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A B-SPLINE-SSPRK54 METHOD FOR ADVECTION-DIFFUSION

PROCESSES

SHKO ALI TAHIR, MURAT SARI

Abstract. In this work, we have developed here a striking numerical method
for solving the Burgers equation. The numerical scheme is based on collocation
of the modified cubic B-splines basis functions in space variable. The obtained
results have been computed without using any linearization and transformation
processes. The produced diagonal system has been solved by the optimal
strong stability preserving time stepping Runge-Kutta for five stage and order
four scheme(SSPRK54). The present approach has been seen to be appropriate
for the advection dominant cases. The effectiveness of this method has been
verified by considering some test problems. The numerical solutions are in
good agreement with the exact solutions and available literature. The present
method has been seen to be relatively easy and economical for researchers. And
also, the proposed scheme needs relatively less storage space and computational
time.

1. Introduction

Consider the Burgers equation

∂u

∂t
(x, t)−

1

Re

∂2u

∂x2
+ u

∂u

∂x
− f(x, t) = 0, (x, t) ∈ Ω = [a, b]× [t0, T ], (1.1)

with the initial and boundary conditions are given by

u(x, t0) = u0(x), (1.2)

u(a, t) = g1(t), u(b, t) = g2(t), (1.3)

where Re =
1

λ
is the Reynolds number of the viscous fluid flow problem, g1, g2 and

u0 are known functions. Here, f(x, t) represents the source term.

The structure of the Burgers equation can be seen as the one dimensional Navier
Stokes equation with no stress term, and is a useful model for various kinds of phys-
ical phenomena such as turbulence, fluid mechanics, traffic flow and shock waves.
It was first introduced by Bateman[2] in 1915. Since then, the study of this model
has been considered by many researchers. It is well known that the exact solution
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of the Burgers equation can only be computed for restricted values of the Reynolds
number.

In the last half century, many authors have used many numerical techniques for
solving the Burgers equation for some reasons: the Burgers equation takes into
account both nonlinear advection and dissipation terms for simulating the physical
behavior of wave motion and its shock wave behavior when the Reynolds number
Re is large. The development of numerical methods for seeking accurate and effi-
cient solutions of the Burgers equation with large values of Re, still remains as a
challenging task. Various numerical methods have been studied, for instance see [
[1, 7, 3, 10, 13, 15]]

Schoenberg [17] found mathematical relations to splines in the context of piece-
wise polynomial approximations. Types of piecewise polynomial spline and B-spline
functions are utilized with other numerical techniques for getting the numerical so-
lutions of the Burgers equation playing an important role in their computationally.
This means that any B-spline basis function of order n is non zerop over at most n
adjacent intervals and zero otherwise [4, 8, 18].

In this paper, we have proposed a numerical scheme to find the approximate
solution of the Burgers equation to achieve this, we accept a modified cubic B-
spline approximation in space. It produces a system of first order ODEs and ob-
tains always a diagonal matrix. We do not meet the question of the linearizion and
transformation processes. Therefore, we can solve the resulting system of the ODEs
by the optimal five stage and order four strong stability preserving time stepping
Runge-Kutta (SSPRK54) scheme [19]. The SSP is a more suitable approach in
high order time discretization methods preserve the strong stability properties in
any norm of the spatial discretization with first-order Euler time stepping. In order
to have stability when using explicit numerical schemes, we are required to apply
the CFL condition [14]. Thus, the optimal SSPRK54 scheme is made more efficient
by the CFL. The optimality of this scheme is guaranteed by using an approach
based on global optimization. Therefore, the proposed method needs less storage
space and low cost. In addition this is why we interested in the SSPRK54 scheme.

The remainder of this paper is organized as follows. In section 2, we give a brief
introduction of the numerical technique using new cubic B-spline interpolation to
solve the model equation. In section 3, we present two problems, and compare the
obtained results by the proposed scheme with exact solutions and those already
available in the literature. In section 4, we present some final remarks.

2. Description of the method

Consider the mesh points a = x0 < x1 < . . . < xm = b with uniform length
h = xj − xj−1 for j = 1, 2, . . . , N . Our numerical scheme for solving (1.1) is to
find an approximation S(x, t) to the exact solution u(x, t) which can be expressed
in term of the collocation method with cubic B-splines as trial functions:

S(x) =

N+1∑

j=−1

δj(t)Bj(x), ∀x ∈ [a, b], (2.1)
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where δi(t) are time dependent quantities to be determined and Bj(x) are cubic
B-spline functions. The cubic B-spline Bj(x) with required properties at the knots
are given by [16]

Bj(x) =
1

h3































0 x < xj−2 or x ≥ xj−2,
(x− xj−2)

3 xj−2 ≤ x < xj−1,
h3 + 3h2(x− xj−1) + 3h(x− xj−1)

2 − 3(x− xj−1)
3 xj−1 ≤ x < xj ,

h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3 xj ≤ x < xj+1,
(xj+2 − x)3 xj+1 ≤ x < xj+2

0 otherwise,
(2.2)

where the set of splines {B−1, B0, . . . , BN , BN+1} construct a basis over the domain [a, b].
By using the spline function (2.1) and cubic splines (2.2), the values of B-spline Bj(x) and
their derivatives can be calculated at the nodes xj in term of the time parameters δj by

S(xj) = δj−1 + 4δj + δj−1

S′(xj) = (3/h)(δj+1 − δj−1)
S′′(xj) = (6/h2)(δj−1 − 2δj + δj+1),

(2.3)

where Sj = S(xj). In order to obtain a tridiagonal matrix system of differential equations,
we have defined new cubic B-spline basis functions to solve the Burgers equation as follows:

B0(x) = B0(x) j = 0
B1(x) = B1(x)−B−1(x) j = 1
Bj(x) = Bj(x) j = 2, 3, . . . , N − 2
BN−1 = BN−1(x)−BN+1(x) j = N − 1
BN = BN(x) j = N.

(2.4)

Now assume the approximation solution is given by

S(x) =

N
∑

j=0

δj(t)Bj(x) ∀x ∈ [a, b]. (2.5)

Here, we apply the proposed method by using approximate solution (2.5) with the modified
set of cubic B-splines given by (2.4) at the knots. The rest of our numerical scheme for
solving the Burgers equation can be expressed as follows:
At boundaries (1.3) for x = x0 and x = xN the approximation solution (2.5) becomes

S(x0, t) = δ0(t)B0(x0) + δ1(t)B1(x0) = g1(t)
S(xN , t) = δN−1(t)BN−1(xN) + δN (t)BN (xN) = g2(t).

(2.6)

Substitution of the approximate solution (2.5) in (1.1) leads to

N
∑

j=0

δ′j(t)Bj(x) = −
(

N
∑

j=0

δj(t)Bj(x)
)(

N
∑

j=0

δj(t)B
′
j(x)

)

+λ
(

N
∑

j=0

δj(t)B
′′
j(x)

)

+f(x, t), (2.7)

where δ′(t) is the first derivative with respect to t. The cubic B-splines basis B′
j(x) and

B′′
j(x) denote the first and the second differentiation with respect to x. Let us discretize

the domain [a, b] into grid points and let us take x = xj for j = 0, . . . , N in equation (2.7).
We thus obtain

N
∑

j=0

δ′j(t)Bj(xj) = −
(

N
∑

j=0

δj(t)Bj(xj)
)(

N
∑

j=0

δj(t)B
′
j(xj)

)

+ λ
(

N
∑

j=0

δj(t)B
′′
j(xi)

)

+ f(xj , t).

(2.8)
By using the approximation values of S(xj), S

′(xj) and S′′(xj) given by equations (2.3)
at the knots in equation (2.8), we get the following difference equations with the variables
δ(t),
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
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
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





























4δ′0 = g′0(t) j = 0,

δ′j−1 + 4δ′j + δ′j+1 =
−3

h
(δj−1 + 4δj + δj+1)(δj+1 − δj−1)

+
6λ

h2
(δj−1 − 2δj + δj + 1) j = 1, 2, . . . , N − 1,

4δ′N = g′1(t) j = N.
(2.9)

Now, using equations (2.9), we obtain the following system with N + 1 equations and N + 1
unknowns.

A δ′ = Φ, (2.10)

where

A =























4 1 0 · · · 0

1 4 1
..
.

0
. . .

. . .
. . . 0

..

. 1 4 1
0 · · · 0 1 4























,

δ′ =
[

δ′0, δ
′
1, . . . , δ

′
N−1, δ

′
N

]T
, Φ =

[

Φ0,Φ1, . . . ,ΦN−1,ΦN

]T
, corresponding to the knots are

evaluated as:
Φ0 = g′0(t) for j = 0;

Φj = −(δj−1 + 4δj + δj+1)
3

h
(δj+1 − δj−1) +

6λ

h2
(δj−1 − 2δj + δj+1) for j = 1, . . . , N − 1,

ΦN = g′1(t) for j = N .

Now, we apply the SSP-RK54 method to solve the first order ordinary differential equation
system (2.11). Once the parameter δ0 = δ(t0) has been determined at a specified time level, we

can compute the solution at the required time level by using iterations.
Initial vector of parameters δ0 can be obtained by using the initial and boundary conditions

at t = 0. We then have the following relations

S(x0, 0) = g0(0) for j = 0;
S(xj , 0) = u0(xj) for j = 1, . . . , N − 1,
S(xN , 0) = g1(0) for j = N .

The above equations yield a tridiagonal matrix system by using the approximation solution
(2.5) as given

A δ = b, (2.11)

where

A =























4 0 0 · · · 0

1 4 1
...

0
. . .

. . .
. . . 0

... 1 4 1
0 · · · 0 0 4























, δ0 =
[

δ00 , δ
0
1 , . . . , δ

0
N−1, δ

0
N

]T
, b =

[

g0(0), u0(x1), . . . , u0(xN−1), g1(0)
]T

.

We have used the Thomas algorithm to solve the tridiagonal system encountered in (2.11) and
then used SSP-RK54 method to solve the ODE system.
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3. Numerical Illustrations

In this section we discuss numerical testes to demonstrate the accuracy and efficiency of the
proposed method. The numerical solution obtained by this method are tabulated and compared
with some works in the literature for various values of x, t and the viscosity 0 < λ. In order
to measure the accuracy of the proposed method, we discretize the solution domain [a, b] into

uniformly sized length h by new equally spaced points x′
i = a + i

b− a

k
, for i = 0, . . . , k. For

our discretization with the forward Euler, the linear stability yields the restriction and given by:
CFL = λ∆t/h2. We adopt the relative error as defined by

e∞(k) =

max
0≤n≤N

(

max
0≤i≤k

|u(x′
i, tn) − sh,n(x

′
i)|

)

max
0≤n≤N

(

max
0≤i≤k

|u(x′
i, tn)|

) , (3.1)

3.1. Problem 1. We consider the exact solutions of the Burgers equation as given in [7]

u(x, t) =
x/t

1 +
√

t/t0ex
2/4λt

, t ≥ 1; 0 ≤ x ≤ 1,

where t0 = e1/8λ. The initial condition is obtained from the exact solution when t = 1. Boundary

conditions are u(0, t) = u(1, t) = 0. The numerical solution represents shock like solution of

the Burgers equation with those reported in the paper [7]. Numerical solutions of this problem

the illustrate the propagation of shock for λ = 5E − 03, 5E − 04, 5E − 05 and λ = 5E − 06 at

different values of the space and time steps. Figures 1a and 1b present the shock for the viscosity

λ as 5E − 04 and 5E − 03, respectively. From these figures, we have seen the initial shocks for

λ = 5E−04 which are steep behaviour and, these sharp continues during time progression. In the

same figures,the agreement between the numerical and the exact solution appears satisfactorily.

So that, the behaviour of the current scheme are in very good agreement for various viscosities.

And, they keep the correct physical characteristics of the problem. Figures 2a and 2b present

that the numerical solutions become more steep with the smaller viscosities λ = 5E − 05 and

λ = 5E − 06, respectively. Here, we have noted that the steepness remains almost unchanged as

time progresses. The same figures present the effectiveness of the present scheme with the small

viscosities. In Table 1, we give e∞ errors at various values of x, t at for various spatial and time

increments and, compare with some works given in the literature. We have observed that the

approximate solutions are seen to be very close to the exact solutions. And also, the comparisons

showed that the present scheme offers better results than the numerical schemes given in [7]. The

physical behavior of the numerical solutions of the present scheme at various λ values are depicted

in Figure 3.

Table 1. Comparison of the present results with the literature at
λ = 5E − 04, ∆t = 1E − 02 and h = 5E − 03.

x t Ref [7] Present Method Exact

0.1 1.7 0.058830 0.058821 0.058820
0.3 1.7 0.176480 0.176472 0.176470
0.5 2.5 0.200010 0.200004 0.200000
0.7 3.25 0.215390 0.215380 0.215380
0.9 3.25 0.123580 0.124354 0.124350

3.2. Problem 2. The exact solution for the current problem was determined in terms of
the infinite series as given in [5]

u(x, t) = 2πv

∑∞

j=1 jajsin(jπx)e
−j2π2vt

a0 + 2
∑∞

j=1 ajcos(jπx)e−j2π2vt
,
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(a) λ = 5E − 04 (b) λ = 5E − 03

Figure 1. Numerical and exact solutions of problem 1 at different times
produced for the various parameters.

(a) CFL=1.4E − 03, λ = 5E − 05,
∆t = 1.1E − 04

(b) CFL=1.4E − 02, λ = 5E − 06,
∆t = 1.1E − 02

Figure 2. Numerical and exact solutions of problem 1 at t = 1.5.

where

aj =

∫ 1

0

e−(2πv)−1(1−cos(πv))cos(jπx)dx for all j ≥ 1.
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(a) CFL=1.1E − 02, λ = 5E − 03 (b) CFL=1.4E − 02, λ = 5E − 06

Figure 3. Physical behavior of the computed solution for problem 1 at
various λ values.

The initial and boundary conditions for this problem are

u(0, t) = u(1, t) = 0 and u(x, 0) = sin(πx) (x, t) ∈ Ω = [0, 1]× [0, T ].

Table 2. Comparison of the present results with the literature at λ = 1,
∆t = 1E − 04 and h = 1E − 01.

x Ref [6] Ref [7] Present Method Exact

0.1 0.10831 0.10898 0.108180 0.10954
0.2 0.20724 0.208623 0.207097 0.20979
0.3 0.28799 0.29013 0.287882 0.29190
0.4 0.34273 0.34564 0.342730 0.37158
0.5 0.36531 0.36895 0.365519 0.35905
0.6 0.35223 0.356339 0.352663 0.30991
0.7 0.30400 0.30748 0.3039613 0.30991
0.8 0.22358 0.22606 0.2231817 0.12069
0.9 0.11860 0.11988 0.118137 0.12069

Table 3. Comparison of the present results with the literature at λ = 1,
∆t = 1E − 04 and h = 5E − 02.

x Ref [6] Ref [7] Present Method Exact

0.1 0.10920 0.109374 0.109143 0.10954
0.2 0.20912 0.20946 0.209001 0.20979
0.3 0.29088 0.291404 0.290719 0.29190
0.4 0.34658 0.347287 0.346398 0.34792
0.5 0.36997 0.37083 0.369793 0.37158
0.6 0.35740 0.35826 0.357162 0.35905
0.7 0.30847 0.30917 0.308146 0.30991
0.8 0.22676 0.227255 0.2264421 0.22782
0.9 0.12012 0.120384 0.119929 0.12069
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(a) λ = 1E − 02, ∆t = 1E − 03,
and CFL=4E − 03

(b) λ = 1E − 01, ∆t = 1E − 03
and CFL=4E − 02

(c) λ = 1, ∆t = 1E − 03
and CFL=4E − 01

Figure 4. Numerical and exact solutions of problem 2 at t = 5E − 01
produced for the various parameters.

(a) CFL=1.1E − 02, λ = 1E − 03 (b) CFL=1.4E − 02, λ = 1E − 04

Figure 5. Physical behavior of the computed solution for problem 2 at
various λ and CFL values.

The presented results together with exact solutions are documented in Tables 2 and
3. It is shown that the agreement between the numerical and exact solutions appear
satisfactorily. In the same tables, we compare between the current method and some
previous works [6, 7]. The proposed scheme exhibits more accurate results quite than the
rival methods. The numerical solutions are visualized at various values of the parameters
λ, ∆t and CFL in Figures 4a, 4b and 4c. The initial shock which is very steep with
λ = 1E − 02. Here, it can be concluded that the numerical results are found to be in
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very good agreement with the exact solution. The exact values are not practical to make
comparison for the small values of λ because of slow convergence of the Fourier series
result. Figure 5 presents the physical behavior of the numerical solutions of the present
scheme at various λ values for difference CFL conditions. Here, we have been observed
the physical behavior of this problem cannot keep their characteristic for λ < 1E − 03.

4. Conculusions and Recommendations

This article has explored the utility of a collocation scheme based on modified cubic
B-spline basis functions in space with the SSPRK54 scheme in time for solving the Burgers
equation. It has been observed that the currently modified techniques approximates the
exact solution very well. The obtained results show that the proposed scheme is efficient
and reliable for solving the Burgers equation for quite small values of the viscosity con-
stant. The produced results have also been shown to be more accurate than some existing
solutions in the literature. In a similar manner, a more detailed discussion can also carried
out for more involved models.
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