BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG
VOLUME 17 ISSUE 3(2025), PAGES 35-51
HTTPS://DOL.ORG/10.54671/BMAA-2025-3-3

A MILLER-ROSS-TYPE POISSON DISTRIBUTION CONNECTED
WITH CERTAIN CLASS OF STARLIKE FUNCTIONS

WALEED AL-RAWASHDEH

ABSTRACT. In this paper, we make use of Miller-Ross function and Poisson dis-
tribution to introduce a novel class of starlike bi-univalent functions that is sub-
ordinated to Gegenbauer polynomials, which we denote as S*(\Ilzﬂ; Gs(z, z)).
In addition, we find bounds for the growth and distortion of functions belong-
ing to our class and some of its various subclasses. Moreover, we obtain the
classical Fekete-Szego inequality of functions belonging to our class and some
of its various subclasses. Furthermore, we derive the initial coefficients bounds
and the Fekete-Szegd inequality associated with the logarithmic function for
functions belonging to our class.

1. INTRODUCTION

Special functions are well-established streams of research in geometric function
theory, applied mathematics, representation theory, engineering, physics and as-
tronomy, quantum chemistry, computer science and many other mathematical sci-
ences. One of the reasons for the frequent occurrence of special functions is that;
solutions of extremal problems can often be expressed in terms of special functions.
Another reason is that some important conformal mappings are given by special
functions. For instance, the conformal mapping of an annulus onto the complement
of two closed segments on the real axis and the conformal mapping of a square onto
a rectangle are given by elliptic functions.

In this paper, we consider the Miller-Ross function which is introduced by Miller
and Ross, [32]. For any complex numbers «, 8 and z, this special function is defined

My g(z) = 2¢ Z F(L)n where R(a) >0, R(B) > 0.
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The probability distributions of a random variable constitutes a core concept
within the domains of statistics and probability theory. Their probability mass
functions have been crucial in probability theory and many other mathematical
sciences. There has been tremendous studies make use of distribution series in
mathematical sciences. Using the probability distributions, many researchers have
investigated some important features in the field of geometric function theory such
as coefficient estimates and the Fekete and Szeg6 functional problem, see for exam-

ple ([42], page2).

In addition, a discrete random variable X is said to adhere to a Poisson distribu-
tion with the parameter m > 0 if its probability mass function can be represented
in the following manner

Tm, where k£ =0,1,2,3,---

In this paper, we make use of convolution of the Macluarin series representation
of Borel distribution and Miller-Ross function to introduce a novel class of starlike
bi-univalent functions associated with Gegenbauer polynomials.

—mk
P(X=k) ="

Let A be the family of all analytic functions f that are defined on the open unit
disk D = {z € C: |z] < 1} and normalized by the conditions f(0) =0=1— f'(0).
Any function f € A has the following Taylor-Maclaurin series expansion:

f(z)=2+ Zanz”, where z € D. (1.1)
n=2

Let S denote the class of all functions f € A that are univalent in . As known
univalent functions are injective (one-to-one) functions. Hence, they are invertible
and the inverse functions may not be defined on the entire unit disk . In fact,
according to Koebe one-quarter Theorem [I3], the image of I under any function
f € S contains the disk D(0,1/4) of center 0 and radius 1/4. Accordingly, every
function f € S has an inverse f~! = g which is defined as

9(f(z)) =2 =€D
flow)) =w, |w| <r(f); v(f) = 1/4

Moreover, the inverse function is given by
g(w) = w — asw? + (243 — az)w® — (5a3 — 5asas + as)w* + - - - (1.2)

A function f € A is said to be bi-univalent if both f and f~! are univalent in D.
Therefore, let ¥ denote the class of all bi-univalent functions in A which are given
by equation . For more information about univalent and bi-univalent functions
we refer the readers to the articles [27], [30], [37], [39] the monograph [13], [19] and
the references therein.

The research in the geometric function theory has been very active in recent
years, the typical problem in this field is studying a functional made up of combi-
nations of the initial coefficients of the functions f € A. For a function in the class
S, it is well-known that |a,| is bounded by n. Moreover, the coefficient bounds
give information about the geometric properties of those functions. For instance,
the bound for the second coefficients of the class S gives the growth and distortion
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bounds for the class.

Coefficient related investigations of functions belong to the class ¥ began around
the 1970. It is worth mentioning that, in the year 1967, Lewin [27] studied the class
of bi-univalent functions and derived the bound for |azs|. Later on, in the year 1969,
Netanyahu [37] showed that the maximum value of |ag| is § for functions belong
to the class ¥. In addition, in the year 1979, Brannan and Clunie [§] proved that
las| < V2 for functions in the class ¥. Since then, many researchers investigated
the coefficient bounds for various subclasses of the bi-univalent function class 3.
However, not much is known about the bounds of the general coefficients |as| for
n > 4. In fact, the coefficient estimate problem for the general coefficient |a,,| is
still an open problem.

In the year 1933, Fekete and Szegé [17] found the maximum value of |az — Aa3|,
as a function of the real parameter 0 < A < 1 for a univalent function f. Since then,
maximizing the modulus of the functional ¥y (f) = az — Aa3 for f € A with any
complex ) is called the Fekete-Szego problem. There are many researchers investi-
gated the Fekete-Szego functional and the other coefficient estimates problems, for
example see the articles [2], [4], [9], [T1], [1I7], [20], [22], [30], [46] and the references
therein.

2. PRELIMINARIES

In this section we present some information that are crucial for the main results
of this paper. In the year 1903, Mittag-Leffler [33] defined a special function, named
after him, as follows

zTL

Eoc = /1 1 -\ h ’ .
(2) ;}I‘(l—&—na) where z € C, and ®{a} >0

This last series converges in the whole complex plane for all values of R(«) > 0
and diverges for z # 0 when R{a} < 0. Additionally, when R{a} = 0, the radius
of convergence is given by ™2™ In 1905, Wiman ([52], [53]) introduced and
studied the Mittag-Leffler function of two parameters as follows:

oo n

E,p(z) = Z m, where z € C, R{a} > 0,R{8} > 0.

n=0

For additional insights into Mittag-Leffler functions and their various applica-
tions, we recommend that readers consult the works of [6], [21], [23], [26], [28], [38],
[54] and the references provided therein.

Recently, in their monograph, [32], Miller and Ross introduced a special function,
which is later called the Miller-Ross function. This function is defined as

My g(2) = zo‘eBZX*(a, Bz),

where z,«, 8 € C with R(«) > 0, R(8) > 0, and X* is the incomplete gamma
function. Moreover, M, ,(z) is the solution of the following ordinary differential
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equation

a—1
INCON
Furthermore, the Miller-Ross function can be written as
Ma,p(z) = 2% E114a(B2),

where Eq 144(82) is the Mittag-Leffler function of two parameters.

Y — By =

It is clear that M, g(z) does not belong to the family A. Therefore, it is natural
to consider the following normalization of the Miller-Ross function:

M, 5(2) = zlfaF(l + )M, . (2)

AN+ a)
—z—&—nz:; T(n + ) z".

It is worth mentioning that Eker and Ece, [I5], proved that for g > 0, if
a > (24 +/2)B — 1 then the normalized Miller-Ross function is starlike in the
unit disk . They also proved that if o > 25 — 1, then the normalized Miller-Ross
function is univalent and starlike in the disk Dy = {z € C: 2| < }. In addition,
they proved if a > (2 +v/2)3 — 1 then the normalized Miller-Ross function is uni-
valent and convex in the disk Dy /5.

In this paper, we restrict our attention to the case of real numbers o > —1 and
B > 0. it is well-known that the probability mass function of the Miller-Ross-type
Poisson distribution is given by

(mpB)*m
F(a+k+1)Myp(m)’

Recently, [42], Seker et al. used the probability mass function (2.1]) to introduce
the Miller-Ross-type distribution series as follows

Pop(m; k) :=

where a > —1, 5> 0. (2.1)

m,B ) 1m
=2+ Z o (m). (2.2)

Note that, if we put &« = 0 and § = 1 in the power series , we obtain the power
series representation of the Poisson distribution which is introduced by Porwal [40].

The convolution of specific analytic functions has been of very important in
geometric function theory. It can be used to express a wide variety of differential and
integral operators. The convolution, also referred to as Hadamard product of two

analytic functions f(z) as described in the equation (1.1)) and h(z) = z + Z b 2"

is expressed as follows:

(fxh)(z)=z+ Z anbpz".
n=2
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Moreover, the convolution operation provides a deeper mathematical exploration
and enhances our understanding of the geometric and symmetric properties of func-
tions within the space H. Its significance in operator theory and geometric function
theory is well-established and thoroughly discussed in the available literature. For
those seeking further insights into convolution within geometric function theory, we
recommend consulting the monograph [I3], as well as the articles [4], [34] and the
associated references therein.

Now, using the convolution, we introduce the following linear operator

g A=A
which is define as:

Vol (2) = M g(2) * f(2)

oo
=z+ g U,a,2",
n=2

where
(mﬂ)n—lma
I(a+n)Mypg(m)
For more information about the Miller-Ross-type Poisson distribution and its ap-
plications in the geometric function theory we refer the interested readers to the
articles [7], [I5], [16], [34], [42], [43], [47] and the related references included therein.
In the year 1994, Szynal [48] introduced and studied a subclass F(8) of the class
A consisting of functions of the form

U, =

1
1) = [ K doto), (2.4)

z
(22 — 222 + 1)’
sure on [—1, 1]. Moreover, the function K (z, ) has the following Taylor-Maclaurin
series expansion

K(z,2) =2+ A(1,6,2)2% + A(2,6,2)2° + A(3,6,2)2* + - - -,

where K(z,2) = >0, —1<t<1,and o is the probability mea-

where A(n,d,z) denotes the Gegenbauer polynomials of order § and degree n in
x. Furthermore, For any real numbers 6,z € R ;with « > 0 and -1 <z <1, and
z € D the generating function of Gegenbauer polynomials is given by

Gs(z,x) = (22 = 2x2 +1)7°.

Moreover, for any fixed x the function Gs(z, ) is analytic on the unit disk D
and its Taylor-Maclaurin series is given by

Gs(z,x) = A(n,6,z)z". (2.5)
n=0

In addition, Gegenbauer polynomials can be defined in terms of the following
recurrence relation:

2¢(n+ 6 —1DAMn—1,6,2) — (n+20 — 2)A(n— 1,0, x)
n

A(n,d,z) = ) (2.6)
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with initial values,
A0,6,2) =1, A(1,6,x) =26z, and A(2,6,z) =26(6 + 1)z — 0. (2.7)

It is well-known that the Gegenbauer polynomials and their special cases, are
orthogonal polynomials, such as Legendre polynomials L, (x) and the Chebyshev
polynomials of the second kind T;,(z) where the values of § are 6 = 1/2 and § =1
respectively, more precisely

Ly(x,2) = Gi(z,z), and T,(z,z) = G1i(z,x).

1

3
For more information about the Gegenbauer polynomials and their special cases,
we refer the readers to the articles [3], [5], [20], [24], [30], [46], the monograph [13],
[19], [45], and the references therein.

The characterization of starlike functions is essential in complex analysis, par-
ticularly in the geometric function theory. A function f is said to be starlike if for
any pu € f(D) and k € [0,1], then ku belongs to f(D). Furthermore, the class of
starlike functions of order a represented by S*(«), where the parameter « satisfies
the condition 0 < a < 1. A function f € S is considered to be a member of the
class §*(«) if the following condition holds for all ¢ € D:

¢f'(©)
RIS 7o

When considering the case where o = 0, it follows that $*(0) coincides with the
classical class of starlike functions, denoted as S*. The class S*(¢) was introduced
by Ma and Minda [29] and is defined as

¢f'(Q)

s0)={res: S8 <00},

where ¢ is a univalent function characterized by having a positive real part within
the open unit disk D. Moreover, the image ¢(ID) is symmetric with respect to the
real axis, and it satisfies the conditions ¢’(0) > 0 and is starlike with respect to the
value ¢(0) = 1.

Notably, substituting ¢ with specific functions yields various recognized sub-
classes of starlike functions. For instance, Sokél and Stankiewicz [44] defined the
class §*(v/1+ z). Furthermore, Mendiratta et al. [31] introduced the class S,
which arises from the choice of ¢(z) = e*. Another example is the class S%,, which

is derived from the function ¢(z) , as presented by Goel and Kumar [I8].

1+e*
When ¢(z) is taken to be 1 + sin(z, the re)sulting class is §§;,,, introduced by Cho
et al. [I2]. Furthermore, Kumar and Bango [25] defined the class Sy, , which is
obtained by selecting ¢(z) = 1 —log(1 4 z). For more information about starlike
functions we refer the interested readers to consult the articles For more informa-
tion about classes of starlike analytic functions, we refer the readers, for example,
to the articles [B], [6], [31], [34], [41], [44], [51] and the references provided therein.

Moreover, let f and g be analytic functions in . We say the function f is
subordinate to the function g in D, denoted by f(z) < g(z) for all z € D, if there
exists a Schwartz function w, with w(0) = 0 and |w(z)| < 1 for all z € D, such that
f(z) = g(w(z)) for all z € D. In particular, if the function g is univalent over D
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then f(z) < g(z) equivalent to f(0) = ¢g(0) and f(D) C g(ID. For more information
about the Subordination Principle we refer the readers to the monographs [14], [32]
and [36].

The main purpose of this article is to make use of Miller-Ross function and Pois-
son distribution to introduce a new class of starlike bi-univalent functions that is
subordinated to Gegenbauer polynomials, which we denote as S*(¥7' 5; Gs(w, 2)),
which we define as follows.

Definition 2.1. A function f € X is said to be in the class S*(V} 5;Gs(z,2)) if
it satisfies the following subordinations:

z (Wgﬂf(z))l

‘I’Zfﬁf(z) < Gs(z, 2), (2.8)

and .
w (Wg‘ﬂg(w)>

W$59<w)
where o > =1, >0, 6 >0, £ <z <1 and the function g(w) = f~(w) is given

by the equation .

In our analysis, we introduce a parameter § that plays a crucial role in cate-
gorizing our class S*(V7 5;Gs(w, 2)). The choice of 0 can significantly influence
the properties and behaviors of this class, leading us to identify distinct subclasses
based on its values. For example, taking values of 6 as § = 1/2 and § = 1, give
us the orthogonal polynomials Legendre polynomials L, (x, z) and the Chebyshev
polynomials of the second kind T, (z, z), respectively. Therefore, we get the follow-
ing subclass of starlike bi-univalent functions defined using Miller-Ross-type Poisson
distribution that are subordinate to the Legendre polynomials and the Chebyshev
polynomials of the second kind.

< Gs(z,w), (2.9)

Example 2.2. Let f be a bi-univalent function. Then f is said to be in the class
S* (VR 53 Ln(w, 2) if it satisfies the following subordinations:
!/
- (20 ) < Ln(z,2) (2.10)
_ n(T,2), .

and .
w (Wgﬂg(w»
\I/Ziﬁg(w)
where o > —1, 3> 0, 3 <z <1 and the function g(w) = f~(w) is given by the
equation .
Example 2.3. Let f be a bi-univalent function. Then f is said to be in the class
S* (Y 5 T, 2) if it satisfies the following subordinations:
/

=< Ly(z,w), (2.11)

< Tp(z,2), (2.12)
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and
/
w (\I/;”’ﬁg(w))
e sg(w)
where o > —1, B> 0, 3 <z <1 and the function g(w) = f~'(w) is given by the

2
equation ,

The subsequent lemma, extensively elaborated upon in existing literature (refer
to, for example, [22]), represents well-established principles that hold significant
importance for the research we are currently presenting.

< Tp(z,w), (2.13)

Lemma 2.4. If L belongs to the Caratheodory class P, then for z € D the function
Q can be written as

L(z) =1+ p1z+paz® +psz® +- -
In addition, |p,| <2 forn > 1. Moreover, for any A € C, we have
Ipa — p?| < 2max{1, |1 — 2A|}.
In particular, if X is a real number, then

_AN+2, if A<,
lp2 —pi << 2, if 0< A<,
AN—2,  if A>1.

The primary goal of this study is to determine the bounds for the initial Taylor-
Maclaurin coefficients |az| and |az| for functions belonging to the class S* (V7 5; Gs(z, 2)),
which we introduce using a Miller-Ross function and Poisson distribution that as-
sociated with Gegenbauer polynomials. In addition, we examine the corresponding
Fekete-Szego problem for functions belong to the presenting class. Moreover, we
determine the coefficient bounds and the Fekete-Szego problem that are associated
with the logarithmic function. We also provide relevant connections of our main
results with those considered in earlier investigations.

3. INITIAL COEFFICIENT BOUNDS AND FEKETE-SZEGO PROBLEM

In this section, we provide estimates for the initial Taylor-Maclaurin coefficients
for the functions belong to the class S* (V[ 5; Gs(z, z)) which are given by equation
(1.1) as well as some of its various subclasses. Moreover, we present the Fekete-
Szego6 inequalities for the functions belong to our class and some of its various
special cases.

Theorem 3.1. Let the function f be a bi-univalent function given by equation

11.1). If f belongs to the class S* (V™ o; Gs(x, 2)), then
a,p

laz] < O(20)% : (3.1)
V182205 — (22(1 + 40) - 20— )43
and
46222 bz
‘(13‘ < — + ——- (3.2)
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Proof. Let f belong to the class S*(U7 55 G5(x,2)). Then, using Definition
there are two Schwarz functions u(z) and v(w) on the unit disk D such that

2 (\Ifgfﬁf(z» _ Gl () (3.3)
‘I’;ngf(z) 7 ,
and )
w (U g(w
M = Gs(z, v(w)). (3.4)

\I’Zf 39 (w)
Now, we define the following analytic functions

1+ u(z
P<Z>=1u8=1+p1z+p2z2+p3z3+~-- (3.5)
and
1+ v(w
g(w) = T— 3 Ugwi =1+ qw+ gu? + gzw® + - - - (3.6)

It is clear that, these functions h(z) and k(w) are analytic in the open unit disk
D and belong to the Caratheodory class. In addition, p(0) = 1 = ¢(0), they have
positive real parts, |p;| <2 and |g;| <2 for all j € N.

Therefore, we can rewrite the equations (3.5)) and (3.6)) in the following manner

p(z)—=1 p1_ 1 i 1 (p}

qw)—1 ¢ 1 i\ o, 1 (q 3
_ _ L _ - _ ... (3.8
v(w) qw)y+1 2 w + 5 (@ w” + 57 —ae +q3 | w? + (3.8)

Now, by consulting the equations (2.5)) and (3.7)), the right-hand side of equation
(3.3) can be written as follows

2
Golar,u() =1+ LA 5 2)z + [A“"W (pg - ”1) + A(Q’Mp%] LI

2 2 4
(3.9)
Similarly, by consulting the equations and , the right-hand side of
equation can be written as follows

Gg(x,v(w)) =14+ a A(l,é, x)w
A 1 5 2 A 2 5 X
|: (371‘)<2 QI> (77 )%:|w2

On the other hand, using the Miller-Ross Poisson distribution (2.3]), we can write
the left-hand side of equation (3.3)) as follows

z (\Ilgﬁf(z))/

I _F(2) =1+ toazz + (2h3as — P3az)z” + - - - (3.10)
a,f
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Similarly, using the Miller-Ross Poisson distribution (2.3)), we can write the left-
hand side of equation (3.4) as follows
i
w <\I'ZL 5 g(w))
\I’ZZ g9 (w)

Now, invoking (3.3)) upon comparing the coefficients in both sides of (3.9) and
(3.10) we get the following two equations

=1 — tagw + [—2tpzas + (dah3 — 3)ag)2® + - - - (3.11)

Poas = %A(l,é, ), (3.12)
AL, 6, x 2 A(2,0,x
2pza3 — wﬁaﬁ = % <p2 - p;) + %p% (3.13)

Similarly, invoking (3.4) upon comparing the coefficients in both sides of (?7)
and (3.11]) we get the following two equations

—¢2a2 = %A(l,&,x), (314)

A6, z) <q2 _ q%) L AR 5 (3.15)

— 2¢sa3 + (43 — ¥3)a3 = 5 5 TR

Now, the addition of squares of equations (3.12) and (3.14]), we get the following
8y5a5 = (pf + ¢i)(A(1,6,2))%. (3.16)

On the other hand, adding equation (3.12)) to equation (3.14) gives p1 = —q1
and p? + ¢ = 2p?. Therefore, the last equation can be written as follows

dia3 = pi(A(1,6,2))°. (3.17)
Moreover, addition of the equations ((3.13]) and (3.15]) gives the following equation

(00— 403)0% = A1) (0 + ) - (pj”) IR RL)

Hence, using the fact p? + ¢2 = 2p? then substituting the value of p? from
equation ([3.17)), the last equation can be written as follows

{IAQ,6,2) (8¢5 — 443) + 4W3[A(L,0,2) — A(2,6,2)]} o}
= (p2 + @) [A(1,6,2)]%.
Therefore, using the initial values of the Gegenbauer polynomials , then
using the facts |p2| < 2 and |g2| < 2, the last equation gives
819* |«
52 (80 — 403) + v3(2a —2(1 + ) + )|
Simplifying the last inequality gives the desired estimation of |as| as presented in

inequality (3.1]).

(3.18)

laz|® <

For the rest of this proof, we are looking for the estimation of |as|. Subtracting

equation (3.15) from equation (3.13)) then using the fact p? — ¢f = 0, we easily
obtain the following equation
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az = a3 + A(1,6, ) (pzS; qz) (3.19)
3

Therefore, consulting equation (3.17)), then using the facts |g2| < 2 and |p;| < 2,
for i = 1,2, we get the following inequality

(A(1,6,2))2 n A(L, 0, x)

V3 203
Finally, using the initial values of the Gegenbauer polynomials (2.7)), we get the
desired estimation of |as|. This completes the proof of Theorem O

las| <

The following theorem considers the classical Fekete-Szeg6 problem for functions
belong to our class S* (V) 53 Gs(w, 2)).

Theorem 3.2. Let f be a bi-univalent function given by equation . If f belongs
to the class S* (V) 5; Gs(x, 2)), then for some A € R the following inequality holds

46z ; v3
2oL if [1—=X < 5522
laz — Aaj| < g?%;ﬂl—)q f | = 25$;b3 (3.20)
2 ) Zf |1 - >\| Z 2 o "
’(l)z 2(5$w3

Proof. For a real value A, using the equations (3.19)) and (3.16]), we easily obtain
the following equations

%—nmiz(l—AM§+pz;q%ML&x) (3.21)
3
2 2
P2 — Q2 P + 41 2
- A(L,6, )+ (1 -\ A(1,6, 2 3.92
A(1, 6, —
- S0 Rt g el (3.29
8 3

where ) = —(1 _ )\)Az(l’ %, x)

2
Therefore, we get the following inequalities

ANQ I -
o =g < LD 2l 2y gy (3.24)
8 V3
AL, 6, x 1
LU { " |ﬂ|} (3.25)
8 Y3
1
< 2|A(17 6,x)| max{w + |Q|} , (3.26)
3

where the last inequality we used the fact that |p1]| < 2 and |¢1| < 2. Moreover, the
last inequality can be written as follows

2|A(1,0,x)] if Q| < wg
- 3

%—ma<{ vs 7 (3.27)

1 1
2AA (L, 8,)]1Q), if [0 = L.

Finally, using the initial values (2.7)) and simplifying the last inequality (3.27)),
we get the desired result (3.30). This completes the theorem’s proof. [
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The following two corollaries give the initial coeflicients bounds and the Fekete-
Zsegd inequality of functions belonging to the subclass S*(¥7' 5; Ly (w, 2)) which
consists of starlike bi-univalent functions that are subordinate to the Legendre
polynomials. For more information about the Legendre polynomials we refer the
Legendre polynomials we refer the interested readers to the articles [I], [5], [10],
[35] and the related references included therein.

Corollary 3.3. Let the function f be a bi-univalent function given by equation
. If f belongs to the class S* (V! g; Ln(, 2)), then

D) 3/2
las| < Vs : (3.28)

= V823 — (622 — 2z — 1)13]

and
2x21/)3 + m/}%

2393
Corollary 3.4. Let f be a bi-univalent function given by equation . If f

belongs to the class S* (V7 55 Ly (7, 2)), then for some A € R the following inequality
holds

las| < (3.29)

2z - 1/;,2
= if [1—=A< 2
2 3 P
|a3 - )\a’2| é 2£2|17>\| f |1 _ )\| > ‘L’(ZJ§3 (3'30)
Pz L = 3’

The following corollary present the initial coefficients bounds and the Fekete-
Szegd inequality of functions belonging to the subclass S*(¥7 5; Ty (7, 2)) which
consists of starlike bi-univalent functions that are subordinate to the Chebyshev
polynomials. For more information about the Chebyshev polynomials we refer the
Legendre polynomials we refer the interested readers to the articles [9], [30], [49],
[50] and the related references included therein.

Corollary 3.5. Let the function f be a bi-univalent function given by equation
. If f belongs to the class S* (V! 5; Ty (, 2)), then

‘az‘ - (295)3/2
= V18225 — (1022 — 22 — 1)¢p2]’

(3.31)

and

43 + 3
V313
Corollary 3.6. Let f be a bi-univalent function given by equation . If f

belongs to the class S* (V7 5; Tn(w, 2)), then for some XA € R the following inequality
holds

las| < (3.32)

4x : w2
B if L=Al< 52
jas — Aa3| < QYo o (3.33)
I if [L=A> 2as

4. INITIAL LOGARITHMIC COEFFICIENT BOUNDS AND
FEKETE-SZEGO PROBLEM

In this section, we are looking to determine the coefficient bounds and the Fekete-
Szegd inequalities associated with the logarithmic function. It is well-known that
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z

if f is analytic function in the open unit disk I such that & # 0 for all z € D,
z

then the logarithmic coefficients of f are given by

log (f(ZZ)) = i 2d,z", for zeD. (4.1)
n=1

In addition, for a function f belongs to our class S*(¥7} 5; Gs(, 2)), the left-hand
side of the subordination (2.8) we get f must be analytic in the open unit disk

D and M # 0 for all z € D. Hence, for all functions f belonging to the class

z
8*(\1121”5; Gs(z, 2)), the relation (4.1) is well defined. The following theorem gives
the initial logarithmic coefficient bounds for functions belonging to our specific
class.

Theorem 4.1. Let f be a function belongs to the class S* (V[ 5; Gs(z, 2)) with the
logarithmic coefficients given by the equation , then the following inequalities
hold

ox
dy| <22 4.2
|di| < ™ (4.2)
and ,
dx 20 =90)z° +(z—1) 4ézs
do| < — 4.
|da| < o, max . + > (4.3)

Proof. Let f be in the class S*(¥'5;G5(w,2)) that has the form (2.8). Then
equating the coefficients of the equation (4.1), we obtain the following equations

2d1 = az, (44)
and
4d2 = 2(13 — a%. (45)

Now, consulting the equations (3.12]) and (3.13|), we obtain the following equa-
tions

_ A(la 67 x)pl
a9 = T, (46)
and
[(A(1,6,2))* = AL, 0,2) + A(2,6,2)]pt + A(L, 6, 2)ps
as = . (47)
813
Therefore, using the equations (4.4) and (4.6), we obtain the following equation
A(L 5a ‘r)pl
dy = ——"——. 4.8
T (45)

Thus, using the initial values (2.7)), the last equation gives the bound of |d;| as
required in the inequality (4.2]).

One the other hand, consulting the equations (4.5), (4.6) and (4.7) we obtain
the following equation

A1, 6,
2 = S50 (- KA, (4.9
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where

AL 0,z)ys  A(2,6,7)
1/)% A(17 67 ZE)
Hence, using Lemma [2.4] we get the following inequality

K =

—A(L,d,z)+1

A(1,6
|dy| < Mmax{1,|1—2K|}. (4.10)

813
Finally, using the initial values (2.7), we get the required bound of |ds| that
presented by the inequality (4.3]). This completes the proof. [l

The following theorem presents the initial logarithmic Fekete-Szeg6 inequality
for functions belong to our specific class.

Theorem 4.2. Let f be a function belongs to the class S* (V7 55 Gs(w, 2)) with
the logarithmic coefficients given by the equation . Then for some A € C the

following inequality holds
Zf 1+Xe [A17>\2]

i 1A A, (4.11)

bz
TRV {%;
dap33
where
B=[1+(1-48)z —2(1 + 6)2?|6¢3 + 45*¢3(1 + N)z?
[(66 + 2)x? — 22 — 1]1)3
4(5’(/ng‘2 ’
[(66 +2)2? — 1]¢3
45¢3$2
Proof. For any complex number A, consulting the equations and , we
obtain the following equation

1 (1+Na3
dQ_)\d%:2<a3—22>

Therefore, using the equations (4.6) and (4.7, the last equation can be written as
follows

A=

Ay =

dynaz = A0.60) { o ((1+A)¢3A(1,5,x) A(2,6,2)

2
1605 2 —A<1’6’x)—A(L&x)—kl)pl}.

Hence, applying Lemma [2.4] on the last equation, we easily obtain

A, 6, )|

dy — Nd?| <
|d2 1l < St

max {1, ]9}, (4.12)
where
21+ NsA(L,6,2)  A(1,6,2) —2(A(1,6,2))° —2A(2,6,z)
B 03 i A(1,5,7) '
Now, if |©2] <1, then we get
M < (14 )) < g,

Q

where

A 2 (A8 - A@S z) + AR, 8 2) (4.13)
(A(1757 SC)) 1;[}3
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(AL 6,2)° + A2,6,2)]Y3
(A(L,8,2))" v
Thus, using the equations (4.13)), (4.14) and Lemma inequality (4.12) can

be written as follows

(4.14)

2 =

e N S ED W) PYIP Py

dy = Adi| < S a0 Boy0) .
T if 1+)\¢ [)\1,)\2].
Finally, by using the initial values of Gegenbauer polynomials that are presented
in equation , simplifying the right-hand side of the inequality , we arrive
at the required result as presented in inequality . This signifies the completion
of the proof. O

(4.15)

5. CONCLUSION

This research paper has investigated a new class of starlike bi-univalent functions
using the Miller-Ross-type Poisson distribution, that is subordinated to Gegen-
bauer polynomials, which we denoted as S*(¥} 5; G5(x, 2)). The author success-
fully found the growth and distortion bounds for functions belonging to our class
and some of its various subclasses. Moreover, we derived the classical Fekete-Szego
inequality of functions belonging to our class and some of its various subclasses.
Furthermore, we found estimated for the initial coefficients and the classical Fekete-
Szegd functional problem associated with the logarithmic function for functions
belonging to our class. The findings of this research are expected to inspire the
researchers to connect our class with other orthogonal polynomials. Also, the in-
sights provided in this paper are anticipated to motivate researchers to broaden
these concepts to encompass harmonic functions and symmetric g-calculus.
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