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ON THE EXISTENCE OF LIMIT CYCLES IN A FAMILY OF

AUTONOMOUS THIRD-ORDER ORDINARY DIFFERENTIAL

EQUATIONS

ROMAISSA MELLAL*, NABIL SELLAMI

Abstract. This study focuses on identifying limit cycles within a specific
class of third-order autonomous differential equations described by

...
x + (αx+ λ)ẍ+ (βx+ µ)ẋ+ γx2 + λµx = ε2φ(x, ẋ, ẍ, ε),

where φ = φ (x, ẋ, ẍ, ε) is a nonlinear perturbation, ε is a small parameter, and
the parameters α, λ, β, µ, and γ are real with µ > 0.
By employing first-order averaging theory, the problem of identifying limit
cycles is reduced to an algebraic problem of determining non-degenerate zeros
of a nonlinear function. This approach provides sufficient conditions ensuring
the existence of limit cycles in the original differential equation. The efficacy of
this work and the validity of the theoretical results are substantiated through
illustrative applications.

1. Introduction

Limit cycles are isolated periodic solutions arising in nonlinear differential equa-
tions. This concept, first introduced by Henri Poincar in 1881 through his work
”Mmoire sur les courbes dfinies par une quation diffrentielle” [24], represents a
fundamental area of study in dynamical systems theory and plays a crucial role in
understanding oscillatory phenomena across various scientific disciplines.

Third-order differential equations frequently appear in various scientific contexts
such as mechanics and biological systems. Consequently, numerous studies have
addressed periodic solutions of such equations using diverse analytical techniques,
including [2, 3, 4]. Among these methods, averaging theory has proven particularly
effective, as seen in [5, 8, 9, 16, 19, 20, 21, 25, 29].

Three-dimensional quadratic differential systems constitute an important class of
nonlinear dynamical systems that have attracted considerable attention in mathe-
matical research due to their rich dynamic behavior and broad range of applications.
Numerous examples of such systems have been extensively studied in the literature.
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*Corresponding Author: R. Mellal.
Submitted June 29, 2025. Accepted August 10, 2025. Published August 20, 2025.
Communicated by D. Anderson.

52



LIMIT CYCLES FOR 3RD ORDER DIFFERENTIAL EQUATIONS 53

Classical examples include the Rikitake [26], Lorenz [22], Genesio [13], Chen [7],
and Liu systems [15]. Recently, several new three-dimensional quadratic differential
systems have been investigated, as in [1, 11, 12, 14].

The Hopf bifurcation of periodic orbits in the equation
...
x + (a1x+ a0)ẍ+ (b1x+ b0)ẋ+ c2x

2 + c1x+ c0 = 0 (1.1)

was studied in [10].
In [18], the authors examined the equation

...
x + (a1x+ a0)ẍ + (b1x+ b0)ẋ+ x2 = 0. (1.2)

In [17], periodic orbits were investigated for the equation
...
x + (a1x+ a0)ẍ+ (b1x+ b0)ẋ+ c2x

2 + a0b0x = ε2F (t, x, ẋ, ẍ, ε), (1.3)

where F is 2π√
b0
-periodic in t, b0 > 0, and ε is a small parameter.

In this work, we investigate the emergence of limit cycles in perturbed third-order
autonomous differential systems described by

...
x + (αx+ λ)ẍ + (βx + µ)ẋ+ γx2 + λµx = ε2φ(x, ẋ, ẍ, ε), (1.4)

where φ = φ(x, ẋ, ẍ, ε) denotes a nonlinear autonomous perturbation function. The
coefficients α, λ, β, µ, γ ∈ R with µ > 0. Here, ε represents a small perturbation
parameter.

Note that equation (1.4) is the autonomous version of equation (1.3) studied in
[17], and our work completes the study initiated in that paper.

This work extends prior results on non-autonomous systems [17] by addressing
the autonomous case, revealing that even simple autonomous perturbations can
induce rich oscillatory behavior, providing new insights into the dynamics of these
important mathematical systems.

Our research shows that the perturbation of the associated homogeneous third-
order differential equation of (1.4) (i.e., equation (1.4) with ε = 0) or its equivalent
three-dimensional quadratic differential system by an autonomous function can
also produce limit cycles, analogous to the case of non-autonomous perturbations
established in [17].

2. Main results

Let us define the function

F(r0) =

√
µ

2π

2π√
µ
∫

0

cos(
√
µθ)Q(A,B,C) dθ, (2.1)

where
Q(A,B,C) = A

(

− γA− βB − αC
)

+ φ0(A,B,C),

with φ0 being the zero-order term in ε from Taylor expansion of φ(εx, εy, εz, ε) at
ε = 0, and

A =
−√

µr0 cos(
√
µθ) + λr0 sin(

√
µθ)

√
µ (λ2 + µ)

,

B =
λr0 cos(

√
µθ) +

√
µr0 sin(

√
µθ)

λ2 + µ
,

C =
µr0 cos(

√
µθ)− λ

√
µr0 sin(

√
µθ)

λ2 + µ
.

(2.2)
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The theorem that follows constitutes the principal finding of this investigation.

Theorem 2.1. Suppose λ 6= 0 and µ > 0. If F(r0) has a simple zero r∗0 , then
equation (1.4) admits a periodic solution εx(t, ε) such that x(t, ε) converges to

x∗0(t) =
r∗0
(

−√
µ cos(

√
µt) + λ sin(

√
µt)
)

√
µ (λ2 + µ)

, (2.3)

a solution of
...
x + λẍ+ µẋ+ λµx = 0, (2.4)

as ε→ 0.

This theorem is proved in subsection 4.1.
To apply Theorem 2.1, we present the following two corollaries.

Corollary 2.2. When λ 6= 0, µ > 0 and the function φ satisfies

φ (x, ẋ, ẍ, ε) = xẋẍ
(

1− x3
) (

ẍ2 − 1
)

+O (ε) ,

then equation (1.4) admits a limit cycle εx1(t, ε), such that x1(t, ε) converges to the
solution

x∗01(t) =
−√

2µ cos(
√
µt) +

√
2λ sin(

√
µt)

µ
√

λ2 + µ
(2.5)

of equation (2.4), as ε→ 0.

Corollary 2.3. For λ = 3, µ = 1 and

φ (x, ẋ, ẍ, ε) =
(

1− x3
) (

ẋ2 − 1
)

(ẍ− 1) +O (ε) ,

two limit cycles εx2(t, ε) and εx3(t, ε) of equation (1.4) emerge, such that x2(t, ε)
and x3(t, ε) converge respectively to the solutions

x∗02(t) =

√

10 + 5
√
2 (− cos t+ 3 sin t)

5
(2.6)

and

x∗03(t) =

√

10− 5
√
2 (− cos t+ 3 sin t)

5
(2.7)

of equation
...
x + 3ẍ+ ẋ+ 3x = 0, (2.8)

as ε→ 0.

Corollaries 2.2 and 2.3 are demonstrated in subsections 4.2 and 4.3 respectively.

3. Main Tool

Here, we provide the essential first-order averaging theory results that are crucial
for our study. For more on averaging theory, see [28] and [30].

Consider a perturbed differential equation

ẋ(t) = g0 (x, t) + εg1(x, t) + ε2g2(x, t, ε), (3.1)

with ε ranging from 0 to sufficiently small nonzero values.
The mappings g0, g1 : D × R → R

n and g2 : D × R × (−ε0, ε0) → R
n belong to

the class C2 and exhibit T−periodicity in t; here, D ⊂ R
n is an open set.

When ε = 0, the system

ẋ(t) = g0 (x, t) (3.2)
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is assumed to have an m-dimensional submanifold of periodic solutions.
For a solution x(t,w) of (3.2) with initial conditions x(0,w) = w, the linearized

system takes the form

ẏ = Dxg0 (x(t,w), t)y. (3.3)

Let Mw(t) represent a fundamental matrix of (3.3), and define the projection
P : Rm × R

n−m → R
m of Rn onto its first m coordinates.

The next theorem provides conditions for the existence of periodic solutions in
the perturbed system (3.1) involving an averaging function F defined using the
fundamental matrix.

Theorem 3.1. For an open, bounded set U ⊂ R
m and a C2 function h : U → R

n−m,
we assume

i) The set W =
{

wδ = (δ, h (δ)) , δ ∈ U
}

⊂ D generates T -periodic solutions
x (t,wδ) of (3.2).

ii) For each wδ ∈ W, system (3.3) admits a fundamental matrix Mwδ
(t) where

M−1
wδ

(0)−M−1
wδ

(T ) has an m× (n−m) zero matrix in its upper right block
and a nonsingular ((n−m)× (n−m)) matrix ∆δ in its lower right block.

Define the averaging function F : U → R
m by

F(δ) = P
(

1

T

∫ T

0

M−1
wδ

(t) g1(x (t,wδ) , t) dt

)

. (3.4)

If there exists δ∗ ∈ U where F(δ∗) = 0 and det
(

dF
dδ

(δ∗)
)

6= 0, the system (3.1) has
a T−periodic solution ψ (t, ε) satisfying ψ (0, ε) → wδ∗ as ε→ 0.

This formulation originates from the classical work of Malkin [23] and Roseau [27].
In [6], a new proof of Theorem 3.1 is presented.

4. Proofs

4.1. Proof of Theorem 2.1.

Proof. By setting (x, ẋ, ẍ) = (x, y, z), we transform equation (1.4) into the following
system of first-order equations







ẋ = y

ẏ = z

ż = −λµx− µy − λz − γx2 − βxy − αxz + ε2φ(x, y, z, ε).
(4.1)

Applying the rescaling (x, y, z) 7→ (εX, εY, εZ), yields






Ẋ = Y

Ẏ = Z

Ż = −λµX − µY − λZ + ε
(

−γX2 − βXY − αXZ + φ0(X,Y, Z)
)

+O(ε2),
(4.2)

where φ0 = φ0(X,Y, Z) is defined in section 2.
Now, we implement the linear transformation





U

V

W



 =





0 λ 1
λ
√
µ

√
µ 0

µ 0 1









X

Y

Z



 ,
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which converts the linear component of system (4.2) into its real Jordan canonical
form. We obtain







U̇ = −√
µV + εP (U, V,W ) +O(ε2)

V̇ =
√
µU

Ẇ = −λW + εP (U, V,W ) + O
(

ε2
)

,

(4.3)

where P (U, V,W ) = a (−γa− βb− αc) + φ0(a, b, c) such that

a =
−√

µU + λV +
√
µW

√
µ (λ2 + µ)

b =
λU +

√
µV − λW

λ2 + µ

c =
µU − λ

√
µV + λ2W

λ2 + µ
.

Converting (U, V,W ) to the cylindrical coordinates (r, θ, υ) via

U = r cos(
√
µθ), V = r sin(

√
µ θ), W = υ,

leads to










ṙ = ε cos(
√
µ θ)P

(

r cos(
√
µ θ), r sin(

√
µ θ), υ

)

+O(ε2)

θ̇ = 1− ε
sin(

√
µ θ)

r
√
µ

P
(

r cos(
√
µ θ), r sin(

√
µθ), υ

)

+O(ε2)

υ̇ = −λυ + ε P
(

r cos(
√
µ θ), r sin(

√
µ θ), υ

)

+O(ε2).

(4.4)

Dividing by θ̇, the last system is reduced to







dr
dθ

= ε cos
(√
µθ
)

Q (θ, r, υ) +O
(

ε2
)

dυ
dθ

= −λυ + ε

(

1− λυ sin(
√
µθ)

r
√
µ

)

Q (θ, r, υ) +O
(

ε2
)

,
(4.5)

with Q (θ, r, υ) = P
(

r cos(
√
µ θ), r sin(

√
µ θ), υ

)

.

The system (4.5) takes the form of system (3.1) where

t =
√
µ θ, x =

(

r

υ

)

, g0 =

(

0
−λυ

)

and

g1 =

(

cos(
√
µ θ)Q (θ, r, υ)

(

1− λυ sin(
√
µ θ)

r
√
µ

)

Q(θ, r, υ)

)

.

In the following, we have to apply Theorem 3.1 to system (4.5). If ε = 0, the system
(4.5) becomes

{

dr
dθ

= 0
dυ
dθ

= −λυ, (4.6)

which has the 2πλ√
µ
-periodic solutions (r(θ), υ(θ)) = (r0, 0), for r0 > 0.

To verify the conditions of Theorem 3.1, note that m = 1 and n = 2.
For r1 > 0 and r2 > 0, define U = ]r1, r2[ ⊂ R, δ = r0 ∈ [r1, r2], and the function

h : [r1, r2] → R

r0 7→ h (r0) = 0.

The set

W = {wδ = (r0, 0), r0 ∈ [r1, r2]} ,
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and the projection
P : R× R → R

(r, υ) 7→ P(r, υ) = r.

The fundamental matrix Mwδ
(θ) of the linearized system (4.6) at wδ = (r0, 0) is

Mwδ
(θ) =

(

1 0
0 e−λθ

)

.

We have

M−1
wδ

(0)−M−1
wδ

(

2π√
µ

)

=

(

0 0

0 1− e
2πλ√

µ

)

,

which verifies condition (ii) of Theorem 3.1, since λ 6= 0 and µ > 0 .
From (3.4), we get F (δ) = F (r0), where F (r0) is given by (2.1).
By Theorem 3.1, for each simple zero r∗0 of F (r0), the system (4.5) admits a

limit cycle (r (θ, ε) , υ (θ, ε)) such that

(r(0, ε), υ(0, ε)) → (r∗0 , 0), when ε→ 0.

Reverting the transformations, there exists a limit cycle (r(t, ε), θ(t, ε), υ(t, ε)) of
system (4.4), with initial conditions converging to (r∗0 , 0, 0) when ε→ 0.

Consequently, system (4.3) has a limit cycle (U(t, ε), V (t, ε),W (t, ε)), satisfying

(U(0, ε), V (0, ε),W (0, ε)) → (r∗0 , 0, 0), when ε→ 0.

Finally, the original differential equation (1.4) possesses a limit cycle εx(t, ε), such
that x(t, ε) converges to the periodic solution (2.3) of equation (2.4), as ε→ 0.

Thus, we have established Theorem 2.1. �

4.2. Proof of Corollary 2.2.

Proof. To prove this corollary, we apply Theorem 2.1.
Taking φ0 (x, ẋ, ẍ) = xẋẍ

(

1− x3
) (

ẍ2 − 1
)

then the function F(r0) is

F1(r0) =
r30λ

(

2λ2 + 2µ− r20µ
)

(λ2 + µ)3
,

which has the real positive simple zero r∗01 =

√
2µ(λ2+µ)

µ
with

dF1

dr0
(r∗01) =

−λ
2µ(λ2 + µ)

6= 0.

By Theorem 2.1, it follows the existence of a limit cycle of equation (1.4) as
shown in Figure 1, the formula (2.5) is obtained by substituting the above zero r∗01
in (2.3). �

4.3. Proof of Corollary 2.3.

Proof. If λ = 3, µ = 1 and φ0 (x, ẋ, ẍ) =
(

1− x3
) (

ẋ2 − 1
)

(ẍ− 1), then from (2.1),
we have

F2(r0) = − 1

16000
r50 +

1

200
r30 −

1

20
r0,

which has two positive simple zeros r∗02 = 2
√

10 + 5
√
2 and r∗03 = 2

√

10− 5
√
2

with
dF2

dr0
(r∗02) =

−1−
√
2

5
6= 0 and

dF2

dr0
(r∗03) =

−1 +
√
2

5
6= 0.
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The proof follows directly from Theorem 2.1, we have two limit cycles of equa-
tion (1.4) represented in Figure 2, the formulas (2.6) and (2.7) are obtained by
substituting the above zeros r∗02 and r∗03 respectively in (2.3). �

Figure 1. Limit cycle of the system of Corollary 2.2 with α =
λ = β = µ = γ = 1 and ε = 0.01.

Figure 2. Limit cycles of the system of Corollary 2.3 with ε = 0.01.

5. Conclusion

In this paper, we have extended the analysis of periodic solutions in third-order
differential systems by focusing on autonomous perturbations of a class of third-
order autonomous differential equations. Using first-order averaging theory, we have
established explicit criteria for the existence of limit cycles via the identification of
simple zeros of a scalar averaging function. Our results complement and generalize
the earlier work of Llibre and Makhlouf [17], who studied the non-autonomous case
with time-dependent perturbations.

Whereas their framework deals with periodic orbits arising from non-autonomous
quadratic systems and requires analyzing zeros of a two-dimensional averaged func-
tion, our approach demonstrates that autonomous nonlinear perturbations alone
suffice to generate rich oscillatory behavior, often with simpler scalar conditions.
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Furthermore, the constructive examples and corollaries we present showcase the
practical applicability and effectiveness of our method in identifying multiple limit
cycles.

Overall, our contribution advances the theory of limit cycles for third-order au-
tonomous systems, providing new insights and a complementary perspective that
bridges and enhances existing results in the literature.
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