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UNCOUNTABLE K-BESSEL AND K-HILBERT SYSTEMS IN

NONSEPARABLE BANACH SPACES

M.I. ISMAILOV, S.I. JAFAROVA

Abstract. We consider the uncountable K-Besselness and K-Hilbertness of

systems in nonseparable Banach spaces with respect to nonseparable Banach
space of systems of scalars K. The criteria for K-Besselness and K-Hilbertness

of systems in case where the space K is a space of systems consisting of coef-

ficients of some uncountable unconditional basis are found. The relationship
between the K-Besselness and K-Hilbertness of the system and the existence

of the uncountable unconditional basis with the space of coefficients K is es-

tablished.

1. Introduction

The concept of frame has been probably introduced by R.J. Duffin and A.C.
Schaeffer in 1952 [1] in the study of non-harmonic Fourier series with respect to
perturbed exponential systems. In this seminal work, Duffin and Schaefer estab-
lished some properties of exponential frames. In the same work, they introduced the
concept of abstract frame in separable Hilbert space and extended some properties
of frames consisting of perturbed exponential systems to this concept. The interest
to frames has grown in the 1980s due to wide applications of wavelet methods in
various fields of natural science. Standing at the crossroads of theory and practice,
the wavelets are widely used in processing and encoding of signals and different
kinds of images (satellite images, roentgenograms of internal organs, etc), in pat-
tern recognition, in the study of the properties of crystal surfaces and nano-objects,
and in many other fields. Today, there are a lot of monographs and review articles
dedicated to this direction of approximation theory. For theoretical aspects of this
direction we refer the readers to Ch. Chui [2], Y. Meyer [3], I. Daubechies [4], S.
Mallat [5], R. Young [6], Ch. Heil [7], O. Christensen [8-10], etc.

In subsequent years, the concept of frame has been generalized to various math-
ematical structures (for example, Banach frames, p-frames, etc) and new methods
for establishing frames have been elaborated. One of these methods is a perturba-
tion method. A lot of results have been obtained in this direction in the context of
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classical Paley-Wiener theorem on perturbation of an orthonormal basis (for more
details see O. Christensen [8-10] and Ch. Heil [7]).

Frames in Banach spaces were first considered by K.H. Gröchenig [11] in 1991. He
introduced the concepts of atomic decomposition and Banach frame. It should be
noted that, unlike Hilbert’s case, the definition of Banach frame does not, in general,
provide the decomposition of arbitrary element of Banach space (or of arbitrary
element of the closure of the linear span of the system under consideration). In
special cases, such a decomposition exists. Lp-case has been considered by A.
Aldroubi, Q. Sun, W.-Sh. Tang in [12] where the concept of p-frame has been
introduced and the atomic decomposition with regard to Lp-subspaces invariant
with respect to the shift operator has been obtained. This idea has been extended
to the general Banach case by Christensen O. and Stoeva D. T. [10]. Also, the
concept of q-Riesz basis for a Banach space has been introduced in these works,
which generalizes the one of Riesz basis introduced by N.K. Bari [13]. Note that
similar results have been obtained in [14-20]. There are different generalizations of
frames, and this research field has been continuously growing over the last years
(see, e.g., [10; 12; 21-31]).

Frames draw growing interest also from a theoretical point of view. As an ex-
ample, we can mention the connection between the theory of frames and the well-
known problem of Kadison and Singer (1959). Modified, but equivalent forms of
this problem have been studied in different branches of mathematics such as theory
of frames, theory of operators, time-frequency analysis, etc. (for more details see
[32-38]).

In the context of applications to some problems of mechanics and mathematical
physics, since recently there arose great interest in the study of different mathemat-
ical problems in non-standard function spaces such as Lebesgue spaces of variable
summability, Morrey-type spaces, grand Lebesgue spaces, etc. (for more details see
Cruz-Uribe [39], Kokilashvili V., Meskhi A., Rafeiro H., Samko S. [40], Adams D.R.
[41], Bardaro C., Musileak J., Vinti G. [42], etc.). It’s worth noting that in most
cases these spaces (like, for example, Morrey-type spaces, grand Lebesgue spaces,
etc.) are not separable. That’s what makes the study of frames in non-separable
spaces interesting.

Note that, in general, the case of nonseparable space is not considered in the
approximation theory due to objective reasons. The examples with nonsepara-
ble spaces are mostly exotic. Meanwhile, from a purely theoretical point of view,
it would be interesting to develop approximation theory to the case of nonsepa-
rable space. But, to do so, of course you first have to define the corresponding
concepts of the theory of Bessel-Hilbert systems and the theory of frames for the
case of nonseparable space, and then to extend the basic facts of these theories
to nonseparable case. Perhaps, this was first done in [43, 44], where the concept
of uncountable Hilbert frame was defined and the basic provisions of the above
theories were extended to nonseparable case.

We consider the uncountable K-Besselness and K-Hilbertness of systems in non-
separable Banach spaces with respect to nonseparable Banach space of systems of
scalars K. The criteria for K-Besselness and K-Hilbertness of systems in case
where the space K is a space of systems consisting of coefficients of some uncount-
able unconditional basis are found. The relationship between the K-Besselness and
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K-Hilbertness of the system and the existence of the uncountable unconditional
basis with the space of coefficients K is established.

2. Some notations and auxiliary facts

Let X and Y be nonseparable Banach spaces with the norm ‖·‖X and ‖·‖Y ,
respectively. By L(X,Y ) we denote the space of all bounded linear operators acting
from X to Y . A space conjugate to X will be denoted by X∗. L(M) will be a linear
span of the M ⊂ X, M wll denote a closure of the set M in X, I be an uncountable
index set, Ia be a set of no-more-than countable subsets of I, I0 be a set of finite
subsets of I, and {ϕα}α∈I be some system in X.

Definition 2.1. The system {ϕα}α∈I is called an uncountable unconditional basis
in X if ∀x ∈ X ∃!λ = {λα}α∈I : {α ∈ I : λα 6= 0} ∈ Ia x =

∑
α∈I λαϕα (uncondi-

tionally).

Example 2.2. Let lp(I), 1 ≤ p < +∞, be a set of systems of scalars λ = {λα}α∈I
such that ωλ = {α ∈ I : λα 6= 0} ∈ Ia and

∑
α∈ωλ |λα|

p
< +∞. lp(I) is a nonsepa-

rable Banach space with the norm

‖λ‖ =

(∑
α∈ωλ

|λα|p
) 1
p

, λ = {λα}α∈I ∈ lp(I).

Let δαβ be the Kronecker symbol and δα = {δαβ}β∈I . The system {δα}α∈I is

an uncountable unconditional basis for lp(I). In fact, it is not difficult to show
that for ∀λ = {λα}α∈I ∈ lp(I) there exists a unique representation in the form of
unconditionally convergent series λ =

∑
α∈ωλ λαδα.

Let’s state a criterion for uncountable unconditional basicity in nonseparable
Banach spaces (see [45]).

Theorem 2.3. In order for the system {ϕα}α∈I to be an uncountable unconditional
basis in X, it is necessary and sufficient that the following conditions hold:

1) the system {ϕα}α∈I is complete in X;
2) the system {ϕα}α∈I is minimal in X;

3) ∃M > 0 : ∀J ∈ I0,∀x ∈ X
∥∥∑

α∈J ϕ
∗
α(x)ϕα

∥∥
X
≤ M ‖x‖X , where {ϕ∗α}α∈I is

a system biorthogonal to {ϕα}α∈I .

If {ϕα} ⊂ X forms an uncountable unconditional basis for X, then the space Kϕ

of all possible systems of scalars λ = {λα}α∈I , such that ωλ ∈ Iα and the series∑
α∈I λαϕα converges unconditionally, is a Banach space with the norm

‖λ‖Kϕ = sup
J∈I0

∥∥∥∥∥∑
α∈I

λαϕα

∥∥∥∥∥
X

.

3. K-Bessel and K-Hilbert Systems

Let X be a nonseparable Banach space, I be some uncountable index set,
and Ia be a set of no-more-than countable subsets of I. Consider the mini-
mal system {xα}α∈I ⊂ X with the biorthogonal system {x∗α}α∈I ⊂ X∗. Let K
be a nonseparable Banach space of systems of scalars λ = {λα}α∈I such that
{α ∈ I : λα 6= 0} ∈ Ia.
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The space K is called a CB-space if the system {δα}α∈I ⊂ K, δα = {δαβ}β∈I
forms an uncountable unconditional basis for K, i.e. ∀λ = {λα}α∈I ∈ K the
relation

λ =
∑
α∈I

λαδα =

∞∑
i=1

λαiδαi

holds, where {λαi}i∈N is a sequence of arbitrary permutations of non-zero elements
λ = {λα}α∈I . Let {δ∗α}α∈I ⊂ K∗ be a system biorthogonal to {δα}α∈I .

The next definition is a generalization of the concept of Bessel sequence.

Definition 3.1. The pair {xα;x∗α} is called K-Bessel if the condition {x∗α(x)}α∈I ∈
K, ∀x ∈ X, holds. If the system {xα}α∈I is complete in X and the pair {xα;x∗α}
is K-Bessel in X, then {xα}α∈I is called K-Bessel in X.

Example 3.2. Let eα(t) = eiαt, t ∈ R. Assume V = span {eα}α∈R. It is
clear that ∀x ∈ V ∃Mx: |x(t)| ≤ Mx. Therefore ∀p ∈ [1; +∞) there exists

lim
T→∞

1
2T

∫ T
−T |x(t)|p dt. Let’s show that

‖x‖p = lim
T→∞

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

is a norm in V . Obviously, ‖x‖p ≥ 0. Let ‖x‖p = 0 and x =
∑
k cke

iαkt. For

∀p ∈ [1; +∞), from

1

2T

∫ T

−T
|x(t)|2 dt =

∫ T

−T
(2T )−

1
p |x(t)| (2T )−

1
q |x(t)| dt ≤Mx

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

we obtain

lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt ≤Mx lim

T→∞

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

= 0,

where 1
p + 1

q = 1.

However

lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt =

∑
k

|ck|2 ,

hence, x = 0. Further, ∀λ we have

‖λx‖p = lim
T→∞

(
1

2T

∫ T

−T
|λx(t)|p dt

) 1
p

= |λ| ‖x‖p .

At last, by Minkowski inequality,(
1

2T

∫ T

−T
|x(t) + y(t)|p dt

) 1
p

≤

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

+

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

.

Passing to the upper limit as T → +∞ we obtain ‖x+ y‖p ≤ ‖x‖p + ‖y‖p. Con-

sequently, ‖·‖p is a norm in the linear space V . Denote the obtained normed space
by Vp. Define a scalar product in the space V2 as follows:

(x, y)V = lim
T→∞

1

2T

∫ T

−T
x(t)y(t)dt.
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The system {eα}α∈R is orthonormal in V2. Denote by LVp (R), 1 ≤ p < +∞, the
completion of the space Vp. Using Holder inequality, it is not difficult to show that
LVp (R) ⊂ LV2 (R) for p > 2 and LV2 (R) ⊂ LVp (R) for p < 2. The space LVp (R) is
nonseparable. To show this, it obviously suffices to show the nonseparability of the
space Vp.

Let’s first establish the nonseparability of the space V1. Let M = {eα}α∈R. Let’s
estimate the number ‖eα − eβ‖1 for different ∀eα, eβ ∈M . As the system {eα}α∈R
is orthonormal, we have ‖eα − eβ‖22 = ‖eα‖22 + ‖eβ‖22 = 2. Therefore,

2 = ‖eα − eβ‖22 = lim
T→∞

1

2T

∫ T

−T

∣∣eiαt − eiβt∣∣2 dt ≤
≤ lim
T→∞

1

2T

∫ T

−T

∣∣eiαt − eiβt∣∣ (∣∣eiαt∣∣+
∣∣eiβt∣∣)dt =

= 2 lim
T→∞

1

2T

∫ T

−T

∣∣eiαt − eiβt∣∣ dt = 2 ‖eα − eβ‖1 ,

i.e. ‖eα − eβ‖1 ≥ 1. Consequently, V1 is nonseparable. Now let’s consider the space
Vp for p > 1. Assume the contrary, i.e. assume that Vp is separable and M is a
countable set everywhere dense in Vp. Then ∀x ∈ V ∃xn ∈M : lim

n→∞
‖x− xn‖p = 0.

As ∀x ∈ V

‖x‖1 = lim
T→∞

1

2T

∫ T

−T
|x(t)| dt ≤ lim

T→∞

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

= ‖x‖p ,

we obtain lim
n→∞

‖x− xn‖1 = 0. Consequently, M is a countable set everywhere

dense in V1, which contradicts the nonseparability of V1. So the space Vp is non-
separable.

Define a functional in Vp by the following equality:

e∗α(x) = lim
T→∞

1

2T

∫ T

−T
x(t)e−iαtdt.

The linearity of e∗α is obvious. We have

|e∗α(x)| ≤ lim
T→∞

1

2T

∫ T

−T
|x(t)| dt ≤ lim

T→∞

(
1

2T

∫ T

−T
|x(t)|p dt

) 1
p

,

i.e. e∗α ∈ (Vp)
∗. Extending e∗α by continuity onto LVp (R), we obtain e∗α ∈ (LVp (R))∗.

It is clear that e∗α(eβ) = δαβ, i.e. the systems {eα}α∈R and {e∗α}α∈R are biorthog-
onal.
Let p > 2 and ∀x ∈ LVp (R). As x ∈ LV2 (R), it follows from Bessel’s inequality that
there are no more than a countable number of Fourier coefficients e∗α(x) = (x, eα)V
that are different from zero and {e∗α(x)}α∈R ∈ l2(R). Further, from l2(R) ⊂ lp(R)
we obtain {e∗α(x)}α∈R ∈ lp(R). Consequently, for p > 2 the system {eα}α∈R is

lp(R)-Besselian in LVp (R).

The following theorem is true:

Theorem 3.3. Let K be a CB-space with an uncountable unconditional basis
{δα}α∈I . Then, in order for the pair {xα;x∗α} to be K-Bessel in X, it is necessary
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and, in case of completeness of {xα}α∈I in X, sufficient that there exists an operator
T ∈ L(X,K) such that Txα = δα, ∀α ∈ I.

Proof. Necessity. Let {xα;x∗α} be K-Bessel in X. Then ∀x ∈ X {x∗α(x)}α∈I ∈ K.
Consider the operator T : X → K defined by the formula

T (x) =
∑
α∈I

x∗α(x)δα. (3.1)

It is clear that the equality Txα = δα, ∀α ∈ I, holds. Define for every ω ∈ Ia the
operator

Tω(x) =
∑
α∈ω

x∗α(x)δα.

We have Tω ∈ L(X,K) (see [6]). Is easy to show ∃B > 0 for ∀x ∈ X we have

‖Tω(x)‖K =
∥∥{x∗α(x)}α∈ω

∥∥
K
≤ B

∥∥{x∗α(x)}α∈I
∥∥
K

we obtain that

sup
ω∈Ia

‖Tω(x)‖K ≤ B
∥∥{x∗α(x)}α∈I

∥∥
K
< +∞.

Then, by Banach-Steinhaus theorem, we have sup
ω∈Ia

‖Tω‖ < +∞. As the bound-

edness of T is equivalent to the condition sup
ω∈Ia

‖Tω‖ < +∞, the operator T is

bounded.
Sufficiency. Let the system {xα}α∈I be complete in X and there exist T ∈

L(X,K) such that Txα = δα, ∀α ∈ I. Consider ∀x ∈ X. From Tx ∈ K it follows
that {δ∗α(Tx)}α∈I ∈ K. We have

δαβ = δ∗α(δβ) = δ∗α(Txβ) = T ∗δ∗α(xβ),∀α, β ∈ I.

Hence, due to the completeness of {xα}α∈I , we obtain

T ∗δ∗α = x∗α. (3.2)

Thus, taking into account (3.2), we obtain {x∗α(x)}α∈I = {δ∗α(Tx)} ∈ K. �

Corollary 3.4. Let the system {xα}α∈I be complete in X and K be a CB-space
with an uncountable unconditional basis {δα}α∈I . The system {xα}α∈I is K-Bessel
in X only when there exists a number M > 0 such that

‖{λα}‖K ≤M

∥∥∥∥∥∑
α

λαxα

∥∥∥∥∥
X

(3.3)

for every finite set of scalars {λα}.

Proof. Let {xα}α∈I be K-Bessel in X. Then, by Theorem 3.3, there exists a
bounded operator T ∈ L(X,K) defined by the formula (3.1). Let {λα} be an
arbitrary finite set of scalars. Let x =

∑
α λαxα. Then Tx =

∑
α λαδα and

‖{λα}‖K = ‖Tx‖K ≤ ‖T‖ ‖x‖X = ‖T‖

∥∥∥∥∥∑
α

λαxα

∥∥∥∥∥
X

.

On the contrary, let there exist a number M > 0 such that the inequality (3.3)
holds for every finite set of scalars {λα}. Consider arbitrary λ = {λα}α∈I ∈ K.
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Define the operator T : L
(
{xα}α∈I

)
→ K by the formula

T

(∑
α

λαxα

)
= {λα} .

Due to the minimality of the system {xα}α∈I , such an operator is defined correctly.
By (3.3), the operator T is bounded. Continuing the operator T continuously to
the whole X, we obtain the boundedness of T . As Txα = δα, ∀α ∈ I, by Theorem
3.3, the system {xα}α∈I is K-Bessel in X. �

Remark. Note that for p ≥ 2 lp(R)- Besselianness of systems eα(t) = eiαt in
LVp (R) immediately implies of Corollary 3.4. Indeed, for every finite set of scalars
{λα} we have

‖{λα}‖lp(R) ≤ ‖{λα}‖l2(R) =

∥∥∥∥∥∑
α

λαeα

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
α

λαeα

∥∥∥∥∥
p

.

The next definition is a generalization of the concept of Hilbert sequence.

Definition 3.5. The pair {xα;x∗α} is called K-Hilbert in X if the following condi-
tion holds: ∀λ = {λα}α∈I ∈ K ∃x ∈ X: λ = {x∗α(x)}α∈I . If the system {xα}α∈I
is complete in X and the pair {xα;x∗α} is K-Hilbert in X, then {xα}α∈I is called
K-Hilbert in X.

Example 3.6. The system {eα}α∈R is lp(R)-Hilbertian in LVp (R) for p < 2. In-
deed, consider ∀λ = {λα}α∈R ∈ lp(R). Then λ ∈ l2(R). As {eα}α∈R is an or-

thonormal system in LV2 (R), there exists x ∈ LV2 (R) such that e∗α(x) = (x, eα)V =
λα. From LV2 (R) ⊂ LVp (R) we obtain that x ∈ LVp (R). Hence, {eα}α∈R is lp(R)-

Hilbertian in LVp (R) for p < 2.

The following theorem is true:

Theorem 3.7. Let K be a CB-space with an uncountable unconditional basis
{δα}α∈I . Then, in order for the pair {xα;x∗α} to be K-Hilbert in X, it is sufficient
and, in case of completeness of {x∗α}α∈I in X∗, necessary that there exists an
operator T ∈ L(K,X) such that Tδα = xα, ∀α ∈ I.

Proof. Necessity. Let {xα;x∗α} be K-Hilbert in X and the system {x∗α}α∈I be
complete in X∗. Then ∀λ = {λα}α∈I ∈ K ∃x ∈ X such that λ = {x∗α(x)}α∈I . Due
to the completeness of {x∗α}α∈I in X∗, such an element is unique. Consider the
operator T : K → X defined by the formula Tλ = x. Obviously, Tδα = xα, ∀α ∈ I.
It remains to show the boundedness of T . To this end, let’s first prove its closedness.

Let the sequence λn =
{
λ
(n)
α

}
α∈I
∈ K converge in K to λ = {λα}α∈I ∈ K as

n → ∞, the sequence Tλn = xn converge in X to y ∈ X as n → ∞, and Tλ = x.
It is clear that x∗α(xn) converges to x∗α(y) as n→∞. ∀α ∈ I we have∣∣∣λ(n)α − λα

∣∣∣ = |δ∗α(λn − λ)| ≤ ‖δ∗α‖ ‖λn − λ‖K → 0, n→∞.

As λ
(n)
α = x∗α(xn) and λα = x∗α(x), we have x∗α(x) = x∗α(y). Hence, due to the

completeness of {x∗α}α∈I , we obtain x = y. Consequently, Tλn converges in X to
Tλ as n→∞, i.e. the operator T is closed. Then, by the closed graph theorem, T
is bounded.
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Sufficiency. Let there exist an operator T ∈ L(K,X) such that Tδα = xα,
∀α ∈ I. Consider arbitrary λ = {λα}α∈I ∈ K. Let Tλ = x. From λ =

∑
α∈I λαδα

we obtain

x = Tλ =
∑
α∈I

λαTδα =
∑
α∈I

λαxα.

Therefore, x∗α(x) = λα, i.e. λ = {x∗α(x)}α∈I . �

Corollary 3.8. Let the system {xα}α∈I be complete in X, the system {x∗α}α∈I
be complete in X∗, and K be a CB-space with an uncountable unconditional basis
{δα}α∈I . The system {xα}α∈I is K-Hilbert in X only when these exists a number
M > 0 such that ∥∥∥∥∥∑

α

λαxα

∥∥∥∥∥
X

≤M ‖{λα}‖K (3.4)

for every finite set of scalars {λα}.

Proof. Let {xα}α∈I be K-Hilbert in X. By Theorem 3.7, there exists a bounded
operator T ∈ L(K,X) such that Tδα = xα, ∀α ∈ I. Then, for every finite set {λα}
we have

T {λα} = T (
∑
α

λαδα) =
∑
α

λαxα.

Hence ∥∥∥∥∥∑
α

λαxα

∥∥∥∥∥
X

= ‖T {λα}‖ ≤ ‖T‖ ‖{λα}‖K .

On the contrary, let the relation (3.4) hold for every finite set {λα}. Define the
operator T for finite systems {λα} by the formula T {λα} =

∑
α λαxα. From the

inequality (3.4) it follows that this operator is bounded. Continuing it continuously
to the whole K, we obtain the operator T ∈ L(K,X). As Tδα = xα,∀α ∈ I, from
Theorem 3.7 it follows that the system {xα}α∈I is K-Hilbert in X. �

Remark. Note that for p ≤ 2 lp(R)- Hilbertianness of systems eα(t) = eiαt in
LVp (R) immediately implies of Corollary 3.8. Indeed, for every finite set of scalars
{λα} we have∥∥∥∥∥∑

α

λαeα

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
α

λαeα

∥∥∥∥∥
2

= ‖{λα}‖l2(R) ≤ ‖{λα}‖lp(R) .

Now let’s consider the Besselianness and the Hilbertianness of systems with
respect to the space generated by an uncountable unconditional basis.

Theorem 3.9. Let Y be a Banach space with an uncountable unconditional basis
{ϕα}α∈I and Kϕ be a space generated by the system {ϕα}α∈I . Then, in order for the
pair {xα;x∗α} to be Kϕ-Bessel in X, it is necessary and, in case of completeness
of {xα}α∈I in X, sufficient that there exists an operator T ∈ L(X,Y ) such that
Txα = ϕα, ∀α ∈ I.

Proof. Necessity. Let the pair {xα;x∗α} be Kϕ-Bessel in X. Then, ∀x ∈ X we have
{x∗α(x)}α∈I ∈ Kϕ. Define the operator T : X → Y by setting T (x) =

∑
α∈I x

∗
α(x)ϕα.

It is clear that T is linear and Txα = ϕα, ∀α ∈ I. Let’s prove its boundedness. For
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∀ω ∈ Ia, consider the operator

Tω(x) =
∑
α∈ω

x∗α(x)ϕα.

Then Tω ∈ L(X,Y ), and ∀x ∈ X we obtain

‖Tω(x)‖Kϕ =
∥∥{x∗α(x)}α∈ω

∥∥
Kϕ
≤
∥∥{x∗α(x)}α∈I

∥∥
Kϕ

.

Thus

sup
ω∈Ia

‖Tω(x)‖Kϕ ≤
∥∥{x∗α(x)}α∈I

∥∥
Kϕ

< +∞.

Then, by Banach-Steinhaus theorem we obtain sup
ω∈Ia

‖Tω‖ < +∞. As the bound-

edness of T is equivalent to the condition sup
ω∈Ia

‖Tω‖ < +∞, the operator T is

bounded.
Sufficiency. Let the system {xα}α∈I be complete in X and there exist T ∈

L(X,Y ) such that Txα = ϕα, ∀α ∈ I. Let {ϕ∗α}α∈I be a system biorthogonal to
{ϕα}α∈I . Consider ∀x ∈ X. We have

δαβ = ϕ∗α(ϕβ) = ϕ∗α(Txβ) = T ∗ϕ∗α(xβ).

Due to the completeness of {xα}α∈I , we obtain T ∗ϕ∗α = x∗α. Then

x∗α(x) = T ∗ϕ∗α(x) = ϕ∗α(Tx),

and therefore,

{x∗α(x)}α∈I = {ϕ∗α(Tx)}α∈I ∈ Kϕ.

�

Theorem 3.10. Let Y be a Banach space with an uncountable unconditional basis
{ϕα}α∈I and Kϕ be a space generated by the system {ϕα}α∈I . Then, in order for
the pair {xα;x∗α} to be Kϕ-Hilbert in X, it is sufficient and, in case of completeness
of {x∗α}α∈I in X∗, necessary that there exists an operator T ∈ L(Y,X) such that
Tϕα = xα, ∀α ∈ I.

Proof. Necessity. Let {xα;x∗α} be Kϕ-Hilbert in X and {x∗α}α∈I be complete in
X∗. Suppose every λ = {λα}α∈I ∈ Kϕ is corresponded to x ∈ X such that
λ = {x∗α(x)}α∈I . Due to the completeness of the system {x∗α}α∈I in X∗, this
element is unique. Let y =

∑
α∈I x

∗
α(x)ϕα. Define the operator T : Y → X by the

formula T (y) = x. It is clear that T is linear and Tϕα = xα, ∀α ∈ I. Let’s show
the closedness of the operator T . Let yn ∈ Y , yn → y and T (yn) = xn → x as
n→∞. Also let y =

∑
α∈I λαϕα. As yn =

∑
α∈I x

∗
α(xn)ϕα, ∀α ∈ I we obtain

|λα − x∗α(xn)| =

∣∣∣∣∣∣ϕ∗α
∑
β∈I

λβϕβ −
∑
α∈I

x∗β(xn)ϕβ

∣∣∣∣∣∣ ≤ ‖ϕ∗α‖ ‖y − yn‖Y → 0

as n → ∞. On the other hand, x∗α(xn) → x∗α(x) as n → ∞. Thus, y =∑
α∈I x

∗
α(x)ϕα, and therefore, T (y) = x. Then, by the closed graph theorem,

the operator T is bounded.
Sufficiency. Let there exist T ∈ L(Y,X) such that Tϕα = xα, ∀α ∈ I. Consider

∀λ = {λα}α∈I ∈ Kϕ and let y =
∑
α∈I λαϕα. Let T (y) = x. We have

δαβ = x∗α(xβ) = x∗α(Tϕβ) = T ∗x∗α(ϕβ),∀α, β ∈ I.
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Hence, T ∗x∗α = ϕ∗α, and, consequently, ∀α ∈ I we obtain

λα = ϕ∗α(y) = T ∗x∗α(y) = x∗α(Ty) = x∗α(x),

i.e. the pair {xα;x∗α} is Kϕ-Hilbert in X. �

Theorem 3.11. Let K be a reflexive CB-space with an uncountable unconditional
basis {δα}α∈I . Then

1) if the pair {xα;x∗α} is K-Hilbert in X and {x∗α}α∈I ⊂ X∗ is complete, then
{x∗α}α∈I is K∗-Bessel in X∗;

2) if the pair {xα;x∗α} is K-Bessel in X and {xα}α∈I is complete in X, then the
pair {xα;x∗α} is K∗-Hilbert in X∗.

Proof. 1) Let {xα;x∗α} be K-Hilbert in X. Then, by Theorem 3.7, there exists an
operator T ∈ L(K,X) such that Tδα = xα, ∀α ∈ I. It is not difficult to show that
T ∗x∗α = δ∗α, ∀α ∈ I. As the system {δ∗α}α∈I forms an uncountable unconditional
basis for K∗ and the system {x∗α}α∈I is complete in X∗, it follows from Theorem
3.3 that {x∗α}α∈I is K∗-Bessel inX∗.

2) Now let the pair {xα;x∗α} be K-Bessel in X. By Theorem 3.3, there exists an
operator T ∈ L(X,K) such that Txα = δα, ∀α ∈ I. As it was shown in Theorem
3.3, T ∗δ∗α = x∗α, ∀α ∈ I. Consequently, by Theorem 3.2, the pair {xα;x∗α} is
K∗-Hilbert in X∗. �

Theorem 3.12. Let X be a Banach space with an uncountable unconditional basis
{ϕα}α∈I , Kϕ be a space generated by the system {ϕα}α∈I , and the system {xα}α∈I
be complete in X. Then, in order for the system {xα}α∈I to be Kϕ-Bessel in X, it
is necessary and sufficient that the operator A : Kϕ → Kϕ defined by the expression

A(λ) =
{∑

α∈I x
∗
β(ϕα)λα

}
β∈I

, λ = {λα}α∈I ∈ Kϕ, is bounded in Kϕ.

Proof. Necessity. Let the pair {xα;x∗α} be Kϕ-Bessel in X. By Theorem 3.3, there
exists T ∈ L(X) such that Txα = ϕα, ∀α ∈ I. Consider the operator F−1TF , where
F is an isomorphism of the spaces Kϕ and X, i.e. ∀x ∈ X F−1x = {ϕ∗α(x)}α∈I ,
and {ϕ∗α}α∈I is a system biorthogonal to {ϕα}α∈I . For ∀λ = {λα}α∈I ∈ Kϕ we
have Fλ =

∑
α∈I λαϕα. It is not difficult to show that T ∗ϕ∗α = x∗α, ∀α ∈ I. Then

Tϕα =
∑
β∈I

ϕ∗β(Tϕα)ϕβ =
∑
β∈I

T ∗ϕ∗β(ϕα)ϕβ =
∑
β∈I

x∗β(ϕα)ϕβ .

Hence

TF (λ) =
∑
α∈I

λαTϕα =
∑
α∈I

λα
∑
β∈I

x∗β(ϕα)ϕβ =
∑
β∈I

(∑
α∈I

x∗β(ϕα)λα

)
ϕβ .

Thus

F−1TF (λ) =

{∑
α∈I

x∗β(ϕα)λα

}
β∈I

,

i.e. A = F−1TF ∈ L(Kϕ).
Sufficiency. Let the operator A be bounded in Kϕ. Let T = FAF−1. Obviously,

T ∈ L(X). ∀γ ∈ I we obtain

Txγ = FAF−1xγ = FA({ϕ∗α(xγ)}α∈I) = F

{∑
α∈I

x∗β(ϕα)ϕ∗α(xγ)

}
β∈I

 =
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= F (
{
x∗β(xγ)

}
β∈I) = F ({δβγ}β∈I) = ϕγ .

By Theorem 3.9, the system {xα}α∈I is Kϕ-Bessel in X. �

Theorem 3.13. Let X be a reflexive Banach space, the system {xα}α∈I be com-
plete in X and {x∗α} be complete in X∗, the system {ϕα}α∈I form an uncountable
unconditional basis for X, and Kϕ be a space generated by the system {ϕα}α∈I .
Then, in order for the system {xα}α∈I to be Kϕ-Hilbert in X, it is necessary
and sufficient that the operator A : K∗ϕ → K∗ϕ defined by the expression A(λ) ={∑

α∈I ϕ
∗
α(xβ)λα

}
β∈I , λ = {λα}α∈I ∈ K∗ϕ, is bounded in K∗ϕ.

Proof. Let {xα}α∈I be Kϕ-Hilbert in X. By Theorem 3.11, the system {x∗α}α∈I
is K∗ϕ-Bessel in X∗. Then, by Theorem 3.12, the operator A : K∗ϕ → K∗ϕ: A(λ) ={∑

α∈I ϕ
∗
α(xβ)λα

}
β∈I is bounded in K∗ϕ.

On the contrary, let A : K∗ϕ → K∗ϕ: A(λ) =
{∑

α∈I ϕ
∗
α(xβ)λα

}
β∈I be a linear

bounded operator in K∗ϕ. Then, by Theorem 3.12, the system {x∗α}α∈I is K∗ϕ-Bessel
in X∗ and, by Theorem 3.11, the system {xα}α∈I is Kϕ-Hilbert in X. �

Theorem 3.14. Let the system {xα}α∈I be complete in X. The, in order for Y to
have an uncountable unconditional basis {ϕα}α∈I such that {xα}α∈I is Kϕ-Bessel
in X, it is necessary and sufficient that there exist the operators T ∈ L(X,Y ) and
A : Y → Y ∗ with DA = L({Txα}α∈I) satisfying the following conditions:

1) KerT ∗ = {0} , T ∗ATxα = x∗α,∀α ∈ I;
2) ∃M > 0 :

∥∥∑
α∈J(ATxα)(ϕ)Txα

∥∥
Y
≤M ‖ϕ‖Y ,∀J ∈ I0.

Proof. Necessity. Let the system {ϕα}α∈I form an uncountable unconditional basis
for Y with the space of sequences of coefficients Kϕ and {xα}α∈I be Kϕ-Bessel in
X. By Theorem 3.9, there exists the operator T ∈ L(X,Y ) such that Txα = ϕα,
∀α ∈ I. Obviously, T ∗ϕ∗α = x∗α, ∀α ∈ I and ImT = Y . In fact, if ∀ϕ∗ ∈ Y ∗

ϕ∗T (x) = 0, then ϕ∗(ϕα) = 0, and therefore, ϕ∗ = 0. Define on L({Txα}α∈I) the
linear operator A : Y → Y ∗ by the formula ATxα = ϕ∗α. Then, Aϕα = ϕ∗α and
T ∗ATxα = T ∗ϕ∗α = x∗α. Further, taking into account the condition 3) of Theorem
2.3, we obtain∥∥∥∥∥∑

α∈J
AT (xα)(ϕ)Txα

∥∥∥∥∥
Y

=

∥∥∥∥∥∑
α∈J

ϕ∗α(ϕ)ϕα

∥∥∥∥∥ ≤M ‖ϕ‖Y .
Sufficiency. Let there exist the operators T ∈ L(X,Y ) and A : Y → Y ∗ with

DA = L({Txα}α∈I) satisfying the conditions 1) and 2). Let Txα = ϕα and Aϕα =
ϕ∗α. Then

ϕ∗α(ϕβ) = Aϕα(Txβ) = T ∗Aϕα(xβ) = x∗α(xβ) = δαβ ,

i.e. the systems {ϕα}α∈I and {ϕ∗α}α∈I are biorthogonal. Further, for ∀J ∈ I0 and
∀ϕ ∈ Y we have∥∥∥∥∥∑

α∈J
ϕ∗α(ϕ)ϕα

∥∥∥∥∥
Y

=

∥∥∥∥∥∑
α∈J

AT (xα)(ϕ)Txα

∥∥∥∥∥
Y

≤M ‖ϕ‖Y .

Thus, the conditions 1)-3) of Theorem 2.1 are satisfied, i.e. the system {ϕα}α∈I
forms an uncountable unconditional basis for Y . Let Kϕ be a space generated by
the system {ϕα}α∈I . As Txα = ϕα, ∀α ∈ I, by Theorem 3.9, the system {xα}α∈I
is Kϕ-Bessel in X. �
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Theorem 3.15. Let X, Y be reflexive Banach spaces, the system {xα}α∈I be
complete in X, and the system {x∗α}α∈I be complete in X∗. Then, in order for Y to
have an uncountable unconditional basis {ϕα}α∈I such that {xα}α∈I is Kϕ-Hilbert
in X, it is necessary and sufficient that there exists the operators T ∈ L(X∗, Y ∗)
and A : Y ∗ → Y with DA = L({Tx∗α}α∈I) satisfying the following conditions:

1) KerT ∗ = {0} , T ∗ATx∗α = xα,∀α ∈ I;
2) ∃M > 0 :

∥∥∑
α∈J ϕ

∗(ATx∗α)Tx∗α
∥∥
Y
≤M ‖ϕ∗‖ ,∀J ∈ I0,∀ϕ∗ ∈ Y ∗.

Proof. Let {ϕα}α∈I be an uncountable unconditional basis in Y and {xα}α∈I be
Kϕ-Hilbert in X. By Theorem 3.11, the system {x∗α}α∈I is K∗ϕ-Bessel in X∗.
Consequently, by Theorem 3.16, there exist the operators which satisfy the given
conditions.

On the contrary, let there exist the operators which satisfy the conditions 1)
and 2). By Theorem 3.16, there exists an uncountable unconditional basis {ϕ∗α}α∈I
and {x∗α}α∈I is K∗ϕ-Bessel in X∗. Let {ϕα}α∈I ⊂ X is a system biorthogonal to
{ϕ∗α}α∈I . Then (see [45]), {ϕα}α∈I forms an uncountable unconditional basis for
X and by Theorem 3.11, the system {xα}α∈I is Kϕ-Hilbert in X. �

Theorem 3.16. Let K be a CB-space with an uncountable unconditional basis
{δα}α∈I , the system {xα}α∈I be complete in X, and the system {x∗α}α∈I be complete
in X∗. Then, in order for {xα}α∈I to be simultaneously K-Bessel and K-Hilbert
in X, it is necessary and sufficient that {xα}α∈I be an uncountable unconditional
basis with the space of coefficients K.

Proof. Necessity. Let the system {xα}α∈I be simultaneously K-Bessel and K-
Hilbert in X. By Theorems 3.3 and 3.7, there exist the operators T ∈ L(X,K) and
S ∈ L(K,X) such that ∀α ∈ I Txα = δα and Sδα = xα. Then STxα = xα and
TSδα = δα for ∀α ∈ I. Due to the completeness of {xα}α∈I and the uncountable
unconditional basicity of {δα}α∈I , we have ST = IX , TS = IK . Consequently, the

operator T is boundedly invertible and T−1 = S. Consider arbitrary x ∈ X and
let Tx = λ, λ = {λα}α∈I . Applying the operator S to both sides of the equality
λ =

∑
α∈I λαδα, we obtain

x =
∑
α∈I

λαSδα =
∑
α∈I

λαxα,

i.e. the system {xα}α∈I forms an uncountable unconditional basis with the space
of coefficients K.

Sufficiency. Let the system {xα}α∈I form an uncountable unconditional basis
with the space of coefficients K. Denote by F the isomorphism between X and
K, defined by the formula Fλ = x, λ = {λα}α∈I and x =

∑
α∈I λαxα. Then

F−1xα = δα and Fδα = xα, ∀α ∈ I. Thus, by Theorems 3.3 and 3.7, the system
{xα}α∈I is simultaneously K-Bessel and K-Hilbert in X. �
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