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ON THE SOLVABILITY OF ONE DIMENSIONAL INVERSE
PROBLEM FOR FRACTIONAL WAVE EQUATION WITH
MEMORY TERM AND INTEGRAL OVERDETERMINATION
CONDITIONS

HERAIZ TOUFIK, MEMOU AMEUR AND LATROUS CHAHLA

ABSTRACT. The aim of this work is to determine the source term and to solve
the problem of interest. First, we study the direct problem in a second order
fractional wave equation subject to periodic, Dirichlet and nonlocal initial con-
ditions. Finally, To solve the problem of interest, we transform the considered
problem to an equivalent problem. Using the Fourier method, the equivalent
problem is reduced to a system of integrals equations. By a contraction map-
ping, The existence and uniqueness of the solution of the system of integral
equations is proved.Then, the existence and uniqueness of the solution of the
inverse problem is obtained.

1. INTRODUCTION AND PROBLEM STATEMENT

The study of fractional wave equations has gained significant attention in recent
decades due to their ability to model complex physical phenomena that exhibit non-
local and memory effects, characteristics that are often observed in a wide range
of real-world systems. These equations arise in various fields such as physics, engi-
neering, and applied mathematics, where they offer more accurate representations
of anomalous diffusion, viscoelastic materials, and electromagnetic wave propaga-
tion, among others. The general form of fractional differential equations, which
incorporate fractional derivatives, has its roots in the works of Riemann, Liouville,
and others in the 19th century, though it was not until the 1970s that fractional cal-
culus became a more formalized and widely studied area, spurred by the efforts of
scholars like Samko, Kilbas, and Marichev [18]. In the context of wave phenomena,
fractional equations extend classical models like the wave equation to account for
memory and hereditary effects, making them ideal for describing systems where tra-
ditional integer-order models fail to capture observed dynamics. In many practical
scenarios, however, the goal is not only to understand the direct behavior of such
systems, but also to identify underlying unknown parameters, such as source terms,
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from observed data. This challenge, known as the inverse problem, is a central topic
in applied mathematics and physics due to its importance in areas like remote sens-
ing, medical imaging, and geophysics [I7]. Solving inverse problems often involves
the development of novel mathematical techniques, as these problems are typically
ill-posed and require special approaches to guarantee well-defined solutions. The
study of inverse problems for fractional wave equations has attracted increasing
interest [I1], particularly for their relevance in applications where non-local inter-
actions play a key role. In this regard we mention the work of E. Azizbayov and
Y. Mehraliyev [2], in which they considered the problem:

c(t)ur(z,t) = Uge (z,t) +a (t)u](l,t) b(t)g(z) + f(z,t),

for (z,t) € Q = [0,1] x [0, 7],
u(z,0) + du(z, T) + [ p(tyu(z,t) = ¢ (x), 0<z<1),
u(0,t) = u(l,1), (0<t<T),
J ulz, t)de =0, 0<t<T),
u(:vi,t):hi(t), (i:1,2; OStST),

and proved the existence of classical solution by the Fourier method. In this
paper the motivation is to study and find a classical solution to the inverse problem
of fractional wave equation with memory term.In this work we study the linear
wave equation

D g (1,) — tg (2,1) = [y Yol u(e, s)ds + b(t)u (2,1) + a(t)g(x) + f(z.1), (2.t) €Q,
(1.1)
with nonlocal initial conditions
T
u(e0)+ [ kOulet) = ¢ @), Vo (0.1), (1.2
0
T
(@ 0+ [ Ra(tutat) = wla), Vo€ 0,1, (1.3)
0
the Dirichlet condition
u(0,t) =0, vt € (0,77, (1.4)
and the nonlocal boundary condition
Uz (0, t) = uy(1,t), vt e [0,7T], (1.5)

where Q = [0,1] x [0,T], with T" < +o0, f(x,t), ¢(z), ¥(x), g(x), ki1(t) and
ka(t) are given functions, § is a positive constant with 1 < 8 < 2. Dg tu stand
for the Caputo fractional derivatives of order o, with 1 < a < 2. For
the problem direct is the determination of u(wz,t) in Q such that u € 02*2 (Q)
and Df,u € C(S2). when the functions f (z,t), ¢ (z), ¥(x), g(v), a(t), b(t) are
given and continuous.While the inverse problem consists of determining a(t), b(t)
and u(z,t) from the nonlocal initial conditions and the nonlocal boundary
conditions . This problem is not uniquely solvable. To have the inverse
problem is uniquely solvable, we impose the overdetermination conditions

u(1,t) + /01 u(z, t)dx = h(t), h(t) #0forall t € [0,7], (1.6)
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1
/ zu(z, t)dx = m(t), m(t) # 0 for all t € [0,T], (1.7)
0
where D ;u denote the derivative at the Caputo sense defined by
_ bt —s)
D&tu = 12 D‘utt (x,t) = /0 (1_‘(2_)Oé)uss(x,s)d5.

and 1 < o < 2.
We assume that the following matching conditions for the functions ¢ (z), 1 (x) are
satisfied

 (0) = $(0) =0,
¢ (0) = (1)
W (0) =4 (1),
o(1) + [y p(a)dz = h(0) + f; ki(Dh(1),
Y1) + [} G(x)de = 1(0) + [ ka(t)h(t).
Jo o(@)dze = m(0) + [ ki (tym(t)

(1.8)

and
M(t) = m(t) (g<1> + / 1 g(x)da:) ~ h(t) / rg(a)de £ 0 (1.9)

The aim is to determine the source term and to find a solution to the associated
inverse problem. We first analyze the direct problem, deriving the solution to the
fractional wave equation under various boundary conditions and examining the
theoretical implications of each. Building on classical techniques, we transform the
original problem into an equivalent formulation that simplifies the analysis and leads
to a system of integral equations. The use of Fourier methods in this context is not
new, as it has been widely employed in the study of wave equations and their inverse
counterparts [B]. By applying the contraction mapping principle, we establish the
existence and uniqueness of the solution to the integral equation system. Finally, we
extend this result to the inverse problem itself, proving the existence and uniqueness
of the solution for the source term. The approach presented in this work contributes
to the growing body of research on fractional wave equations and inverse problems,
providing both theoretical insights and practical tools for solving complex problems
in various scientific and engineering disciplines. In this context, it’s important to
highlight the monograph [I0} (6 2, @, [14] et all, in [I0], the statement of problem
and the proof techniques used in the study are different from representation in this
paper. The organization of this paper is as follows. In Section 1, the considered
problem is stated. Sections 2 deals with the solvability of the direct problem. While
section 3 gives the solvability of the considered inverse problem.

For the study of this problem, we first recall the following results.

Lemma 1.1. The solution of equation

tit_s B-1
v(t) + )\/0 (tr(;)vds = q(t),

for X € R and B > 0 satisfies the integral equation

o(t) = qt) — )\/Ot (t— )" h(s)Es (—)\ (t—s)?, 5) ds.
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where ¢ € L' (R) and Eg is the Mittag-Leffler Function defined by

n

Eg(z,p) = ;m

Lemma 1.2. see [I5].
1) There exist C > 0, such that

|Ea(2, p)| < T3]’ Re(z) <0
2)see [, (T3
L ' p—1 « _\B-1 _ 4B+u—1 o
F(ﬁ)/o TH T Eo(M % pw) (t—7)"" T dr =t E (A%, i+ B).
3)
1
W+ZEQ(Z?Q+B)_EQ(Z7ﬁ)7 a>0 >0

Exzistence and uniqueness of the solution of the direct problem

Definition 1.1. The function u(z,t), is said to be a classical solution of the problem
ifu(z,t) € C*2(Q), D§,u € C(Q) and verifying the conditions .

To solve the homogeneous problem (1.1H1.5) by Fourier’s method, we arrive at
the following spectral problem

X"+ XX =0, Vzelo1]
X(0) =0, (1.10)
X' (0)=X'(1).

This problem is not self adjoint. We can prove that the set
S ={Xo==x, Xop =xzcos gz, Xop_1(x) =sin g},
form Riesz basis in L? (0,1) biorthogonal to the set
S={Yy=2, Yo (z)=4cos ez, Yop_1 = 4(1 —z)sin Ay}, A, =271k, k=1,2,3,...
For more details, the reader can consult [8, [7, [[2]. Therefore for the solvability of
the problem (L.I}{I.5), we shall seek the function u(z,t) in the form
u(z,t) =up (t) . + ZUQk(t)ng + ugp—1(t) Xop—1, (1.11)
k>1

where

1
ui(t):/ w(e, OYi(@)dz,  i=0,1,2,..
0
these functions w;(t) are twice differentiables on [0,7]. Substituting (1.11]) into

(L.1), we get

o ! (t — S>1_B
Dgyuo(t) = /0 TE-p) " (s)ds + b(t)uo(t) +a(t)go + fo (1), (1.12)
(t—s)""
r@2-p)
(

D yuon—1(t) + Auzr—1(t) =

D(‘itu%(t)ﬂiuzk(t) :/0 = Uak(8)ds+b(t)uak (t)+a(t)gar+ for(t), (1.13)
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_ B
A (;(2_)ﬁ)u2k1 (S)ds + b(t)u2k71 (t) + 2)\ku2k (t) + a(t)gzk,1 + fgkfl (t) (114)

and the following conditions are satisfied

T
0
T
u, (0) + / ka(t)u; (t)dt = by, 1€ {0,2k,2k — 1} (1.16)
0
where
fo x)dx,
fo dx
fo go z)dz,
fo x)dx.

Applying operator I~ to both sides in 1 j , and using the Dirichlet formula,
the solution of the first equation is given by

T T
uo(t) = o + tho — /o K1 (t)uo(t)dt — /0 tha(t)uo(t)dt

t (t _ S>Oé—,3+1 t (t - S)a—l
+/0 muo (S)d8+/o Wb(s) ug (s) ds

t a—1 t a—1

(t—s) (t—s)

+ go/ ————a(s)ds+ [ —~—fo(s)ds, (1.17)
0 I'(a) 0 I'(a)

the solutions of the second and third equations (|1.13)), (1.14) are given by

T T
g (t) = par + tihor — /O ko (t)uar (t)dt — /O theo (t)ugg () dt

N Pt —s)* T
_)\k/o T uzk(s)ds—F/O Tla_ B (a—ﬁ—|—2)u2k (s)ds

t(t—s)! f—s)!
+/O Wb(S)U%(S)dS —I—/O W (g2ra(s) + for(s)) ds

and

T T
Ug—1(t) = ar—1 + top_1 */ Fy(t)ugp—1(t)dt */ tho(t)uor—1(t)dt
0 0
2t (t—s)*! t (t—s)*"FHL t(t—s)* !
= o ey U2k— 1( ds-i—fo 71“(0 Gy U2k— 1(s)ds+ [, F(a) b(s)uzk—1(s)ds
-1

+2>\k/0 (tF!(S)a’LLQk(S)dS —+ /0 (tFe(S)a (gzk_la(s) + fzk_l(s)) ds.

) @)
According to lemma [T.1] and the previous equalities can be expressed as follows

T
Uop(t) = = APt Eq (—A3tY, a +1) <<P2k —/0 ki (t)ugk(t)dt>

T
_)\itOéJrlEa (—/\ito" o+ 2) <¢2k - / kQ(t)UQk(t)dt)
0

t
2 / (t =) T By (<02 (t — 5)*,2a — B+ 2) ugy, (s) ds
0
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¢
-\ / (t—s)** ' E, (=A% (t—8)™,20) b(s)uoy (s) ds
0

— /\i/o (t — S)M_1 E, (—/\ﬁ (t—s)” ,204) (gara(s) + for(s)) ds. (1.18)

and

T
Usp—1(t) = —Apt*Eq (A3, a0+ 1) <¢2k1 —/ kl(t)qul(t)dt>
0

At T E, (—Apt*, a +2) <1/J2k1 - /OT k‘z(f)Ule(t)dt>
N} /Ot (t—5)°* P B, (<A (t —5)™ 20 — B+ 2) ugg—1 (s) ds
-2} /Ot (t=8)*" 7" Ea (<A} (t = 5)",20) uak(s)ds
3 /Ot (t— )27 By (A2 (¢ — ) ,20) b(s)uzg_1ds

¢
_ Ag/ (t— )" By (—X2(t— 5)",20) (gok_10(s) + for_1(s))ds.  (1.19)
0
For the solvability of this problem, we denote by B3, ([16, 19]) the set of all
functions u(x,t) of the form
u(z,t) = uo(t)a + () Xok + igp—1 (£) Xop_1,
k>1

defined on Q such that wug(t), uak(t), uzk—1(t) are continuous on [0, 7] and

2 2
luo®llrory + [ D A Nuak O E0my + [ DA luzk—1(8) 6017 < 00

k>1 k>1

The norm of this space is defined by

2 2
lulz, )llps . = luo®lloror) + > M Nuzk Oy + | DA lwzk—1(B)lleo7»

k>1 E>1

it is obvious that these spaces are Banach spaces.

Theorem 1.3. Let the following conditions be satisfied
Hi) feC (Q) s Jzy fox €C (Q) , foax € L? (), such that

f(Oat) = fz:c(ovt) =0, fx(o’t) = f:c(lﬂt)'
H2) g, ¢, ¢"€C(0,1]), ¢, ¢g" € L*(0,1), and the following conditions
9(0) = ¢"(0) =0, ¢'(0) = ¢'(1)
hold

H3) ¢ € C?([0,1)), ¢ (z) € L?[0,1], v € C%([0,1]), and the compatibility condi-
tions @ are satisfied and

" (0) =4"(0) =0
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Then the problem has a unique solution in the ball
S(0,R) = {z € Ej Izllpg, <R, R> O} of the space B3 ..

Proof. To solve the system (1.17}1.19) in the space Bj ., we consider the operator
equation

Lu=w(z,t) = wo(t)z + Y wor(t)Xox + Y _war—1(t) Xox_1, (1.20)
k>0 E>1

the functions wy(t), wag(t) and wag—_1(t) are equal to the right-hand sides of
and [1.19] respectively.

According to lemma we can deduce the following estimates

Ta—6+2
l[woll oo, < (T [k1(t) + Tha()ll 0.1y + F(Oé—ﬂ+3)) o ()l cpo,m

[e3

T
+71) 16 0,77 1w ()Ml oo,y + lpol + T [thol

I'(a+
T2a 1 Ta
* Ga -1 @ MOl + g% le®lcor (1.21)
To—p+1
losleron < O (24 (W@l + T IO lequn) ) ot Ol
a—1
||b(t)||c 0,7 HUZk(t)HC[o ] + C ook | + CT |thok]
TO[
F 126 20,77y + —— 92k la®)logo
and
lwak-1llco,r) < CT (% + (||k1(t)”co 7] +T|‘k2(t)‘|0[o¢:r])> luzi—1 () cpo.17

20T*

Ta
+CU 16()ll o0, luzk—1 ()l o, “‘THU%( e +C lem—1|+CT [ar—1]

||f2k 1Ol 2 (0,77) gzk 1 lla@)ll o7 -

From the previous mequahtleb we deduce

¢ZA2 skl oz, <

k>1

a—pB+1 a—1
VBOT (E7 + (Ik (Ol ego.ry + T Ikl o) + T Hb(t)\lcm,ﬂ) o A el
Vh— ore 29| V50 )\6 dt
+ lallcrom |g2x]* + | farl?
k>1 k>1

+VEC [N pail® + VEOT DA || (1.22)
E>1 E>1

> M war-1lgpo1y <
k>1

and
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a—B+1 a—1
VEOT (Z25 4 1 ooy + T 2@l cgo.zy + T 100 oy ¢2A 6 lluzi—1Z0.1y

+2V6CT* [ N lJuak |G + V6C | XS [pan—1]” + VECT [ NG [ar|”
k>1 E>1 E>1
cTe .
+vV6— Ha”c[oT] Z)\ |g2r—1]*+ /6 Z )\ | £y dt, (1.23)
k>1

k>1

Then, summing the last inequalities with (1.21]), we obtain
Lullpy, < A(T) [ull g, +B (T

where
A(T) =

Ta—[3+1 Ta—l
- ki(t thko(t — ||b(t
a5 MO+ e + e 1HOlopn

a—[fB+1

T a1
250 (I + @l + TR Ollor + Z BOlloon) |
and
B(T) = 19l a0 +4V5C 6" ()l gy +4VBC 1 -3¢(@) + (1 = 26" (@)l o

HT ([l 2g,17 + 4VECOT [|[=39" (2) + (1 = 2)9" (2) | pago, 1y + 4VECT [0 ()]l 1201y
+VET Nallgpor 1-39" (x) + (1 = 2)g" () y2go,1) + 45T llall o,z 9" ()l 20,1

2(1 1
VB L I8 feel@) + (= ) e (@) 0.
l T2a71
+4\[C H“fzzm HLZOl]’ L2(OT)

| f(z,t Q-
(2a—1)T () Iz, )”L2( )
We choose R = pB , where p > 1 and if

T max {2\/ECT°‘_1,

£2(0,T)

-1
A(T) § , (1.24)
p
then the operator L mapping the elements of the ball S (0, R) into itself.
From the definition of L, we have for uq, us € S (0, R)
|Lus - Lusllps, < ACT) Jun - wall g - (1.25)

then according to , the operator L is a contraction, so it has a unique fixed
point in the ball S (0, R) of the space B%T wich is a solution of operator equation
, then the function u as an element of the space Bj , is continuous and has
continuous derivatives u;, Uz, in €. It is easy to verify that the conditions
are satisfied in the classical sense. ([

2. SOLVABILITY OF THE INVERSE PROBLEM

Definition 2.1. The triplet of functions {u(z,t), a(t), b(t)} is said to be a classical
solution of the problem if u(x,t) € C*2(Q), D§ueC(Q)),alt),bt) e
C'[0,T) and satisfies the conditions (1.1{1.7).
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2.1. Equivalent problem.

Lemma 2.1. Assume that f(x,t) € C(Q), ¢(x), ¥(x), g(z) € C0,1], h(t),
m(t) € C?[0,T] and the compatibility conditions (1.8) hold. Then the problem

is equivalent to and the conditions

D h(t) = tge (1,1) = /Ot Wh(s)ds + b(t)h(t)
+alt) (g(l) +/01g(x)d33> e —i—/olf(x,t)dx. 2.1)
Dgmt) — us (1,8) + u(l,£) = /0 t Wm(s)ds +b(t)m(e)
+alt) /0 ' rg(e)de + /0 (). (2.2)

Proof. =) Let {u(z,t), a(t), b(t)} is a classical solution of problem (1.1H1.7)), we
suppose that h(t), m(t) € C?[0,T). From (1.1)) we have

D&tu(l, t) — ug(1,t) =

t (t o S)l—ﬂ
/0 T “he)ds +ou(l ) +alt)g(l) + f(1,1).

integrating ([1.1)) over [0, 1], we have

Dg, /01 u(x, t)dz = /Ot (;(—28_)1; /01 u(z, s)dzds + b(t) /01 u(z, t)dx

a(t) /O1 g(z)dz + /01 Fla,t)da.

By summing the last equalities, we get

Dg, (u(l,t) +/01 u(m)dm) ~ tao(1,t) =

/Ot (11:(_25_)15_: (u(l, s)+ /01 u(z, s)dx) ds + b(t) (u(l,t) + /01 u(m,t)dz)

+a(t) (g(l) + /01 g(x)dx) + f(1,t) + /01 f(z,t)de, (2.3)

taking into account (1.6)) we conclude that (2.1)) is satisfied.
Multiplying the both sides of Eq.(l.1)) by = and integrating from 0 to 1 with

respect to z, taking into account (|1.7]), we get (2.2)
<) Suppose that {u(z,t), a(t), b(t)} is a classical solution of problem (|1.1H1.5)

and the conditions (2.1)) and (2.2) are satisfied. From (2.1)) and (2.3) we have
1 1

Dg, (u(l,t) —|—/ u(x,t)dx — h(t)) =b(t) (u(l,t) —|—/ u(x, t)dx — h(t))
0 0

+ /Ot W <U(1,s) + /01 u(z,s)dz — h(s)) ds, (2.4)
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Let k(t) = u(1,t) + fo x,t)dx — h (t), using the compatibility conditions 1 ,
) =

we have k(0) = £'(0) = 0. Then ) becomes
B t (t_s)a B+1 (t_s)a—l
k(t) = /O (F(a_ 5 T b(s)> k(s)ds, (2.5)

According to Gronwell lemma we have k(t) = 0. Therefore

1
u(1,t) —|—/O u(z,t)de = h(t).

By multiplying both sides of Eq.(L.1]) by = and integrating from 0 to 1 with respect
to z and taking into account (2.2)) we get

Dg, < /O (e t)de m(t)) — (1) ( /0 (e t)da — m(t)> .

Similarlly, we can deduce that

1
/ zu(z, t)de = m(t).
0
The proof is complete. (Il

2.2. Existence and uniqueness of the classical solution. The first component
of the classical solution is given by

u(w,t) = uo(t)w +  uak(t) Xo + ugk—1(t) Xar-1, (2.6)
k>1
where u(t), uax(t), uzk_1(t) are defined by (1.17), (1.18)) and (1.19) respectively.
From (2.1), (2.2), (1.18) and (1.9, the second and the third components of the

classical solution are given by

m tt—s) P !
a@)zjw%§<D&Aha»<w—3£ gy s~ £(1.0) - O‘H%th>

@ «@ _ twms S — 1$ X i
- 310 <D07t(m(t))(t) /0 T@- 7 (s)d /0 f( 7t)d>
h(t)

+ 7;1/\2 t)dt + m;l)\ku% 1(t)dt (2.7)
and
b(t) = =B (Df (16 () = i Sy (s)ds = F(1,0) = fy (. t)da)
g(1) + [ g(@)de [ A,t@;ﬁiinssf e f e tydn
; Aﬂw G%Am@ﬂﬂ [;rm—m s | f«wd>
Y T
k>1 k>1

where M (t) ( )+ fo dx) m(t) — (fol xg(x)dx) h(t) # 0.

Therefore, to solve the problem (1.1H1.5), (2.1}42.2), the system (1.12]1.14) and

(2.7)12.8) must be solved.
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The uniqueness of the solution of the considered problem based on the following
lemma

Lemma 2.2. if the triplet {u(z,t),a(t),b(t)} is a classical solution of the problem
!EEE,@!EELMM
fo x,t)Yy(z)dz,
uay (t fo x,t)Yor(z)dx, (2.9)
ugp—1(t fO u(w,t)Yop—1(7)dz,
are solution of the on [O,T}.
Proof. Tt {u(x,t), a(t), b(t)}is a classical solution of the problem (1.1H1.5)), (2.1}j2.2)),

then taking the scalair product in L? [0,1] of equation ([1.1)) with Y;(z), we obtain

1 1 t (t— s)l—ﬁ 1
D&tung(x)dx—/ Uy Yor (z)dx :/ ( / u(z, t)Yar (z)dx
0 0 0 0

'@ 5)
1 1 1
—|—/O b(t)u(x,thk(x)dm—i—/o a(t)g(x)ng(x)dm—f—/o fz, t)Yar(z)dz, k>0,

and

1 1
Dg juYop,—1(z)dx —/ Ugy Yo —1(2)dx :/
0 0 0

e
L2-p)

1 1
+/ b(t)u(x,thk_l(:r)d:ch/ a(t)g(:c)ng_l(x)dx+/ flz, t)Yop—1(x)dz.
0 0 0
Integrating over [0,1], using the conditions (1.4)) and (1.5)) we obtain

fo Uze Yo(x)dz = 0,
fo U Yor (2)dx = —Njusg,
fo Ugy Yor—1(2)dr = =2z, — Noug,—_1.

/ u(z, t)Yap—1(x)dx
0

1

Using the fact that fo Dg‘tqu(m)dx = Dg, fol u(z,t) Yj(x)dr = D§ uj, we con-
clude that equations are satisfied. Simillarly, according to conditions
., (1.3) we get that condltlons 1-) and lh are satisfied. Then the func-
tions (2.9) are solutions of the syste the interval [0,T].

The proof of the lemma [2:2] is complete. O

Remark. According to lemma[2.3, to prove the uniqueness of the solution to the

problem 1.5,12.1 , it suffices to prove the uniqueness of the solution to the
system (1.12{1.14)).

It is easy to show that if
uap (t fo x, 1) Yar (v)dx, k>0,
U2k — 1 fO Z, t ng 1( )dm, k Z ].,

are solutions of the system (|1.12 , then the functions
w(z,t) = up(t)xr + ZUQk( )ng —i—uzk 1(t)Xak—1, a(t) and b(t) defined by 1) and

8|) respectively are solutions of the system . .
To solve the system (1.12}{1.14) and (2.7 we need these spaces. Denote by Ej ;.
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the space B3 1 xC [0, T]xC'[0, T] of the functions v(x,t) = {u(z,t), a(t), b(t)} whose
standard norm
lo(@, Ol gz, = llul, Ol ps . + lla@ll e, + 10O co,r -

it is obvious that these spaces are Banach spaces.
In the space ES‘,T, we consider the operator L(u, a,b) = {L;(u,a,b), Ly(u,a,b), Ls(u,a,b)},
where

Ly (u,a,b) = w(z,t) = wo(t)x + Y wop(t) Xok + > wor—1(t) Xok—1,
k>0 k>1
Ls (u,a,b) = c(t),
L3 (u,a,b) = d(t),
the functions w;(t), ¢(t) and d(t), are defined by the left sides of and
(2.7112.9)) respectrively.

Theorem 2.3. If the conditions of theorem are satisfied. Then the problem
and has a unique solution in the ball
®(0,R) = {z € E3 p, I2llgs, <R, R> O} , of the space E3 1.

Proof. From ([1.2111.23]), we deduce the following estimates
1Ll sy < Ao (T) [l sy, +Bo(T) 6D o 11 ], +Co() la®) oy + Do ().

(2.10)
where
Ta—,8+2
Ao (1) = max {7 [a () + tha Ol + 1o g7
Ta—ﬂ+1
V50T (W +27° + (Hkl(t)HC[O,T] +T ”kQ(t)HC[O,T]) + 2\/60Ta> ;
Tafﬁqtl
vec T (04—54-2 + 27T + <||k1(t)|\c om T ”kQ(t)”C[O,T])) } ;
By(t) = max{F(T 0 \fC }
T2a 1
+4\/>CV Hfzzz HL2(Q) t o T ( ) ( ) Hf(l' t)HL2(Q
ColT) = max{wéa 136" () — (1 = )" @)l o) + W5 g @) o

TOé
m ||9||}

Do(t) = max { lp(@)ll 20,1) + T (@) | 20,1
WBC " (@) g 1) + AVBC 36" (@) = (1 = )" (@) | 0.}

1
_|_4\/6 ||3f$1 J)) - 1 - x)f:zww(m)HLZ(Q)

av5 c\/ e + Gty 1@

According to ( and (2.9) we have
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Ha(t)HC[O,T] <
m(t)
‘ m ZA ZAg ||u§k:(t)HC[0,T]
C,7) \ k>1 k>1
h(t)
al vy A A6 w2, (t)
HM(t) clo,1) kz>:1 kz>:1 kH 2k—1 HC[O,T]
_ 18
‘ # Dg k(1) */ (£~ s) —————h(s)ds — f(1,t) / f(z,t)d
Ol 0o T2=-5) o
A(1) i 1
+ || D& m(t)—/ 7m(s)ds—/ zf (z,t)dx
HM(t) con || o T2-5) . o
and
Hb(t)HC[O}T] <
fol zg(x)dx o2
S TION S \/Zm%k(t)ncm,ﬂ
clo,1) \ k=1 k>1
1) + fl g(z)dz -
510 sz\/Dz R,
clo,1] \ k=1 k>1
fol xg(z)dz (t — 5)1 B
+ D3 () - / =5y yds - (1,1 / fat)d
‘ M®) | oo o I'2-8) o
1 p—
1 d ts NI 1
e )+M{ot9(x) x D&tm(t)—/ %m(s)ds—/ af(z,t)dx ’
®) clo,T) 0 0 clo.1)
from and (1.23)
t) -
al(t <V5CT Hm( A2y
lo®llepo.z o I

a—B+1
(2 + I Ollcgor) + T s oo \/ZA ¢ s 0.1

k>1

()
#eer | com |2

Toc—ﬁ—i—l 5
(a —B+2 + Hkl(t)HC[O,T] +T k2(t)||c[o,T]> \/Z)‘g ||U2k71||c[0,T]

k>1

h(t
+2\/6HM() ST (SO el B
(t) clo,1] \/ k>1

k>1

+x/5HE(t

) SOACTE o)l eory . |5 A ko
clo,1] \ k>1 E>1

(t)
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+\/60TH]\4((7;)) Clo,1] \/?T HCOT \/1;1/\6 Hu2k 1HCO .
+fHM . FCT lltoy [ ool
+\/602“ M()) o ];A ||a|COT]\/W
T |y FJZ / S
H% clo.1) DG () (t)_/ot (;(_28—)15)%() fe- / et clo.7]
HM@) o [P (mE) ) = / t Wm(s)ds— / efte. s o

the previous inequality can be expressed as

la(®)lgory < Ar(T (\/D |u2k||c[0T]+\/D 0z 1m>

k>1 k>1

2
+B1(T) [[b(t)| 10,17 ( DN uakllg o + [ DA uzk_lcm,ﬂ>

E>1 E>1

+C1(T) lla(®)ll o,y + D1(T),

where
A(T) =
m(t _ a—pB+1
max \/mHM(t) SN (T + Il + T @ o)
( ) clo,1] \/ k>1
h(t) 4( To—B+1 )
6CT || —== A _ kq(t + T ||ko(t ,
NG HM@ o2 (e (ko my + T Ol

i S

e
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TOC
A 4
clor] @ \/?}
m(t _,CT“
Cl (T) = max \/5 H % ZAk 27 ||g///(1‘)||L2([071]) ;
co. 1]\ k>1

Bl<T>:max{¢5Hm y

o H 9

k>1

(t)

cT h(t) // "
NG + o o I;)\ 13" (z) — (1 — z)g (33)||L2([o,1})} ;
d
an m(t) "
Dy(T) = \/50‘ M) |z D" @) o)
: k>1
m(t) "
wier| gl S I @l
+\/50’ ]‘ZL((?) clo,] \/ﬁ p Maze(@) 2@
; k>1
e HM(t) clo,7) D A =3¢ (@) + (1= @)@ (@)l 0,1
; k>1
+\@CT Hf\ﬂt) cro Z)\I;‘l ||31/)//(x) — (1 e x)?/)”’(x)HLz([O,l])
, k>1
T2a 1
+\[ (()) o] ZAEAL ||3fzm(x) - (1 - z)fmzz(x)HLZ(Q)
0,T] |/ k>1
m(t) Lt—s) P
AN DY h(t) — R A— ) f(1,t) t)d
HM(t) clo,1) 8.:h(%) /0 I'2-p) (o) / e clo,T)
H Dg ,m(t) — /t Mm(s)ds - /1 xf(z,t)dx
M () |l o1 o o F(2-5) 0 ’ clo,1]

Simillarly, we have

rg(x)dx
[[b(t )HCOT <V5CT f]\/[g((t)) HZM X
clo,1]) \ k>1

a—pB+1
(55 + Ol + TR Olopr ) [ w20
k>1

1
9(1) + fo g(x)d;v 4
T A
+V6C M) Z 5 X
clo,1] \ k>1
Toz76+1
(s + IOl + T Ol ) [N b g

k>1
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1
1)+ [, g(z)dz —
Jo S S s o
cp, 1] | k=1 k>1

+2¢/6CT

M(t)

a—1
Z)‘ 2T [b(t HCOT Z/\ ||U2k||coT
clo,1] \ k>1 k>1
74To¢—1 6 2
2N 6@ oo,y [ A% luak-allego
clo,1] \ k>1 E>1

[} zg(z)da
: Z/\ ”aHCOT] Z)‘G |92k|

M(t) C[0,T) k>1 k>1

1
D+ [ g(x)dx -
o) Z)\k4||a||C[O,T] ZAQ lg26-1]?
clo,r) | k>1 k>1

M)
SN DN ool

1
fo rg(z)dx
M
o, 1] | k=1 k>1

S ¢ZA2 el?

C[0,T) k>1 k>1

Y e

clo,1] \ k>1 E>1

DN D o)
clo,r] \ k>1 k>1
1
xg(z)dz _
Jo 2}&%2)2&&

M(t) cp,1] | k=1 k>1

SO X faral?

clo,r) \ k>1 k>1

tp_ )P
Dgﬁth(t)—/o (;(2_)@ h(s)ds — £(1,1) /fxt

t _Slﬁ
D&mwjéﬁ@]mUM—Axﬂ@w

fol xg(x)dx

+V5CT EION

g(1) + [y g(x)dx
M(1)

+V6CT

oTe
+V5
o

ore
+V6
(67

+\/50‘

ior || o zet@rde

1)+ [y g(z)dz

M(t)

1)+ Jy g(@)da

M(t)

f T2a—1
5C4/
+ 20 — 1

1)+ [ g(z)de

M(D)

+v6C 9

et |

T2a 1
a—1

+v6

01 zg(x)dx
M(t)

c[o0,T] c[o,T]

1)+ [ g(z)dz

M(t)
We denote by

+g(

clo,T) clo,T)

A(T) =

_ a—p+1
S (B + @l + T 1@l ) -
clo, 1] | k>1
+
> ( “gy2 1k1() | cg0,7) +T“k2(t)”0[0’ﬂ> 7
c[o0,T) k>1

fol xg(x)dx

M (2)

max {ﬁCT

1)+ [, g(z)dz

g(
V6CT 710




ON THE SOLVABILITY OF ONE DIM. IP FOR FRAC. W. EQU 17

>Nt
clo,1] | k>1
1
Jo xg(x)dx Z)\_Q —
k a
clo,1] \ k>1

1)—|—folgxdac

M)

2/6CT™

By(T) = max {\/BC'T 0

1) + fol g(z)dz

veer |2 Jpki
T _
clo,1] \ k>1
CTe fol zg(z)dx
Cy(T) = max {\/5 o M) Z)\ lg" (= ||L2 ([0,1]) »
clo,7) \ k=1

cre | g1) + Jy g(x)dx _ /
Vo= J\io(t) D NI-39" (@) + (1= 2)g" (@) 2oy ¢ -
clo,1) \ k>1
and 1
xg(z)dz
Dy(T) = V5C fo]\J(t) ZA ”(p/// HL2 [0,1])
Clo,T) k>1
1
zg(z)dx
VBeT fM(t) SO @) oy
Clo,7) k>1
g(1) + [ g(x)dx
+v6C ]éo(t) Y A 3¢ (@) = (1= 2)@" (@)l 120,y
C[0,T] k>1
g(1) + 19($)d33 -
V6T J\ﬁt) SN (@) — (1= 2)0" (@)l 2 oy
clo, 1] \ k>1
T2a—1 fl xg(z)dx
+\/50 - 0 M(t) Z)\ foa::r ||L2
C[0,T] k>1
T2a 1 1)+ 1g(gc)dac -
V65— Zéo(t) D A 13z (@) = (1= 2) fowa (2)] 2
C[0,T] k>1
1 -8
xg(x)dx o t—s
n fow Do,th(t)/(( )B)h( Yds — f(1,t) /f:ct
clo,T] 0 1]
9(1) + [} g(a)da . t—s)'
oS i)~ [ (Gt [ este
clo,1] 0 ’ col.T]
then

16l cpo,ry < A2 (T) [[ull gz, +Ba(T) [16() | 010,77 lull gz, +Co(T) [lal®) | oo, +D2(T)-
Combining the previous inequalities with (2.10) we have

|Eullpg, < As(T) llull gy, +B(T) B0 cio.ry Nl g, +Cs(T) [a(®)lcio.ry+Ds(T),
(2.11)
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where

D3(T) = Do (T') + D1 (T) + D2 (T)..

If R=pDs(T), p > 1, then the operator L is a contraction mapping.
First, we show that the operator L mapping the elements of the ball ®, into itself.
It is clear that the operator L satisfies (2.11]), we suppose that
1 -1
and Bs(T)Ds(T) < 2=~ (2.12)

)
A3(T) + Co(T) < TR

then
L (@)l < pDa(T). (2.13)

Consequently, the operator L acts in the ball. It remains to prove that the operator
L is a contraction. Indeed, similarly, with aid of we have for any (u1,b1,a01),
(u2,b27a2) S ‘I)p,

<

lps <
B3 r

IZ (u1,b1,a1) — L (ug,ba,a2)

p—1
57 {||u1 —uzllgg  + [1b1(t) = b2(V)ll oo, 7y + llar — a2||C[O,T]} ; (2.14)

is satisfied. Then it follows from (2.12)) together with (2.13) and (2.14) that the

operator L maps the ball ®, into itself and is contractive. Consequently, the oper-
ator L has a unique fixed point {u,b,a} in the ball ®,, that is the unique solution

of the system (1.12}{1.14]).

Since u € B§T7 then u is continuous and has continuous derivatives ug, g, in

Q ([, page 49] ). According to (1.12{1.14), the functions Dg ,u(t), b(t), a(t) are

continuous on [0, 7] . It is straightforward to verify that the equation (1.1} and the
conditions (1.241.5)), (2.1) and (1.7) are satisfied in the ordinary sense. The proof

of the theorem is complete. ([
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