′′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′′
(1)

Λ̃(1)

)
;

for each u ∈ R+
0 . In the direction of (1.5), we have

Proof. With the aid of linearity property and Lemma 1.2, we can easily prove
Lemma 1.3. Hence, the details can be omitted. �
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Lemma 1.4. Let γus (y) = (y − u)s, s = 0,1,2. Then, for the operators (1.5), we
have central moments RAκ+s(γ

u
s (y), u) as:

RAκ+s(γ
u
0 (y);u) = 1;

RAκ+s(γ
u
1 (y);u) =

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
;

RAκ+s(γ
u
2 (y);u) =

1

κ+ s
u+

1

(κ+ s)2

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)
+ 2

ξ̃
′
(h, 1)Λ̃

′
(1)

ξ̃(h, 1)Λ̃(1)

+
ξ̃
′′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′′
(1)

Λ̃(1)

)
;

for each u ∈ R+
0 .

Proof. With the aid of linearity property and Lemma 1.3, we can easily prove
Lemma 1.4. �

In the following sections, we examine the rate of convergence of operators and
their approximation order. Specifically, we discuss direct results both locally and
globally across several spaces. In the final section, we explore some results of A-
Statistical approximation in various functional spaces.

2. Approximation Properties: Uniform Rate of Convergence and
Order of Approximation

Definition 2.1. [29] The modulus of smoothness for g̃ ∈ C[0,∞) is given by

ω(g̃; δ) = sup
|u1−u2|≤δ

|g̃(u1)− g̃(u2)|, u1, u2 ∈ [0,∞).

Theorem 2.1. Let RAκ+s(.; .) be a sequence of operators described in Eq. (1.5).

Then, on each closed and bounded subset of [0,∞), RAκ+s(g̃; .) ⇒ g̃, for all g̃ ∈
CB [0,∞), where ⇒ denotes uniform convergence.

Proof. Considering the classical Korovkin type theorem [27], which characterizes
the uniform convergence for the sequence of positive linear operators, it is enough
to note that

lim
κ→∞

RAκ+s(g̃s;u) = us, s = 0, 1, 2,

uniformly on all closed and bounded subsets of [0,∞). We can easily establish this
result with the help of Lemma 1.3. �

Now, we show that Voronovskaja type asymptotic approximation theorem for
the RAκ+s(.; .) given in (1.5).

Theorem 2.2. Let g̃ ∈ CB [0,∞) and g̃′, g̃′′ exist at a fixed point u ∈ [0,∞). Then,
we get

lim
κ→∞

(κ+ s)
(
RAκ+s(g̃;u)− g̃(u)

)
=

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
g̃′(u) +

u

2
g̃′′(u).
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Proof. In accordance with Taylor’s formula for the function g̃, we have

g̃(y) = g̃(u) + (y − u)g̃′(u) +
1

2
(y − u)2g̃′′(u) + t(y, u)(y − u)2, (2.1)

where t(y, u) is the Peano remainder and

lim
y→u

t(y, u) = 0.

Applying operators on both the sides in (2.1), we yield

(RAκ+s(g̃;u)− g̃(u)) = g̃′(u)RAκ+s((y − u);u) +
1

2
g̃′′(u)RAκ+s((y − u)2;u)

+ RAκ+s(t(y, u)(y − u)2;u).

In view of Lemma 1.4

(κ+ s)(RAκ+s(g̃;u)− g̃(u)) = g̃′(u)

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
+
u

2
g̃′′(u)

+
1

2

g̃′′(u)

(κ+ s)

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)
+ 2

ξ̃
′
(h, 1)Λ̃

′
(1)

ξ̃(h, 1)Λ̃(1)

+
ξ̃
′′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′′
(1)

Λ̃(1)

)
+ (κ+ s)RAκ+s(t(y, u)(y − u)2;u).

Operate the limits on both the sides of the above expression, we get

lim
κ→∞

(κ+ s)
(
RAκ+s(g̃;u)− g̃(u)

)
=

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
g̃′(u) +

u

2
g̃′′(u)

+ lim
κ→∞

(κ+ s)RAκ+s(t(y, u)(y − u)2;u).

Now, we need to show that

lim
κ→∞

(κ+ s)RAκ+s(t(y, u)(y − u)2;u) = 0.

In view of Cauchy-Schwarz inequality, we calculate the last term of the above
expression as:

(κ+ s)RAκ+s(t(y, u)(y − u)2;u) ≤
√
RAκ+s(t

2(y, u);u)
√

(κ+ s)2RAκ+s((y − u)4;u).

(2.2)

We see that t2(u, u) = 0 and t2(y, u) ∈ CB [0,∞). Thus we have

lim
κ→∞

RAκ+s(t
2(y, u);u) = t2(u, u) = 0. (2.3)

From (2.2) and (2.3) it follows that

lim
κ→∞

(κ+ s)RAκ+s(t(y, u)(y − u)2;u) = 0.

Hence, the proof is completed. �

In accordance with Shisha et al. [28], order of the convergence relative to Ditzian-
Totik modulus of continuity can easily be proved.
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Theorem 2.3. Consider g̃ ∈ CB [0,∞) and for the operators RAκ+s(.; .) presented
in Eq. (1.5), we acquire

|RAκ+s(g̃;u)− g̃(u)| ≤ 2ω(g̃; δ),

where δ =
√
RAκ+s((y − u)2;u).

Proof. In accordance with Lemma 1.3, 1.4 and Cauchy-Schwartz inequality, we have

|RAκ+s(g̃;u)− g̃(u)| ≤ RAκ+s|(g̃(y)− g̃(u)|;u)

≤ RAκ+s

((
1 +
|y − u|
δ

)
ω(g̃, δ);u

)
≤ ω(g̃, δ)

[
1 +

1

δ
RAκ+s(|y − u|;u)

]

≤ ω(g̃, δ)

[
1 +

1

δ

√
RAκ+s((y − u)2;u)

]

By selecting δ =
√
RAκ+s((y − u)2;u), we obtained the desired result. �

3. Locally Approximation Results

We recall a few functional spaces and functional relations in this part as: CB [0,∞):
Denotes a real valued functional space which acquires bounded and continuous func-
tions. Now, Peetre’s K-functional [29] is given by

K2(g̃, δ) = inf
h̃∈C2

B [0,∞)

{
‖g̃ − h̃‖CB [0,∞) + δ‖h̃′′‖C2

B [0,∞)

}
,

where C2
B [0,∞) = {h̃ ∈ CB [0,∞) : h̃′, h̃′′ ∈ CB [0,∞)} associated with the norm

‖g̃‖ = sup
0≤y<∞

|g̃(y)| and second order Ditzian-Totik modulus of smoothness is pre-

sented by

ω2(g̃;
√
δ) = sup

0<k≤
√
δ

sup
y∈[0,∞)

|g̃(y + 2k)− 2g̃(y + k) + g̃(y)|.

We revisit a result from DeVore and Lorentz ([29] page no. 177, Theorem 2.4) as:

K2(g̃; δ) ≤ Cω2(g̃;
√
δ), (3.1)

where C is an absolute constant. To establish the next result, we consider the
auxiliary operator defined as:

R̂Aκ+s(g̃;u) = RAκ+s(g̃;u) + g̃(u)− g̃

(
u+

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

))
. (3.2)

where g̃ ∈ CB [0,∞), u ≥ 0. From Eq. (3.2), one can yield

R̂Aκ+s(1;u) = 1, R̂Aκ+s(γ
u
1 (y);u) = 0 and |R̂Aκ+s(g̃;u)| ≤ 3‖g̃‖. (3.3)

Lemma 3.1. If u ≥ 0, we have

|R̂Aκ+s(g̃;u)− g̃(u)| ≤ θ(u)‖g̃′′‖,

where g̃ ∈ C2
B [0,∞) and θ(u) = R̂Aκ+s(γ

u
1 (y);u) + (R̂Aκ+s(γ

u
1 (y);u)2.
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Proof. For g̃ ∈ C2
B [0,∞) and by Taylor expansion, we have

g̃(y) = g̃(u) + (y − u)g̃′(u) +

y∫
u

(y − v)g̃′′(v)dv. (3.4)

Implementing the auxiliary operators R̂Aκ+s(.; .) introduced in Eq.(3.2) to both sides
of Eq. (3.4), we get

R̂Aκ+s(g̃;u)− g̃(u) = g̃′(u)R̂Aκ+s(γ
u
1 (y);u) + R̂Aκ+s

( y∫
u

(y − v)g̃′′(v)dv;u
)
.

Using the Eqs. (3.3) and (3.4), one yield

R̂Aκ+s(g̃;u)− g̃(u) = R̂Aκ+s

( y∫
u

(y − v)g̃′′(v)dv;u
)

= RAκ+s

( y∫
u

(y − v)g̃′′(v)dv;u
)

−

u+ 1
κ+s

(
ξ̃
′
(h,1)

ξ̃(h,1)
+

Λ̃
′
(1)

Λ̃(1)

)
∫
u

(
u+

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
− v

)
g̃′′(v)dv,

|R̂Aκ+s(g̃;u)− g̃(u)| ≤

∣∣∣∣∣R̂Aκ+s

( y∫
u

(y − v)g̃′′(v)dv;u
)∣∣∣∣∣

+

∣∣∣∣∣
u+ 1

κ+s

(
ξ̃
′
(h,1)

ξ̃(h,1)
+

Λ̃
′
(1)

Λ̃(1)

)
∫
u

(
u+

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
− v

)
g̃′′(v)dv

∣∣∣∣∣.
(3.5)

Since, ∣∣∣∣∣
y∫
u

(y − v)g̃′′(v)dv

∣∣∣∣∣ ≤ (y − u)2 ‖ g̃′′ ‖, (3.6)

then

∣∣∣∣∣
u+ 1

κ+s

(
ξ̃
′
(h,1)

ξ̃(h,1)
+

Λ̃
′
(1)

Λ̃(1)

)
∫
u

(
u+

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
− v

)
g̃′′(v)dv

∣∣∣∣∣ (3.7)

≤

(
1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

))2

‖ g̃′′ ‖ . (3.8)
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In accordance with (3.5), (3.6) and (3.7), we accqire

|R̂Aκ+s(g̃;u)− g̃(u)| ≤

{
R̂Aκ+s(γ

u
2 (y);u) +

(
1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

))2}
‖g̃′′‖

= θ(u)‖g̃′′‖.

Which proves the required result. �

Theorem 3.2. Let g̃ ∈ C2
B [0,∞). Then, there corresponds a non-negative constant

C̃ > 0 such that

| RAκ+s(g̃;u)− g̃(u) |≤ C̃ω2

(
g̃;
√
θ(u)

)
+ ω(g̃;RAκ+s(γ

u
1 (y);u),

where θ(u) is given by in Lemma 3.1.

Proof. For h̃ ∈ C2
B [0,∞) and g̃ ∈ CB [0,∞) and with the definition of R̂Aκ+s(.; .)

given in (3.2), we get

|RAκ+s(g̃;u)− g̃(u)| ≤ |R̂Aκ+s(g̃ − h̃;u)|+ |(g̃ − h̃)(u)|+ |R̂Aκ+s(g̃;u)− g̃(u)|

+

∣∣∣∣∣g̃
(
u+

1

κ+ s

( ξ̃′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

))
− g̃(u)

∣∣∣∣∣.
In accordance with Lemma 3.1 and inequalities mentioned in Eq. (3.3), we acquire

|RAκ+s(g̃;u)− g̃(u)|≤4‖g̃−h̃‖+|R̂Aκ+s(g̃;u)− g̃(u)|

+

∣∣∣∣∣g̃
(
u+

1

κ+ s

( ξ̃′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

))
− g̃(u)

∣∣∣∣∣
≤ 4‖g̃ − h̃‖+ θ(u)‖h̃′′‖+ ω

(
g̃;RAκ+s(y − u);u)

)
.

By employing Eq. (3.1), we established the desired result. �

Now, we address the next result in Lipschitz type space presented by [31] as:

Lipζ1,ζ2
M̃

(η) :=
{
g̃ ∈ CB [0,∞) : |g̃(y)−g̃(u)|≤M̃ |y−u|η

(y+ζ1u+ζ2u2)
η
2

: u, y∈(0,∞)
}
,

where M̃ > 0, 0 < η ≤ 1 and ζ1, ζ2 > 0.

Theorem 3.3. Consider sequence of linear positive operators in (1.5) and g̃ ∈
Lipζ1,ζ2M (η), one obtain

|RAκ+s(g̃;u)− g̃(u)| ≤ M̃

(
λ(u)

ζ1u+ ζ2u2

) η
2

, (3.9)

where 0 < η ≤ 1, ζ1, ζ2 ∈ (0,∞) and λ(y) = RAκ+s(γ
u
2 (y);u).

Proof. For η = 1 and u ≥ 0, we get

|RAκ+s(g̃;u)− g̃(u)| ≤ RAκ+s(|g̃(y)− g̃(u)|;u)

≤ M̃RAκ+s

(
|y − u|

(y + ζ1u+ ζ2u2)
1
2

;u

)
.
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Since
1

y + ζ1u+ ζ2u2
<

1

ζ1u+ ζ2u2
, for each u ∈ (0,∞), we acquire

|RAκ+s(g̃;u)− g̃(u)| ≤ M̃

(ζ1u+ ζ2u2)
1
2

(RAκ+s(γ
u
2 (y);u)

1
2

≤ M̃

(
λ(u)

ζ1u+ ζ2u2

) 1
2

,

which indicates that the Theorem 3.3 is valid for η = 1. Next, we examine the case
where η ∈ (0, 1) and in accordance with Hölder’s inequality by selecting p = 2

η and

q = 2
2−η , we obtain

|RAκ+s(g̃;u)− g̃(u)| ≤
(
|RAκ+s(|g̃(y)− g̃(u)|

2
η ;u)

) η
2

≤ M̃

(
RAκ+s

(
|y − u|2

(y + ζ1u+ ζ2u2)
;x

)) η
2

.

Since
1

y + ζ1u+ ζ2u2
<

1

ζ1u+ ζ2u2
, for all u ∈ (0,∞), for all u ∈ (0,∞), one get

|RAκ+s(g̃;u)− g̃(u)| ≤ M̃

(
|RAκ+s(g̃;u)− g̃(u)(|y − u|2;u)

ζ1u+ ζ2u2

) η
2

≤ M̃
( λ(u)

ζ1u+ ζ2u2

) η
2

.

Thus, we yield the desired result. �

Next, we address the local approximation in terms of the rth order modulus of
smoothness, followed by the Lipschitz-type maximal function introduced by Lenze
[31] as:

ω̃r(g̃;u) = sup
y 6=u,y∈(0,∞)

|g̃(y)− g̃(u)|
|y − u|r

, u ∈ [0,∞) and r ∈ (0, 1]. (3.10)

Theorem 3.4. Consider g̃ ∈ CB [0,∞) and r ∈ (0, 1]. Then, for each u ∈ [0,∞),
we get

|RAκ+s(g̃;u)− g̃(u)| ≤ ω̃r(g̃;u)
(
λ(u)

) r
2

.

Proof. It can be observed that

|RAκ+s(g̃;u)− g̃(u)| ≤ RAκ+s|g̃(y)− g̃(u)|;u).

Using Eq. (3.10), one get

|RAκ+s(g̃;u)− g̃(u)| ≤ ω̃s(g̃;u)RAκ+s(|y − u|r;u).

Then by employing Hölder’s inequality with p = 2
r and q = 2

2−r , we obtain

|RAκ+s(g̃;u)− g̃(u)| ≤ ω̃r(g̃;u)
(
RAκ+s(|y − u|2;u)

) r
2 .

Thus, we concludes the proof. �
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4. Global Approximation Properties

Suppose that ν(u) = 1 + u2, 0 ≤ u < ∞ as weight function. Then, Bν [0,∞) =

{g̃(u) : |g̃(u)| ≤ M̃g̃(1 + u2), where the constant M̃g̃ depends on g̃ and Cν [0,∞)
represents the continuous functional space in Bν [0,∞) along with the norm ‖g̃‖ν =

sup
u∈[0,∞)

|g̃(u)|
ν(u) and C k̃ν [0,∞) = {g̃ ∈ Cν [0,∞) : lim

u→∞
g̃(u)
ν(u) = k̃, where constant k̃

depends on g̃.
If g̃ is a function defined on [0, b] where b > 0. Then, modulus of continuity is

given by

ωb(g̃, δ) = sup
|y−u|≤δ

sup
u,y∈[0,b]

|g̃(y)− g̃(u)|. (4.1)

It is straightforward to observe that for g̃ ∈ Cν [0,∞), the modulus of continuity
defined in Eq. (4.1) approaches to zero.

Theorem 4.1. For g̃ ∈ Cν [0,∞) and ωb+1(g̃; δ) denote the modulus of smoothness
defined on [0, b+ 1] ⊂ [0,∞). Then, for y ∈ [0, b], we have

‖RAκ+s(g̃;u)− g̃‖C[0,b] ≤ 4M̃g̃(1 + b2)∆s(b) + 2ωb+1(g̃;
√

∆s(b)),

where ∆s(b) = max
u∈[0,b]

RAκ+s(γ
u
2 ;u).

Proof. From [30], for any u ∈ [0, b] and y ∈ [0,∞), we have

|g̃(y)− g̃(u)| ≤ 4M̃g̃(1 + b2) +

(
1 +
|y − u|
δ

)
ωb+1(g̃; δ).

Implementing operator RAκ+s(.; .) on both the sides, we acquire

|RAκ+s(g̃;u)− g̃(u)| ≤ 4M̃g̃(1 + b2)RAκ+s(γ
u
2 ;u)

+

(
1 +
RAκ+s(|y − u|;u)

δ

)
ωb+1(g̃; δ).

Now, in accordance with Lemma 1.4 and u ∈ [0, b], one has

|RAκ+s(g̃;u)− g̃(u)| ≤ 4M̃g̃(1 + b2)∆s(b) +

(
1 +

√
∆s(b)

δ

)
ωb+1(g̃; δ).

By selecting δ =
√

∆s(b), desired result can easily be obtained. �

Remark. In this article, we employ the test function defined by
g̃s(y) = ys, s ∈ {0, 1, 2}.

Theorem 4.2. ([32], [33]) Assume that the sequence of linear positive operators
(Lκ)κ≥1 mapping from Cν [0,∞) to Bν [0,∞) meets the conditions

lim
κ→∞

||Lκ(g̃s; .)− g̃s||ν = 0, where s = 0, 1, 2,

thus, for g̃ ∈ C k̃ν [0,∞), we get

lim
κ→∞

||Lκ(g̃; .)− g̃||ν = 0.

Theorem 4.3. Let g̃ ∈ C k̃ν [0,∞). Then, we get

lim
κ→∞

‖RAκ+s(g̃; .)− g̃‖ν = 0.
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Proof. To prove the result of Theorem 4.3, it is enough to verify that

lim
κ→∞

‖RAκ+s(g̃s; .)− g̃s‖ν = 0, for s = 0, 1, 2.

Considering the Lemma 1.3, one can see ‖RAκ+s(g̃0; .)− 1‖ν = 0, here κ→∞, also

‖RAκ+s(g̃1; .)− g̃1‖ν = sup
u∈[0,∞)

1

ν(u)

∣∣∣∣∣ 1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)∣∣∣∣∣
=

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
sup

u∈[0,∞)

1

1 + u2
.

For κ→∞, we get ‖RAκ+s(g̃1; .)− g̃1‖ν → 0.
Also,

‖RAκ+s(g̃2; .)− g̃2‖ν ≤

(
1

κ+ s

(
2
ξ̃
′
(h, 1)

ξ̃(h, 1)
+ 2

Λ̃
′
(1)

Λ̃(1)
+ 1

))
sup

u∈[0,∞)

u

1 + u2

+

(
1

(κ+ s)2

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)
+ 2

ξ̃
′
(h, 1)Λ̃

′
(1)

ξ̃(h, 1)Λ̃(1)

+
ξ̃
′′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′′
(1)

Λ̃(1)

))
sup

y∈[0,∞)

1

1 + u2
.

Which implies ‖RAκ+s(g̃2; .)− g̃2‖ν → 0 as κ→∞. Thus, we conclude the proof of
the Theorem 4.3 �

Corollary 4.4. Let g̃ ∈ C k̃ν [0,∞) and ζ > 0. Then,

lim
κ→∞

sup
u∈[0,∞)

|RAκ+s(g̃;u)− g̃(u)|
(1 + u2)1+ζ

= 0.

Proof. From the result of above Theorem 4.3

lim
κ→∞

sup
u∈[0,∞)

|RAκ+s(g̃;u)− g̃(u)|
1 + u2

= 0.

Then, the inequality

lim
κ→∞

sup
u∈[0,∞)

|RAκ+s(g̃;u)− g̃(u)|
(1 + u2)1+ζ

= 0,

is immediate, for ζ > 0. �

5. A-Statistical Approximation

In this section we recall some notation from [34]. Suppose that B = (bκµ)
represents a non-negative infinite summability matrix. Then, a sequence u := (uµ)
is A-statistically convergent to L, denoted as stB − lim u = L, if for every ε > 0

lim
κ

∑
µ:|uµ−L|≥ε

bκµ = 0.

Let q = (qκ) be a sequence such that the following assertions are true

stB − lim
κ
qκ = 1 and stB − lim

κ
qκκ = b, 0 ≤ b < 1. (5.1)
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Theorem 5.1. Consider B = (bκµ) be a non-negative regular summability matrix
and sequence q = (qκ) along with condition (5.1), qκ ∈ (0, 1), κ ∈ N. Then, for
each g̃ ∈ C0

ν [0,∞), stB − lim
κ
‖RAκ+s(g̃s; .)− g̃‖ν = 0.

Proof. By using Lemma 1.3, we have

stB − lim
κ
‖RAκ+s(g̃0; .)− g̃0‖ν = 0.

and

‖RAκ+s(g̃1; .)− g̃1‖ν = sup
u∈[0,∞)

1

1 + u2

∣∣∣∣∣ 1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)∣∣∣∣∣
=

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
sup

u∈[0,∞)

1

1 + u2
.

Now

M̃1 : =

{
κ : ‖RAκ+s(g̃1; .)− g̃1‖ ≥ ε

}
,

M̃2 : =

{
κ :

1

κ+ s

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)

)
≥ ε

}
.

Which implies that M̃1 ⊆ M̃2, this shows that∑
µ∈M̃1

bκµ ≤
∑

µ∈M̃2

bκµ. Therefore, we get

stB − lim
κ
‖RAκ+s(g̃1; .)− g̃1‖ν = 0. (5.2)

Now by using Lemma 1.3, we have

‖RAκ+s(g̃2; .)− g̃2‖ν ≤ sup
u∈[0,∞)

1

ν(u)

∣∣∣∣∣
(

1

κ+ s

(
2
ξ̃
′
(h, 1)

ξ̃(h, 1)
+ 2

Λ̃
′
(1)

Λ̃(1)
+ 1

)
u

+
1

(κ+ s)2

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)
+ 2

ξ̃
′
(h, 1)Λ̃

′
(1)

ξ̃(h, 1)Λ̃(1)
+
ξ̃
′′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′′
(1)

Λ̃(1)

)∣∣∣∣∣.
For a given ε > 0, we have the following sets

W̃1 : =

{
κ :
∥∥RAκ+s(g̃2; .)− g̃2

∥∥
ν
≥ ε

}
,

W̃2 : =

{
κ :

1

κ+ s

(
2
ξ̃
′
(h, 1)

ξ̃(h, 1)
+ 2

Λ̃
′
(1)

Λ̃(1)
+ 1

)
≥ ε

2

}
,

W̃3 : =

{
κ :

1

(κ+ s)2

(
ξ̃
′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′
(1)

Λ̃(1)
+ 2

ξ̃
′
(h, 1)Λ̃

′
(1)

ξ̃(h, 1)Λ̃(1)
+
ξ̃
′′
(h, 1)

ξ̃(h, 1)
+

Λ̃
′′
(1)

Λ̃(1)

)
≥ ε

2

}
.

It can be observed that W̃1 ⊆ W̃2

⋃
W̃3. Therefore, we acquire∑

µ∈W̃1

bκµ ≤
∑
µ∈W̃2

bκµ +
∑
µ∈W̃3

bκµ.

As κ→∞, we have

stB − lim
κ
‖RAκ+s(g̃2; .)− g̃2‖ν = 0. (5.3)
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Thus, we concludes the proof of the Theorem 5.1. �

Next, we discuss the convergence rate of A-Statistical approximation with respect
to Peetre’s K-functional for the operators RAκ+s(.; .).

The Peetre’s K-functional of function f ∈ CB [0,∞) is defined by

K(f ; δ) = inf
g∈C2

B [0,∞)

{
‖f − g‖CB [0,∞) + δ‖g‖C2

B [0,∞)

}
,

where δ > 0 and

C2
B [0,∞) = {f ∈ CB [0,∞) : f ′, f ′′ ∈ CB [0,∞)} ,

endowed with the norm

‖f‖C2
B [0,∞) = ‖f‖CB [0,∞) + ‖f ′‖CB [0,∞) + ‖f ′′‖CB [0,∞).

Theorem 5.2. Let g̃ ∈ C2
B [0,∞). Then,

stB − lim
κ
‖RAκ+s(g̃; ·)− g̃‖CB [0,∞) = 0.

Proof. In view of Taylor’s result, we have

g̃(y) = g̃(u) + g̃′(u)(y − u) +
1

2
g̃′′(η)(y − u)2,

where y ≤ η ≤ u. Operating RAκ+s(g̃;u), on both sides in above equation, one get

RAκ+s(g̃;u)− g̃(u) = g̃′(u)RAκ+s(γ
u
1 (y);u) +

1

2
g̃′′(η)RAκ+s(γ

u
2 (y);u),

which yields that

‖RAκ+s(g̃; ·)− g̃‖CB [0,∞) ≤ ‖g̃′‖CB [0,∞)‖RAκ+s(g̃1−, .)‖CB [0,∞)

+
1

2
‖g̃′′‖CB [0,∞)‖RAκ+s(g̃1−, .)2‖CB [0,∞)

= T̃1 + T̃2, say. (5.4)

Based on Eqs. (5.2) and (5.3), one has

lim
κ

∑
µ∈N:T̃1≥ ε2

bκµ = 0,

lim
κ

∑
µ∈N:T̃2≥ ε2

bκµ = 0.

From Eq. (5.4), we get

lim
κ

∑
µ∈N:‖RAκ+s(g̃;·)−g̃‖CB [0,∞)≥ε

bκµ ≤ lim
κ

∑
µ∈N:T̃1≥ ε2

bκµ + lim
κ

∑
µ∈N :T̃2≥ ε2

bκµ.

Thus

stB − lim
κ
‖RAκ+s(g̃; ·)− g̃‖CB [0,∞) → 0 as κ→∞.

Hence, we arrive at the proof of desired result. �
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6. Numerical observations

To confirm the theoretical approximation outcomes, numerical experiments are
conducted. This section includes a numerical example.

Example 6.1. Let’s take κ = 2, s = 1, h = 1, and g̃(x) = x2. We want to
approximate g̃(x) using the Szsz-Schurer operators introduced in (1.5).

Assuming Λ̃(1) = 1 and ξ̃(h, 1) = 1, and using the definition of Ap,ν((κ+s)u, h),
we get:

Apν((κ+ s)u, h) =
e−3u

1

((κ+ s)u)ν

ν!
Let’s calculate the approximation for u = 1:

RA3 (g̃; 1) =

∞∑
ν=0

e−3

1

3ν

ν!

(ν
3

)2

Calculating the first few terms of the series, we get:

RA3 (g̃; 1) ≈ e−3

(
0 +

3

1!

(
1

3

)2

+
32

2!

(
2

3

)2

+
33

3!

(
3

3

)2

+ ...

)

RA3 (g̃; 1) ≈ e−3

(
0 +

1

3
+

4

2
+

9

2
+ ...

)
RA3 (g̃; 1) ≈ 0.4481 + 0.8962 + 2.0164

RA3 (g̃; 1) ≈ 1.017

The actual value of g̃(1) = 12 = 1. The approximation using the Szsz-Schurer
operators is close to the actual value.

This is a numerical example demonstrating the use of Szsz-Schurer operators via
general-Appell Polynomials for approximating functions.
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11. Conclusion

In this paper, we present a sequence of positive linear operators using general-
ized Appell polynomials. These operators are designed to achieve better approx-
imation properties in various functional spaces and are known as Szász-Schurer
type operators introduced in (1.5). Additionally, we derive estimates crucial for
establishing rate of convergence and accuracy of approximation. Furthermore, we
explore various aspects of approximation, including local and global results, as
well as A-statistical approximation, utilizing these operators to obtain enhanced
approximations across different functional spaces.
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