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Some recurrence relations for the generalized
basic hypergeometric functions *

S.D. Purohit

Abstract

In the present paper, we express the generalized basic hypergeometric
function »®s(:) (for r = s+1) in terms of an iterated g-integrals involving
the basic analogue of the Gauss’s hypergeometric function. Further, using
the relations between g-contiguous hypergeometric series, we obtain some
recurrence relations for the generalized basic hypergeometric functions of
one variable.

1 Introduction

The generalized basic hypergeometric series cf. Gasper and Rahman [4] is given
by
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where for real or complex a
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is the g-shifted factorial,  and s are positive integers, and variable z, the numer-
ator parameters ai,--- ,a,, and the denominator parameters by, --- ,bs being
any complex quantities provided that
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If |g| < 1, the series (1.1) converges absolutely for all z if » < s and for
|¢] < 1if r = s+ 1. This series also converges absolutely if |¢| > 1 and
|$| < |b1b2 s bs\/|a1a2 s a,.|.

Further, in terms of the g-gamma function, (1.2) can be expressed as

Lg(a+n)(1—q)"
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(a; q)n = n >0, (13)

where the g-gamma function (cf. Gasper and Rahman [4]) is given by
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where a # 0, —1,—-2,- - -

The theory of basic hypergeometric functions of one and more variables has
a wide range of applications in various fields of Mathematical, Physical and
Engineering Sciences, namely-Number theory, Partition theory, Combinatorial
analysis, Lie theory, Fractional calculus, Integral transforms, Quantum theory
etc. (see [1,2,4,5])

In the present work, we express the generalized basic hypergeometric function
s+1Ps(+) in terms of an iterated g-integrals involving the ¢-Gauss hypergeomet-
ric function o®4(-). Using g-contiguous relations for o®;(:), we obtain some
recurrence relations for the generalized basic hypergeometric functions of one
variable. The above mentioned technique is a g-version of the technique used
by Galué and Kalla [3].

2 Integral representation

In this section, we express the generalized basic hypergeometric function ,®(-)
(for r = s+ 1) in terms of an iterated integral involving the basic analogue of
Gauss hypergeometric function.

Theorem: Let Re(bs—;) >0, for alli=0,1,--- ;s —2 and |q| <1, then the
iterated g-integral representaion of s4+1Ps(+) is given by

qa7qﬂ7a37a47"' yAsy As+1 5 5-2 b .
s—1
s+1(I)s q,T :HFq |: Asy1_i b P — Gyl
. S —1 S§—1 S —1
q’y7b27b37"' abs ; i=0 ’

1s—2

1
s+1—i—1
X/ / Ht?j:l—l (ti“rl(I;q)bs—i_as#»lfi_l
0 0

< , 1=0

(s—1)times



24 Some recurrence relations

Xg‘I’l q, ts—l - -tot1x dqts_l s dqtgdqtl, (2.1)
q ;
where |z| <1 and |ts—1 - -tat1z] < 1.

Proof: To prove the theorem, we consider the well-known g-integral repre-
sentation of ,.®,(-), namely
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which is the generalization of g-analogue of Euler’s integral representation,
namely (cf. Gasper and Rahman [4, eqn.(1.11.9), p.19])
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Therefore, relation (2.2) can also be written as
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Repeating the process in the right-hand side of (2.4), we get
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Successive operations (s — 3) times in the right-hand side of (2.5) leads to the
desired result (2.1)
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3 Recurrence relations

In this section, as an application of the integral representation for sy1®s(.),
given by (2.1), we shall derive certain recurrence relation for the generalized
basic hypergeometric series.

Using the relation between g-contiguous basic hypergeometric functions [4,
p-22]
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On substituting value from relation (3.2) in the right-hand side of the result
(2.1), we have
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Again, on making use of the result (2.1), the above result (3.3) leads to the

following recurrence relation:
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(3.4)
where Re(bs—;) >0, for alli =0,1,--- ,s —2 and |z| < 1.

Similarly, if we consider the following g-contiguous relations (cf. Gasper and

Rahman [4, p.22])
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and make use of the result (2.1), we obtain the following respective recurrence
relations for generalized basic hypergeometric functions, namely
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where Re(bs—;) >0, for alli =0,1,--- ,s —2 and |z| < 1.
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where Re(bs_;) >0, for alli=0,1,--- ;s —2 and |z| < 1.
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4 Special cases

In view of the limit formulae

, _ )
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where
(a)p=ala+1)---(a+n—1), (4.2)

one can note that the result (2.1) is the g-extension of the known result due to
Galué and Kalla [3, eqn.(4), p.52], namely
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where Re(bs_;) >0, for alli =0,1,--- ,s — 2, |z| < 1 and [ts—1 - - - tatiz| < 1.

Similarly, if we let ¢ — 1~ and use the formula (1.4), then the results (3.4) and
(3.8)-(3.10) correspond to the recurrence relations for generalized hypergeomet-
ric functions.

We conclude with the remark that the results deduced in the present article
appears to be a new contribution to the theory of basic hypergeometric series.
Secondly, one can easily obtain number of recurrence relations for the basic hy-

pergeometric functions by the applications of iterated g-integral representation
for . @(.).
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