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STABILITY ANALYSIS AND TURING INSTABILITY OF AN

EPIDEMIC REACTION-DIFFUSION MODEL WITH

VACCINATION, TWO AWARE CLASSES AND SATURATED

TREATMENT

A. BESSAM1, S. KOUACHI2 AND L. DJEBARA3

Abstract. In this paper, we developed a reaction-diffusion epidemic model
with two aware classes and saturated treatment considering the impact of vac-
cination. We divided the total population into six classes, namely susceptible,
vaccinated, completely aware, partially aware, infected, and recovered class.
We discussed the basic properties of our system. With the help of Dirich-

let boundary conditions and positive initial data, we studied the local and
global existence in time of solutions. We performed a stability analysis of the
equilibrium points, their existence, and found the basic reproduction number
R0 of the system. Then, we established the occurrence conditions of Turing
instability for our diffusive model. Finally, we have provided a thorough nu-
merical exploration of our model to illustrate our analytical results by choosing
a suitable set of parameters.

1. Introduction

Infectious diseases are one of the main causes of death for millions of people
every year. Therefore, mathematical modeling of infectious diseases has recently
attracted the attention of many researchers to study the dynamics of transmission of
various diseases and their control [3], [16]. Kermac and McKendrick [24] discovered
this for the first time in the early 20th century.

Nowadays, vaccination is considered one of the most effective tools in the history
of modern medicine for combating infectious diseases [11], [23]. Its primary goal is
to reduce the number of susceptible individuals and to induce adaptive immunity
against a specific disease. However, vaccination does not necessarily guarantee life-
long immunity, as the acquired immunity may gradually wane over time. Moreover,
vaccine efficacy is not always perfect and can vary depending on the type of vaccine,
the targeted disease, and the characteristics of the population receiving it. This
necessitates the development of mathematical models that consider these aspects.
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Awareness plays a pivotal role in curbing the spread of infections, consequently,
there has been an increasing emphasis on public awareness and the impact of infor-
mation regarding the transmission of infectious diseases to mitigate infection risk
[6], [8], [15]. The significance of awareness has driven many researchers to develop
mathematical models for controlling disease transmission. Greenhalgh et al. [8]
investigated the effects of awareness-raising programs on the dissemination of in-
fectious diseases, demonstrating that such interventions markedly improve disease
control. Goel et al. [14] proposed an epidemiological model that distinguishes
between two distinct levels of awareness, complete and partial, to reflect actual be-
havioral dynamics more accurately, and assumed that recovered individuals acquire
permanent immunity; however, Kundu et al. [22] demonstrated in a subsequent
study that this assumption may not apply to certain diseases such as influenza and
COVID-19. They showed that immunity may wane over time, leading recovered
individuals to transition back into the susceptible category. Endale et al. [9] un-
derscored the importance of awareness and stressed the necessity for authorities to
actively educate the population about their critical role in limiting disease spread.

Treatment plays a crucial role in combating epidemics, especially with advances
in medical sciences. Therefore, the treatment rate is often included as a key compo-
nent in epidemiological models. Initially, researchers employed constant treatment
functions to represent the effect of treatment [25], these were later developed into
more realistic saturated treatment functions that account for the limitations of med-
ical resources or the efficiency of treatment, as the number of infected individuals
increases [21].

In this paper, we developed a reaction-diffusion epidemiological model, centrally
incorporating the role of vaccination alongside awareness (both complete and par-
tial) and treatment. We will analyze how the integration of vaccination into disease
control strategies, in conjunction with the promotion of health awareness and the
provision of effective treatment, significantly contributes to enhancing epidemic
control and reducing its complications. We also highlight the critical importance of
the diffusion process in our model, as it contributes to capturing the fundamental
dynamics of epidemic spread.

This paper is structured as follows: Section 1 introduces the study. Section 2
presents the model formulation. Section 3 discusses some basic properties. Section
4 and section 5 prove the local existence and the global existence, respectively.
Section 6 analyzes the stability of the equilibria. Section 7 studies the occurrence
conditions for Turing instability. Finally, Section 8 presents numerical simulations.

2. Model formulation

In this section, we formulate the reaction-diffusion epidemic model with vaccina-
tion. To derive our system, we divide the total population into five classes: unaware
susceptible S(t), vaccinated V (t), completely aware Ac(t), partially aware Ap(t),
infected I(t) and recovered class R(t) at time t. The system can be represented as:































∂tS −D1∆S = f1(S, V, Ac, Ap, I, R),
∂tV −D2∆V = f2(S, V, Ac, Ap, I, R),
∂tAc −D3∆Ac = f3(S, V, Ac, Ap, I, R),
∂tAp −D4∆Ap = f4(S, V, Ac, Ap, I, R),
∂tI −D5∆I = f5(S, V, Ac, Ap, I, R),
∂tR−D6∆R = f6(S, V, Ac, Ap, I, R),

in R
+ × Ω, (2.1)
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where Ω is an open bounded domain in R
N with smooth boundary ∂Ω. The notation

∆ is the Laplacian operator and the positive constants Di, i = 1, 2, ..., 6 are the
diffusion coefficients.

We assume the Dirichlet boundary conditions

S = S∗, V = V∗, Ac = Ac∗, Ap = Ap∗, I = I∗, R = R∗ on R
+ × ∂Ω,

(2.2)
where S∗, V∗, Ac∗, Ap∗, I∗, and R∗ are the coordinates of the endemic equilibrium
E∗.

The bounded initial data

S0(x) = S(0, x), V0(x) = V (0, x), Ac0(x) = Ac(0, x),
Ap0(x) = Ap(0, x), I0(x) = I(0, x), R0(x) = R(0, x) in Ω,

where S0(x), V0(x), Ac0(x), Ap0(x), I0(x), R0(x) ∈ R≥0. The nonlinear reaction
functions fi, 1 ≤ i ≤ 6 are defined as follows

f1(S, V, Ac, Ap, I, R) = Λ− λ1S − λ2S − λ3S −
β1SI

1 + bI
− µS + ωV,

f2(S, V, Ac, Ap, I, R) = λ1S −
β2(1− ǫ)V I

1 + bI
− (µ+ ω)V,

f3(S, V, Ac, Ap, I, R) = λ2S −
β3AcI

1 + bI
− µAc,

f4(S, V, Ac, Ap, I, R) = λ3S −
β4ApI

1 + bI
− µAp,

f5(S, V, Ac, Ap, I, R) =
β1SI

1 + bI
+

β2(1 − ǫ)V I

1 + bI
+

β3AcI

1 + bI
+

β4ApI

1 + bI
− (d+ γ + µ)I − ϕ(I),

f6(S, V, Ac, Ap, I, R) = γI + ϕ(I) − µR.

The nonlinearity ϕ represents the saturated treatment rate, which is assumed to
be a continuously differentiable function on R

+ such that

ϕ(I) =
αI

1 + βI
, I ≥ 0, α, β > 0, (2.3)

and

ϕ(0) = 0,
∂ϕ(I)

∂I
> 0, lim

I→+∞
ϕ(I) =

α

β
for all I > 0. (2.4)

The model parameters are defined as:
Λ : the recruitment rate of the susceptible population,
µ : natural death rate of the population,
λ1 : the rate at which susceptibles are vaccinated,
λ2 : the fractions of the completely aware susceptible,
λ3 : the fractions of the partially aware susceptible,
β1 : the infection rate of unaware susceptible,
β2 : the infection rate of vaccinated susceptible,
β3 : the infection rate of completely aware susceptible,
β4 : the infection rate of partially aware susceptible,
b : inhibition effect,
ǫ : efficacy of the vaccination (0 ≤ ǫ ≤ 1),
ω : vaccination-induced immunity rate,
d : the natural death rate of the population,
γ : the natural recovery rate of the population,
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α : cure rate,
β : impact of treatment delays on the infectious population.

3. Basic properties

Let N denotes the total population at time t, is given by

N(t) = S(t) + V (t) +Ac(t) +Ap(t) + I(t) +R(t),

biologically, we assume that all model’s parameters Λ, d1, d2, σ1, σ2, σ3, µ, δ, α,
β, γ are positive constants.

System (2.1) has the following properties:

Proposition 3.1. For the positive initial conditions, the solution of system (2.1)
remain positive.

Proof. The reactions are quasi-positive, i.e.

f1(0, V, Ac, Ap, I, R) = (Λ + ωV ) ≥ 0,
f2(S, 0, Ac, Ap, I, R) = λ1S ≥ 0,
f3(S, V, 0, Ap, I, R) = λ2S ≥ 0,
f4(S, V, Ac, 0, I, R) = λ3S ≥ 0,
f5(S, V, Ac, Ap, 0, R) = 0,
f6(S, V, Ac, Ap, I, 0) = (γ + αI

1+βI
)I ≥ 0,

for all S, V, Ac, Ap, I, R ≥ 0. We deduce via the maximum principle ( see
Smoller[12] ) the preservation of the positivity of the solution. �

Proposition 3.2. The solutions of system (2.1) are bounded.

Proof. We start by adding the equation of system (2.1), we get

∂tN(t) = ∂t(S(t) + V (t) +Ac(t) +Ap(t) + I(t) +R(t)) (3.1)

= Λ− µS(t)− µV (t)− µAc(t)− µAp(t)− µI(t)− µR(t)

= Λ− µ(S(t) + V (t) +Ac(t) +Ap(t) + I(t) +R(t))− dI

≤ Λ− µ(S(t) + V (t) +Ac(t) +Ap(t) + I(t) +R(t)).

This implies that

N(t) ≤
Λ

µ
(1− e−µt) +N(0)e−µt.

Now for N(0) ≤ Λ
µ
implies, N(t) < Λ

µ
, and

lim
t→∞

supN(t) ≤
Λ

µ
. (3.2)

Thus, we obtain

0 < N(t) ≤
Λ

µ
.

�

Remark. By Propositions 3.1 and 3.2, the region

Γ =

{

(S, V, Ac, Ap, I, R) : (S, V, Ac, Ap, I, R) ≥ 0 and S +Ac +Ap + I +R ≤
Λ

µ

}

is a positively invariant for system (2.1).
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4. Local existence of solutions

In this section, we state a local existence result of the solution for system (2.1).
Throughout this study, we denote by

‖u‖pp =
1

|Ω|

∫

Ω

|u(x)|p dx, 1 ≤ p < +∞,

‖u‖∞ = ess sup
x∈Ω

|u(x)| ,

‖u‖C(Ω) = max
x∈Ω

|u(x)| ,

the usual norms in spaces Lp(Ω), L∞(Ω) and C(Ω), respectively. Since the functions
fi are continuously differentiable on R

6
+, for all i = 1, ..., 6, then for any initial data

in L∞(Ω), it is easy to check directly their Lipschitz continuity on bounded subsets
of the domain of a fractional power of the operator

O = −











D1∆ 0 . . . 0
0 D2∆ . . . 0
...

...
. . .

...
0 0 . . . D6∆











Under these assumptions, the following local existence result is well known (see
Henry[7] and Friedman[1]).

Proposition 4.1. The system (2.1)-(2.3) admits a unique, classical local solution
(S, V, Ac, Ap, I, R) on [0, Tmax[× Ω.

If Tmax < ∞ then

lim
tրTmax

{

‖S(t, .)‖∞ + ‖V (t, .)‖∞ ‖Ac(t, .)‖∞ + ‖Ap(t, .)‖∞ + ‖I(t, .)‖∞ + ‖R(t, .)‖∞
}

= ∞,

where Tmax denotes the eventual blow-up time.

5. Global existence of solutions

In this section, our objective is to study the global existence of solutions for
reaction-diffusion system (2.1), with the help of Dirichlet boundary condition (2.2)
and positive initial data (2.3).To prove this, we have applied the old general method
of J. Morgan [13] for m-components systems on the form (2.1) which we summarize
in our case (i.e. m = 6) as follows

Lemma 5.1. We suppose that the functions fj , 1 ≤ j ≤ 6 are of polynomial growth
and satisfy

6
∑

j=1

αijfj(S;V ;Ac;Ap; I;R) ≤ Ei, i = 1, ..., 6. (5.1)

Where Ei = ci1S + ci2V + ci3Ac + ci4Ap + ci5I + ci6R+ ki,
∀ S, V, Ac, Ap, I, R ≥ 0, and where αij , cij , and ki, 1 ≤ i; j ≤ 6 are positive

reals. As a result all solution of system (2.1) are positive and global in time (i.e.
Tmax = +∞) if they satisfies the conditions (2.2) and (2.3).
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It is seen that the system (2.1) satisfies all the conditions as stated in lemma
5.1 except the condition (5.1), which can be verified, using the positivity of the
solutions for all times, as follows






























f1(S;V ;Ac;Ap; I;R) ≤ (−λ1 − λ2 − λ3 − µ)S + ωV + Λ;
(f1 + f2)(S;V ;Ac;Ap; I;R) ≤ (−λ2 − λ3 − µ)S − µV + Λ;
(f1 + f2 + f3)(S;V ;Ac;Ap; I;R) ≤ (−d3 − µ)S − µV − µAc + Λ;
(f1 + f2 + f3 + f4)(S;V ;Ac;Ap; I;R) ≤ −µS − µV − µAc − µAp + Λ;
(f1 + f2 + f3 + f4 + f5)(S;V ;Ac;Ap; I;R) ≤ −µS − µV − µAc − µAp − (d+ γ + µ)I + Λ;
(f1 + f2 + f3 + f4 + f5 + f6)(S;V ;Ac;Ap; I;R) ≤ −µS − µV − µAc − µAp − (d+ µ)I − µR+ Λ,

the following proposition establishes that solutions of system (2.1)-2.3 exists glob-
ally in time.

Proposition 5.2. The system (2.1) has a non-negative, global solution in time if
it satisfies the conditions (2.2) and (2.3).

6. Stability analysis

In this section, we aim to show the existence of equilibrium solutions for system
(2.1) and we provide the value of the basic reproductive number. Then, we study
the stability properties of the equilibrium solutions of our system (2.1).

6.1. Existence of model’s equilibrium solutions. In order to find equilibriums
for system (2.1), we solve the following algebraic system



































Λ− λ1S − λ2S − λ3S − β1SI
1+bI

− µS + ωV = 0,

λ1S − β2(1−ǫ)V I

1+bI
− (µ+ ω)V = 0,

λ2S − β3AcI
1+bI

− µAc = 0,

λ3S −
β4ApI

1+bI
− µAp = 0,

β1SI
1+bI

+ β2(1−ǫ)V I

1+bI
+ β3AcI

1+bI
+

β4ApI

1+bI
− (d+ γ + µ)I − ϕ(I) = 0,

γI + ϕ.(I)− µR = 0.

(6.1)

We obtain the following equilibrium solution

6.1.1. Disease-free equilibrium (E0). At disease-free equilibrium

I = 0, and R = 0,

hence

E0 = (S0, V0, Ac0, Ap0, I0, R0) (6.2)

= (
Λ

µ+ λ1 + λ2 + λ3 − ω λ1

µ+ω

,
λ1

µ+ ω
S0,

λ2

µ
S0,

λ3

µ
S0, 0, 0).

6.1.2. Endemic equilibrium (E∗). At endemic equilibrium

S 6= 0, V 6= 0, Ac 6= 0, Ap 6= 0, I 6= 0, R 6= 0,

hence

E∗ = (S∗, V∗Ac∗, Ap∗, I∗, R∗), (6.3)
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where
S∗ = (Λ + ωV∗)/(λ1 + λ2 + λ3 + µ+ β1I∗

1+bI∗
),

V∗ = (λ1S∗)/(µ+ ω + β2(1−ǫ)I∗
1+bI∗

),

Ac∗ = (λ2S∗)/(µ+
β3I∗
1+bI∗

),

Ap∗ = (λ3S∗)/(µ+ β4I∗
1+bI∗

),

R∗ = 1
µ
(ϕ(I∗) + γI∗),

(6.4)

where I∗ is the positive solution of the following equation

AI2∗ +BI∗ + C = 0, (6.5)

with

A = bβ(d+ γ + µ),

B = β(d + γ + µ) + b(d+ γ + µ) + αb− β(β1S∗ + β
2
V∗(1− ǫ) + β

3
Ac∗ + β4Ap∗),

C = (d+ γ + µ) + α− (β1S∗ + β
2
V∗(1− ǫ) + β

3
Ac∗ + β4Ap∗).

6.2. Basic reproductive number. We define the basic reproductive number R0

of our diffusive model (2.1) by using the next generation matrix method [17], which
is given by

R0 =
Λ(β1 + β2(1− ǫ) λ1

µ+ω
+ β3

λ2

µ
+ β4

λ3

µ
)

(d+ γ + µ)(µ+ λ1 + λ2 + λ3 − ω λ1

µ+ω
)
. (6.6)

Proof. To calculate (R0), we involve only the infected compartment I from our
model. Thus, let

F =

(

β1SI
1+bI

+ β2(1−ǫ)V I

1+ǫI
+ β3AcI

1+bI
+

β4ApI

1+bI

0

)

, V =

(

(d+ γ + µ)I + ϕ(I)
0

)

. The

Jacobian matrix of F and V at E0 with respect to the infected compartment I, are

F =

(

β1S0 + β2(1 − ǫ)V0 + β3Ac0 + β4Ap0

0

)

, V =

(

d+ γ + µ
0

)

.

The basic reproductive number R0 is defined as the spectral radius of G, denoted
by ρ(G), given as

R0 =
β1S0 + β2(1− ǫ)V0 + β3Ac0 + β4Ap0

d+ γ + µ
. (6.7)

Let us substitute V0, Ac0 and Ap0 in (6.7), then we have,

R0 =
β1S0 + β2(1− ǫ) λ1

µ+ω
S0 + β3

λ2

µ
S0 + β4

λ3

µ
S0

d+ γ + µ
.

Thus, with a direct computation, we obtain (6.6). �

6.3. Stability of the equilibrium solutions. In this section, we move to study
the local stability of the equilibria of system (2.1) as described in the following
theorem.

Theorem 6.1. The disease-free equilibrium E0 of system (2.1) is locally asymp-
totically stable if R0 < 1, and unstable if R0 > 1.
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Proof. To prove the local stability of the disease-free equilibrium, we must examine
if all the eigenvalues of the linearizing operator have negative real parts, then the
solution is locally asymptotically stable. �

We define the linearizing operator

L(E0) =



















D1∆−H1 ω 0 0 −β1S0 0

λ1 D2∆−H2 0 0 −β2(1− ǫ) λ1

µ+ω
S0 0

λ2 0 D3∆−H3 0 −β3
λ2

µ
S0 0

λ3 0 0 D4∆−H4 −β4
λ3

µ
S0 0

0 0 0 0 D5∆+H5 0
0 0 0 0 γ + α D6∆−H6



















,

where

H1 = λ1 + λ2 + λ3 + µ, H2 = µ+ ω, H3 = µ, H4 = µ

H5 = S0(β1 + β2(1− ǫ)
λ1

µ+ ω
+ β3

λ2

µ
+ β4

λ3

µ
)− (d+ γ + µ)− α, H6 = µ.

To determine the local stability of E0, we need to examine the eigenvalues of the
Jacobian. The corresponding Jacobian matrix is

Ji(E0) =



















−D1λi −H1 ω 0 0 −β1S0 0

λ1 −D2λi −H2 0 0 −β2(1− ǫ) λ1

µ+ω
S0 0

λ2 0 −D3λi −H3 0 −β3
λ2

µ
S0 0

λ3 0 0 −D4λi −H4 −β4
λ3

µ
S0 0

0 0 0 0 −D5λi +H5 0
0 0 0 0 γ + α −D6∆−H6



















,

we obtain for all i ≥ 0






























ri1 = −D1λi −H1,
ri2 = −D2λi −H2,
ri3 = −D3λi −H3,
ri4 = −D4λi −H4,
ri5 = −D5λi +H5,
ri6 = −D6∆−H5.

It can be seen that ri1, ri2, ri3, ri4, ri5 and ri6 have negative real parts, which
implies that E0 is locally asymptotically stable if R0 < 1.

For the stability of the positive equilibrium, E∗ will be analyzed in the next
section.

7. Turing instability (DDI)

In this section, we shall study the Turing instability for our diffusive model.
Turing instability, or diffusion-driven instability (DDI), is first introduced by

Turing [5]. This concept is defined as follows.

Definition 7.1. The reaction-diffusion system

∂tu = D∆u+ f(u),

exhibits Turing instability (DDI), if the system is without diffusion

∂tu = f(u),
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has a locally stable equilibrium state, then the equilibrium is locally unstable in
the presence of diffusion [4].

The function f ( we assume it is regular) describes the reaction dynamics, D is a
diagonal matrix of diffusion coefficients, and the boundary conditions are supposed
of Neumann and homogenous.

According to the steps of Qian and Murray [10], we shall try to study the suffi-
cient conditions for DDI.

Proposition 7.2. The sufficient condition for DDI is that either

(i) the largest diagonal element of JE∗
is greater than zero (jrr > 0) with corre-

sponding diffusion coefficient very small (Drr ≪ 1); or
(ii) the smallest diagonal cofactor of JE∗

is less than zero (cof(JE∗
)ss < 0) with

corresponding diffusion very large (Dss ≫ 1).
For the small diffusions, we apply Proposition ( 7.2) to system (2.1) with Neu-

mann homogenous boundary conditions.
The Jacobian matrix of system (2.1) at the endemic equilibrium E∗(S∗, Ac∗,

Ap∗, I∗, R∗) is given by

JE∗
=















−(λ1 + λ2 + λ3 + µ) −
β1I∗
1+bI∗

ω 0 0 −
β1S∗

(1+bI∗)2
0

λ1 −(µ + ω) −
β2(1−ǫ)I∗

1+bI∗
0 0 −

β2(1−ǫ)V∗

(1+bI∗)2
0

λ2 0 −(
β3I∗
1+bI∗

+ µ) 0 −
β3Ac∗

(1+bI∗)2
0

λ3 0 0 −(
β4I∗
1+bI∗

+ µ) −
β4Ap∗

(1+bI∗)2
0

β1I∗
1+bI∗

β2(1−ǫ)I∗
1+bI∗

β3I∗
1+bI∗

β4I∗
1+bI∗

j55 0

0 0 0 0 γ + α

(1+βI∗)2
−µ















,

where

j55 =
β1S∗ + β2(1− ǫ)V∗ + β3Ac∗ + β4Ap∗

(1 + bI∗)2
− (d+ γ + µ)−

α

(1 + βI∗)2
,

is the largest diagonal element of JE∗
, which is positive under the following condi-

tion

β1S∗+β2(1−ǫ)V∗+β3Ac∗+β4Ap∗ > (1+bI∗)
2

[

(d+ γ + µ) +
α

(1 + βI∗)2

]

. (7.1)

Proposition 7.2 gives us the following theorem.

Theorem 7.3. For a sufficiently small diffusion D5 , (7.1) provides a sufficient
condition for diffusion-driven instability for the reaction-diffusion system (2.1).

For the large diffusion, simple calculation reveals that if the cofactors of the first
diagonal elements of JE∗

are less than zero under the condition that follows
















−(µ+ ω)− β2(1−ǫ)I∗
1+bI∗

0 0 −β2(1−ǫ)V∗

(1+bI∗)2
0

0 −( β3I∗
1+bI∗

+ µ) 0 − β3Ac∗

(1+bI∗)2
0

0 0 −( β4I∗
1+bI∗

+ µ) −
β4Ap∗

(1+bI∗)2
0

β2(1−ǫ)I∗
1+bI∗

β3I∗
1+bI∗

β4I∗
1+bI∗

j55 0

0 0 0 γ + α
(1+βI∗)2

−µ

















< 0,

i.e.,



STABILITY ANALYSIS AND TURING INSTABILITY OF AN EPIDEMIC... 29

µ

(

β3I∗
1 + bI

+ µ

)(

β4I∗
1 + bI

+ µ

)[(

(µ+ ω) +
β2(1− ǫ)I∗

1 + bI

)

× j55 +
β2
2(1− ǫ)2V∗I∗
(1 + bI∗)3

]

< 0.

(7.2)
Applying proposition 7.2 , we have the following theorem

Theorem 7.4. A sufficient condition for diffusion-driven instability for the reaction-
diffusion system (2.1) is given by (7.2) for sufficiently large diffusion D1.

Remark. By Theorem 7.3 and 7.4 the positive equilibrium E* of system (2.1)) is
locally unstable. This implies that the reaction-diffusion system (2.1) shows Turing
instability.

8. NUMERICAL SIMULATION

In this section, numerical experiments are performed and presented in two ex-
amples to understand the dynamical aspect of the proposed model. We have used
MATLAB R2020a to perform numerical simulations of the model system (2.1).
Table 1 states the parameter values selected for the examples.

Parameter values Example 1 Example 2
Λ 5 1
λ1 0.02 0.5
λ2 0.02 0.2
λ3 0.1 0.01
β1 0.03 0.02
β2 0.005 0.1
β3 0.001 0.005
β4 0.002 0.009
ǫ 0.7 0.8
ω 0.01 0.05
µ 0.03 0.01
b 0.1 0.05
d 0.01 0.008
γ 0.05 0.005
α 0.05 0.03
β 0.1 0.09

Table 1. Parameter values for Examples 1 and 2.

8.1. First Example. In this first example, we use the parameter values from the
first column of Table 1.
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Figure 1. Impact of vaccination on infected individuals in the
presence of two aware classes and saturated treatment.

Figure 1 demonstrates the impact of incorporating vaccination into awareness
and treatment strategies for infected individuals. In the case relying solely on
awareness ( completely and partially aware classes) and treatment, the number of
infected individuals rises sharply to a high peak before gradually declining, indicat-
ing that these interventions alone are insufficient to effectively curb the spread of
the disease. In contrast, when vaccination is introduced alongside awareness and
treatment, a significant reduction in both the peak and duration of infections is
observed. This demonstrates that vaccination substantially enhances the effective-
ness of epidemic control by reducing the transmission rate, thereby emphasizing
the importance of integrating vaccination programs into public health policies in
conjunction with awareness and treatment efforts.
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Figure 2. Impact of vaccination rate and vaccine efficacy on the
infected population

Figure 2 shows three curves, each representing a different scenario based on
vaccination rate and vaccine efficacy. The number of infected individuals decreases
as both the vaccination rate and vaccine efficacy increase. This demonstrates the
importance of vaccination in limiting the spread of the disease, especially when a
highly effective vaccine is used in conjunction with a high vaccination rate.

8.2. Second Example. This example aims to explore the occurrence of Turing
instability for large diffusion. Taking D1 = 10, D2 = 1.5, D3 = 1.4, D4 = 0.2,
D5 = 0.01, D6 = 0.5. We use the parameter values from the second column of
Table 1, the endemic equilibrium of the model system (2.1) at these parameter
values is E∗(1.103, 1.701, 2.901, 0.086, 38.841, 24.295). Thus, the inequality of
Theorem 7.4 is satisfied.
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Figure 3. Turing Patterns of model (2.1) at parameter values
from the second column of Table 1, for compartments S, V, Ac,
Ap, I, and R

Figure 3 displays the evolution of Turing Patterns of all population compart-
ments of model (2.1) for relatively larger values of diffusion D1 = 1.5, which is
discussed in Theorem 7.4
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