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ABSTRACT. This manuscript associates with a study of general-Appell Polyno-
mials. In this research work, we construct a new sequence of Szdsz-Schurer type
operators via general-Appell Polynomials to discuss approximation properties
for the Lebesgue integrable functions (L1[0, 00)). Further, estimates in view of
test functions and central moments are studied. Next, rate of convergence is
discussed with the aid of Korovkin theorem and Voronovskaja type theorem.
Moreover, direct approximation results in terms of modulus of continuity of
first and second order, Peetre’s K-functional, Lipschitz type space, and the rth
order Lipschitz type maximal functions are investigated. In subsequent sec-
tion, we present weighted approximation results, and statistical approximation
theorems are discussed.

1. INTRODUCTION AND PRELIMINARIES

The development of operator theory gained momentum in the late 19" century.
A crucial aspect of approximation in this field is finding simple, computationally
efficient approximations that capture the essential properties of complex functions.
These approximations have numerous applications in fields like quantum mechanics,
signal processing, and control theory, providing powerful tools for problem-solving
and system analysis.

In recent years, research in approximation theory within operator theory has
continued to evolve, with a focus on advanced techniques applicable to data science
and machine learning. The Weierstrass approximation theorem, formulated by
Weierstrass [I] in 1885, is a foundational result in approximation theory. This
theorem has been the subject of interest for many prominent mathematicians, who
have sought to provide more straightforward and comprehensible proofs.

One notable contribution is the work of Bernstein [2], who developed a sequence
of polynomials known as Bernstein polynomials in 1912. These polynomials pro-
vide a concise demonstration of the Weierstrass approximation theorem using the
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binomial distribution as follows:
~ - ~ v R v K—V
B =225 () (3 )wra-wr wepn (1)

where g is a continuous and bounded function on [0, 1]. The sequences of operators
in restrict the approximation for continuous functions on bounded interval
[0,1]. In order to discuss approximation properties on unbounded interval [0, co0),
Szasz [3] provided the modifications to the sequences in which has a significant
role to the evolution of operator theory as follows:

S.(gs) e S LG ey (12)
v=0 :

where real valued function § € C[0,00). As given in , linear positive operators
are limited solely to a continuous functional space. Many integral variants of these
sequences of operators are obtained in order to approximate the longer class of
functions, i.e., the space of Lebesgue measurable functions. Moreover, in order
to discuss better approximation properties, Schurer [4] in 1962 constructed a new
sequence of Bernstein operators [2] is given as B, , : C([0,1 + s]) — C([0,1]) and
defined by:

14

Byoys(§i0) = f@() ( e )u"(l—uw—n wel01+p,  (13)

K 14
v=0

where s € NU {0} and g € C[0,1 + p).

Further, many mathematicians, e.g., Braha et al. ([5], [6]), Aslan ([7], [8]),
Mohiuddine et al. ([9], [10]), Mursaleen et al. ([I1], [12]), Ozger et al. ([13], [14]),
Acu et al. ([I5], [16]), Ayman Mursaleen et al. ([17], [18]), Ansari et al. ([19],[20]),
Khan et al. [2I], Nasiruzzaman [22], Rao et al. ([23], [24]), and Jha et al. [25]
provided a number of generalizations for these kinds of sequences to investigate
flexibility in approximation properties across several functional spaces. Recently,
Raza et al. [26] provided a class of sequence of operators Gy 4(.;.), £ € N, given
by the formula

— KU oo

.. e Apv(ku,h) (v "
GR,A(97U’) - ]\(l)g(h, 1) ;} ol g</€)7 € R8_7 (14)

where A, , is the two variable Appell polynomials (see [20]).

The operators given by are positive and linear. The basic information
about positive linear operators, including their generalizations and applications
can be observed in [29].

As the operators described in are limited for continuous function only,
we present a sequence of positive linear operators to provide approximations in
larger class of functions. To achieve better approximation properties in various
functional spaces we introduced the Szasz-Schurer operators in context of general
Appell Polynomials as:

v
K+ S

RALGw) = 3 AP((s+ s, h)g(

v=0

>a for uweRS, (1.5)
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where

I Ay (5 + s)u, h)
A(1)E(h, 1) v '
Lemma 1.1. The sequence of operators introduced in (1.5)) are linear.

AP ((k + s)u, h) =

Proof. In view of (|L.5)), we have
A ~ ~ . - = 1 v
Ricrs(A1g1 + A2gosu) = ;Ag((’f + s)u, h) <)\191 (m) + X292 <m)>
— v
s) + X2 ) AD((k + s)u, h)g (K " S)

v=0

Y AL+ oy (5

v=0
= /\172?4-3@1%“) + )‘2R?+s(f]2; ).
O

Lemma 1.2. As discussed by Raza et al. in [26], we can have the following equal-
ties:

S Avelit ) _ §ayemgin, vy
v=0

ZVAPV Ku, h)

v=0

[ E(h, 1) + A)E (h, 1) + A (1)E(h, 1) |e
ZVQA”” ) [r» W + ru)A(DE(R, 1) + (250 + DIA(LE (k1)
LR

DE(h, 1)) +2€ (h, A (1) + € (h, 1)A(1)
+ &(h, 1)A”(1)] ert.

Lemma 1.3. Let gs(y) = y®, s € {0,1,2} be the test functions by (1.4). Then, we

have
Rivs(Lu) = 1
Rivslyiu) = ut— le s <£l((h, 1)) * /}Xl((ll)))’
Rivs(W’iu) = o+ ﬁis gg((:,’l)) * 2/}\/(11)) " 1)
w5 i o T

for each u € RY. In the direction of (L.5), we have

Proof. With the aid of linearity property and Lemma we can easily prove
Lemma [I.3] Hence, the details can be omitted. O
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Lemma 1.4. Let v¥(y) = (y —w)®, s = 0,1,2. Then, for the operators (1.5)), we
have central moments RZ, (v¥(y),u) as:

R (W(y)iuw) = 1

w1 (& A
Rivs(H(w)iu) = ,Hs(g(h,n i)
oy 1 (€ A EmDA®)
Rirs(2(y)iu) = K+S“+(H+s)2<g(h,1) i e DA
€' (h1) A,
T T )

for each u € RY.

Proof. With the aid of linearity property and Lemma [1.3] we can easily prove
Lemma [[.4 O

In the following sections, we examine the rate of convergence of operators and
their approximation order. Specifically, we discuss direct results both locally and
globally across several spaces. In the final section, we explore some results of A-
Statistical approximation in various functional spaces.

2. APPROXIMATION PROPERTIES: UNIFORM RATE OF CONVERGENCE AND
ORDER OF APPROXIMATION

Definition 2.1. [29] The modulus of smoothness for g € C[0,00) is given by

w(g;0) = sup  [g(u1) — g(ua)l, uy,uz € [0,00).

\ulfuz|§6

Theorem 2.1. Let R, (;.) be a sequence of operators described in Eq. (L.5).
Then, on each closed and bounded subset of [0,00), Ri ,(;.) == g, for all § €
Cpl0,00), where = denotes uniform convergence.

Proof. Considering the classical Korovkin type theorem [27], which characterizes
the uniform convergence for the sequence of positive linear operators, it is enough
to note that

NILIEOR;?+S(§S7U) = us’ s = 07 1727

uniformly on all closed and bounded subsets of [0, 00). We can easily establish this
result with the help of Lemma [I.3] O

Now, we show that Voronovskaja type asymptotic approximation theorem for

the RZ, ,(.;.) given in (LF).

Theorem 2.2. Let g € Cp[0,00) and §',§" exist at a fized point u € [0,00). Then,
we get

hmOHﬂﬂRﬁA@M—QWD=<

K— 00

)a@o+“aw»
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Proof. In accordance with Taylor’s formula for the function g, we have

1

3(y) = 9(w) + (y = w)' () + 5y — w)*5"(w) + t{y, w)(y — w)*, (2.1)

where ¢(y, u) is the Peano remainder and

lim ¢(y,u) = 0.

Yy—u

Applying operators on both the sides in (2.1)), we yield

LR, (v — u)% )

(R4 (550 = () = F @Ry —wiw) + 59

J'(u
+ Ry u)(y —w)u).

In view of Lemma [T.4]

(k + ) (R s (G5 u) — g(u) =

1§"(u) (1) A1) & (h DA (1)
T3 (k+s) <g h,1) * A(1) 2 £(h, 1)A(1)
'(h,1)  A'(1) A 2
Sl ) e Rty
Operate the limits on both the sides of the above expression, we get
. A ma) — alu _ gl(hal) m & (u Uy ”
Jim (e ) R0 - 90) = (S - 5 )70+ i)

Tl (s s RA (1 ) (y — ) )
Now, we need to show that
. A N2 —
i (4 8YRiL (40 ) (v — )% ) = 0.

In view of Cauchy-Schwarz inequality, we calculate the last term of the above
expression as:

(5 + )R (1 )y ) <\ RA (2w )y (5 4 9)2RA (0 — )5 ).

(2.2)

We see that t?(u,u) = 0 and t?(y,u) € Cp[0,00). Thus we have

lim R, (12 (y, u);u) = 2 (u,u) = 0. (2.3)

K—00

From ([2.2) and (2.3) it follows that
lim (5 + )Ry (t(y, u)(y — u)*;u) = 0.

K—00

Hence, the proof is completed. ([l

In accordance with Shisha et al. [28], order of the convergence relative to Ditzian-
Totik modulus of continuity can easily be proved.
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Theorem 2.3. Consider §j € Cpl0,00) and for the operators R, (.;.) presented
in Eq. ., we acquire
Ris(G3u) — g(u)| < 2w(g; ),

where § = \/RHJFS —u)?u).

Proof. In accordance with LemmalT.3] [[.4]and Cauchy-Schwartz inequality, we have
Rips(@u) —g(w)] < R|(G(y) = g(u)lsu)

< R£+s((1+ 'yg“')w@,a);u)
< w(@0)| 1+ §REL(y - i)
< I+ < 5 \/Rn+s )}
By selecting 6 = \/ R4, . ((y — u)?;u), we obtained the desired result. O

3. LOCALLY APPROXIMATION RESULTS

We recall a few functional spaces and functional relations in this part as: Cg[0, c0):
Denotes a real valued functional space which acquires bounded and continuous func-
tions. Now, Peetre’s K-functional [29] is given by

Ka(3.8) = inf {Ié llenom + 6||ﬁ"||c,23[0,00>},
heC%[0,00)

where C3[0,00) = {h € Cp[0,00) : I/, h" € Cp[0,00)} associated with the norm

lgll = sup [g(y)| and second order Ditzian-Totik modulus of smoothness is pre-
0<y<oo
sented by

wo(3; Vo) = sup  sup gy +2k) — 24(y + k) + §(v)I.
0<k<+v/6 y€[0,00)

We revisit a result from DeVore and Lorentz ([29] page no. 177, Theorem 2.4) as:
K2(§;6) < Cwa(§; V6), (3.1)

where C is an absolute constant. To establish the next result, we consider the
auxiliary operator defined as:

R2,(350) = R (3 ) + 3lu) — g(u+ 1 (5~(h’1)+§<1))>. (2)

k+s\ &(h,1) (1)
where g € Cp[0,0), u > 0. From Eq. ., one can yield
Rt (Lu) =1, RA (3 (y);u) = 0 and [RiL, (5 w)| < 3]]| (3.3)

Lemma 3.1. If u > 0, we have
IRA,(G:u) — glu)| < 0(w)]|g" ],
where § € C3[0,00) and (u) = RA, (Vi (y)iu) + (R, (v (y); u)?.
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Proof. For g € C%[0,00) and by Taylor expansion, we have
y
(y) = () + )+ / )3 (v)do. (3.9

Implementmg the auxiliary operators R,{ +S( .) introduced in Eq. (3.2 . ) to both sides
of Eq. , we get

y
Riu(@w) i) = §@RA.OF W)W + R, / )7 (v)dv; ).
Using the Egs. (3.3) and (3.4)), one yield

Yy

R (g50) = 30 = R ([ (0= 0)5" (0)dws )

R ( [ 0 ©)dvia)

ut it (gsj((f?f11>)+i}\/<(1l>)) i
- L (€ NN L,
/ <“+ /<c+s<§(h,1) * A(1)> ”) 7 (o)dv,

Y

,{+S / v)dv; u)
&my A
1 5
s |\ e TR

IR, (G;u) — G(u

1 (&1 AQ i
+ <u+f€+8<§(h,1)+f\(1 )—v)g(v)dv
(3.5)
Since,
y
Jw- v @i < w-w? 13", (36)
then
1y AN,
‘ / <u+ R+S<£(h71) + A(U) v> (v)dv (3.7)
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In accordance with (3.5)), (3.6) and (3.7)), we accqire

Sa oo < A8 o o [ (EBD KON
RE ()~ >|s{R::‘+s<vz<y>, >+(Hs(5(h71) . m))> hia'l
= 01"

Which proves the required result. 0

Theorem 3.2. Let j € C3%[0,00). Then, there corresponds a non-negative constant
C > 0 such that

| Rites (@) = §(u) < Cwa (5 V/0(u)) + (5 Rity, (41 (9)s w),
where 0(u) is given by in Lemmal[3.1]

Proof. For h € C3[0,00) and § € Cp[0,00) and with the definition of ﬁf+s(.; )
given in (3.2)), we get

Rt a(@5w) = G| < IR (G — hs )| +1(7 — R) ()] + IR o (35w) — (w)|
) L & Xu)> -

+ = + —= — .
g<“ s lan Fxw)) 70
In accordance with Lemma and inequalities mentioned in Eq. , we acquire

R (3 w) — §(w)| S 4l|G—hl|+|RE, (G5 1) — G(u)
N 1 &) A ) .

+ g + = —
g<“ sl am))
< 4llg = Al + 0() [ 4+ (3 R (y = w)sw))-

By employing Eq. (3.1)), we established the desired result. O

+

_|_

Now, we address the next result in Lipschitz type space presented by [31] as:
ly—ul"

Lip$ 2 (n):= {§ € Cp[0,00) : [g(y) —g(u)] SMW

:u,ye(O,oo)},

where M > 0,0 <n <1 and ¢1,( > 0.

Theorem 3.3. Consider sequence of linear positive operators in and g €
Lipf\}[’qz (n), one obtain

IRA, (5 w) — §(w)] < M (%) 7 (3.9)
where 0 <1 <1, ¢1,¢2 € (0,00) and My) = R (15 (y); w).-
Proof. For =1 and u > 0, we get

Rty s (G50) — G(u)] < Ris(19(y) — G(u)]; )

§MR£+S ly — ] - u .
(y + Qu + Gu?)2
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1 1
Since < , for each u € (0, 00), we acquire
Y+ Gut GuE - Gut Gu? (0, 00) d

M 1
Gt Gyt R DB 02

%
<M Alw) 7
Ciu + Cou?
which indicates that the Theorem is valid for n = 1. Next, we examine the case
where 1 € (0,1) and in accordance with Hélder’s inequality by selecting p = % and

IRE o (G3w) — §(u)] <

q= %, we obtain

2 n

IRE (Giw) — g(w)] < (IRA(13(y) — §(u)| 75 1))

(o y—ul® \\°
: M<R”“<(y+<1u+czu2>7x>> |

1
for all u € (0,00), for all u € (0,00), one get

< )
y+ Gu+ Gu? T Gu+ Gu?

RA (Giu) — g(u
Rices(Giu) = Cru + Gu? Cru + Gu?

Since

Thus, we yield the desired result. [

Next, we address the local approximation in terms of the r*” order modulus of
smoothness, followed by the Lipschitz-type maximal function introduced by Lenze
[31] as:

——, u € [0,00) and 7 € (0,1]. (3.10)
yEuye(0,00) |y~ ul

Theorem 3.4. Consider g € Cgl0,00) and r € (0,1]. Then, for each u € [0,00),
we get

[V

Rk (G 0) = ()] < &0(3i0) (A(w))
Proof. Tt can be observed that
[Rics(@5w) = g(w)] < Rt Ja(y) — ()]s w).
Using Eq. , one get
Rites(@50) = §(u)] < 03 w)RE(ly — ul"5 ).

Then by employing Hélder’s inequality with p = % and ¢ = 52

5=, We obtain

RA, (5 0) — G(u)] < (G5 u) (R (ly — ul?sw)) £

Thus, we concludes the proof. (I
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4. GLOBAL APPROXIMATION PROPERTIES

Suppose that v(u) = 1 +u?, 0 < u < co as weight function. Then, B,[0,00) =
{G(u) : g(u)] < Mz(1 + u?), where the constant Mj depends on § and C, [0, 00)
represents the continuous functional space in B, [0, c0) along with the norm [|g[|, =

sup % and Ck[0,00) = {g € C,[0,00) : lim % = k, where constant k
u€[0,00) U—00
depends on g.

If g is a function defined on [0, b] where b > 0. Then, modulus of continuity is

given by

wp(§,0) = sup  sup [g(y) — g(u)l. (4.1)
ly—u|<8 u,y€(0,b]

It is straightforward to observe that for § € C,[0,00), the modulus of continuity
defined in Eq. (4.1]) approaches to zero.

Theorem 4.1. For g € C,[0,00) and wp4+1(g; ) denote the modulus of smoothness
defined on [0,b+ 1] C [0,00). Then, for y € [0,b], we have

IRL, ((G:u) — Gllopoe < AMG(1+ b*)A(b) + 2wpi1(F; vV As(D)),

where Ag(b) = m{%x] R (V85 u).
ue

Proof. From [30], for any u € [0,b] and y € [0, 00), we have

. . ~ y—u _
30) - 3601 < 5500+ + (14 25 Yo :0)
Implementing operator R#,(.;.) on both the sides, we acquire

IRA (F5u) — §(u)| < AMG(1+ V)R, (v85u)

RA (ly — ;
+ <1+“+5(|y5 il U)>wb+1(§§5)-

Now, in accordance with Lemma [I.4] and u € [0, b], one has

Rk 0) — 9(0)| < ANT(1 4+ 1)0,(6) + (1 v A;(b)>wb+l<g; 9).

By selecting § = 1/A4(b), desired result can easily be obtained. O

Remark. In this article, we employ the test function defined by
gs(y) =y°, s €{0,1,2}.

Theorem 4.2. ([32], [33]) Assume that the sequence of linear positive operators
(Lx)r>1 mapping from C,[0,00) to B,[0,00) meets the conditions

Jim [[L(gs; ) = Gsllv = 0, where s =0,1,2,
thus, for g € C’f [0, 00), we get
T [1L,(3:.) ~ il = 0.
Theorem 4.3. Let g € Cl’,_“[(),oo), Then, we get
Jim [[RE,(3:) — dll. = 0.
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Proof. To prove the result of Theorem [£.3] it is enough to verify that
1 A d.: —Qq = =
Jim IRt s(Gs;-) — Gslly =0, for s =0,1,2.

Considering the Lemma one can see |RZ, (go;.) — 1|l = 0, here k — oo, also
3 By 1 1 (€1 AQ
IR (15) =l = sup (Sl 2U)
uelo,e0) V(W) |+ \ E(R, 1) A1)
1 (€(h1) AQ 1
S (S Ky, 1
K+s\Eh 1) A1)/ ueloee) L +u
For & — oo, we get [R{(913.) — gill, — 0.

Also,

i i 1 1) Y
Ry s(G2;5.) — G2l (;-H—s £(h,1) A(1) ue[o,lio)1+u2

<" (h, 1 1 1
e Ky, 1
§(h,1) A /) yefoioo) LA u
Which implies ||RZ,,(g2;.) — G2[l» — 0 as £ — oo. Thus, we conclude the proof of
the Theorem [1.3] 0

Corollary 4.4. Let g € C’,’:“[O, o0) and ¢ > 0. Then,
Rty s(g;u) — g(u)]

lim su = 0.
K—00 ’U,G[O,IZO) (]. + U2)1+C
Proof. From the result of above Theorem
RA, (g;u) —§
hm sup | K+s (g u) 5 g<u)‘ — 0
K— 00 uE[O,DO) ]. +u
Then, the inequality
RA (F;u) — §
lim sup | m—&-s(g u2) 1+g(u)\ _ 07
K00 4,€10,00) (1 +u )
is immediate, for ¢ > 0. (]

5. A-STATISTICAL APPROXIMATION

In this section we recall some notation from [34]. Suppose that B = (bs,)
represents a non-negative infinite summability matrix. Then, a sequence u := (u,,)
is A-statistically convergent to L, denoted as stg — lim u = L, if for every € > 0

lim Y b =0.
piluy,—L|>e
Let g = (g,x) be a sequence such that the following assertions are true

stg —limg, =1 and stg —limgy =b, 0 <b < 1. (5.1)
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Theorem 5.1. Consider B = (b,) be a non-negative reqular summability matriz
and sequence ¢ = (q.) along with condition , gs € (0,1), Kk € N. Then, for
each g € 08[07 OO); stp — lim ||Rf+s(gsy ) - gHu = 0.
K
Proof. By using Lemma [I.3] we have
StB - hgn ||,R’;3+s(§07 ) - gOHV =0.

and
o 1|1 (€my A/(l))
Riva(@ii) = aulls = s g A
[Ricss(G15) = Gl welome) 1+ 2 H+3<£(ha1) A(1)
1 (€1 ANQ 1
(e Koy,
K+s\ (1) A1)/ uefooo) L +u
Now

M : = {fe: IR, ((G15.) — Gl > e},
)

- 1 /(&1 A
My:=<k: <£~(’)—|—~( )26.
k+s\¢(h,1) A1)
Which implies that Ml - Mg, this shows that

> bep < > byu. Therefore, we get
ueM,; WE M,

stp —lim [Ry (91:) = gall, = 0. (5.2)
Now by using Lemma we have

1
IRA, (G2;.) — Gally < sup
i (u)

( ! (25(h’1)+2[&(1))+1)u

u€[0,00) V k+s\ £(h,1) A1
Ly N DA (h1) A1)
(n+s)2<§(h, 1) " A1) 2 £(h, 1)A(1) " £(h,1) " A1) )‘

For a given € > 0, we have the following sets

Wl 1= {H: ||Ré+s(§2§~) - g2”u Z 6}’

>

[N e

= o1 {1 AN DA  (h1) f\”(l))
{“‘ <n+s>2<£<h,1> R Panoan any TR
It can be observed that W1 - Wg U W3 Therefore, we acquire

D b < ) bept > b

HEWL REW? HEWS3

}.

As k — oo, we have

stp —lim R, (32:-) = Gall = 0. (5.3)
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Thus, we concludes the proof of the Theorem [5.1] a

Next, we discuss the convergence rate of A-Statistical approximation with respect
to Peetre’s K-functional for the operators RZ, (.;.).
The Peetre’s K-functional of function f € Cp[0,00) is defined by

K(f:9)= it {If = glleaos +olgllcgom | -
(i9) gecl,??[o,oo){”f 9llesio.00) +llgllez o, )}

where 6 > 0 and
CB[0,00) = {f € Cp[0,00) : ', f" € C[0,00)},
endowed with the norm
120,000 = Ifllesi0.00) + 1 o 10.00) + 17 [ 0510,00) -
Theorem 5.2. Let g € C%[0,00). Then,
stp — lim IR+5(35 ) = Glloso.ee) =0
Proof. In view of Taylor’s result, we have

3() = () + 5/ )y — )+ 3"y — )

where y <7 < u. Operating R, (g;u), on both sides in above equation, one get

R () — () = § (R GE W) 0) + 53" )R (8 (0): ),

which yields that

||R£+s(§7 ) - gHCB[O,oo) S ||g/HCB[O,OO)HR?+S(§1_7 ')”CB[0,00)

1, . -
+ 5 ||gN||CB [0,00) ||R;3+s (gl_v ')QHC'B[O,OO)

=T+ Ty, say. (5.4)
Based on Eqs. (5.2)) and (5.3]), one has
lim > by, = 0,

peN:T > 5

lim > by = 0.

RENT> &
From Eq. 7 we get
lim by < lim b lim brps-
" ueN:IR:‘H(é%;éIcB[o,m)Ze R ueﬁgf;>§ v " uel\gfpg -
Thus
stp — lim IR (G ) = Glosioee) =0 as K — oo

Hence, we arrive at the proof of desired result. O
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6. NUMERICAL OBSERVATIONS

To confirm the theoretical approximation outcomes, numerical experiments are
conducted. This section includes a numerical example.

Example 6.1. Let’s take k = 2, s = 1, h = 1, and §(x) = 2%. We want to
approximate §(x) using the Szsz-Schurer operators introduced in ([L.5)).

Assuming A(1) =1 and {(h, 1) = 1, and using the definition of Ap . ((k+s)u,h),
we get:

e~ ((k + 5)u)”

AP ((k + s)u, h) = ”

Let’s calculate the approximation for u = 1:

R‘é‘(g;l)ielgi @)

Calculating the first few terms of the series, we get:

y . 3 /1\% 32 /2\? 33 /3\?

- _ 1 4 9
RE(5:1) ~e 3(0+3+2+2—|—...>

RE(§;1) ~ 0.4481 + 0.8962 + 2.0164

R (g;1) ~ 1.017

The actual value of §(1) = 12 = 1. The approzimation using the Szsz-Schurer
operators is close to the actual value.

This is a numerical example demonstrating the use of Szsz-Schurer operators via
general-Appell Polynomials for approximating functions.
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11. CONCLUSION

In this paper, we present a sequence of positive linear operators using general-
ized Appell polynomials. These operators are designed to achieve better approx-
imation properties in various functional spaces and are known as Szdsz-Schurer
type operators introduced in . Additionally, we derive estimates crucial for
establishing rate of convergence and accuracy of approximation. Furthermore, we
explore various aspects of approximation, including local and global results, as
well as A-statistical approximation, utilizing these operators to obtain enhanced
approximations across different functional spaces.
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