On some classes of foliations

P. Popescu and M. Popescu

Abstract. The goal of the paper is to present in a unitary way some conditions that a foliation be Riemannian, involving general conditions on higher order normal bundles (jets or accelerations).

M.S.C. 2010: 53C12, 57R10, 55R10, 55R15, 58A20.

Key words: Riemannian foliation; foliated bundle; transverse bundle of *r*-jets; normal *r*-bundle; transverse Lagrangian.

1 Introduction

Various conditions that a foliation be Riemannian are studied in many papers, for example [3, 4, 10, 11, 12, 14].

The conditions studied in this paper have initially the origin in a special case of a problem presented by E. Ghys in Appendix E of P. Molino's book [6], i.e. asking if the existence of a foliated Finsler metric assure that a foliation is Riemannian (Ghys conjecture). We proved the answer is affirmative in a more general case of a transverse Lagrangian fulfilling a natural regularity condition, automatically fulfilled by a transverse Finslerian (see [10]).

Our goal below is to present in a unitary way, following [11, 12], some conditions that a foliation be Riemannian, involving general conditions on higher order normal bundles (jets or accelerations). Some other aspects of the problem can be stressed. For example, if the leaves of a Riemannian foliation \mathcal{F} are compact, then the leaf spaces M/\mathcal{F} is a Satake manifold (or a V-manifold, in the original terminology of Satake), one of the first known non-trivial orbifold. The existence of a transverse Lagrangian or Hamiltonian is worth to be studied on such generalized manifolds, together with their physical properties; it is also the case of the normal bundle (of first order) of a foliation.

In the sequel we study the real case, but it can also be developed a study in a complex setting for foliations, as in [1, 2].

Let M be an *n*-dimensional manifold and \mathcal{F} be a *k*-dimensional foliation on M. We denote by $\tau \mathcal{F}$ and $\nu \mathcal{F}$ the tangent plane field and the normal bundle respectively.

A bundle E over M is called *foliated* if there is a bundle atlas on E such that all the components of the structural functions are basic ones. In this case a canonical

Balkan Journal of Geometry and Its Applications, Vol.19, No.1, 2014, pp. 100-106.

[©] Balkan Society of Geometers, Geometry Balkan Press 2014.

foliation \mathcal{F}_E on E is induced, having the same dimension k, such that p restricted to leaves is a local diffeomorphism. In particular, we consider affine and vector bundles that are foliated. For example, $\nu \mathcal{F}$ is a foliated bundle and a natural foliation on $\nu \mathcal{F}$ can be considered.

According to [11], a positively admissible Lagrangian on a foliated vector bundle $p: E \to M$ is a continuous map $L: E \to \mathbb{R}$ that is asked to be differentiable at least when it is restricted to the total space of the slashed bundle $E_* = E \setminus \{\bar{0}\} \to M$, where $\{\bar{0}\}$ is the image of the null section, such that the following conditions hold: 1) L is positively defined (i.e. its vertical Hessian is positively defined) and $L(x,y) \ge 0 = L(x,0), \ (\forall)x \in M \text{ and } y \in E_x = p^{-1}(x); 2) L$ is locally projectable on a transverse Lagrangian; 3) there is a basic function $\varphi: M \to (0,\infty)$, such that for every $x \in M$ there is $y \in E_x$ such that $L(x,y) = \varphi(x)$.

If a positively transverse Lagrangian F is 2-homogeneous (i.e. $F(x, \lambda y) = \lambda^2 F(x, y)$, $(\forall) \lambda > 0$), then F is called a *Finslerian*; it is also a positively admissible Lagrangian, taking $\varphi \equiv 1$, or any positive constant. For a foliated bundle, we can see the vertical bundle $VTE = \ker p_* \to E$ as a vector subbundle of $\nu \mathcal{F}_E \to E$ by mean of the canonical projection $TE \to \nu F_E$, since VTE is transverse to τF_E . We say that an invariant Riemannian metric G' on νF_E is vertically exact if its restriction to the vertical foliated sections is the transverse vertical Hessian of a positively admissible Lagrangian $L : E \to \mathbb{R}$; in this case, we say that the foliation \mathcal{F}_E is vertically exact. Notice that if $p : E \to M$ is an affine bundle, then the vertical Hessian Hess L of a Lagrangian $L : E \to \mathbb{R}$ is a symmetric bilinear form on the fibers of the vertical bundle VTE, given by the second order derivatives of L, using the fiber coordinates (see [10, 13] for more details using coordinates).

2 The jet bundle case

If $p: E \to M$ is a foliated bundle, then $\mathcal{J}^1 E \to M$ is a foliated bundle of 1-jets of foliated sections of E; a canonical foliation \mathcal{F}_E^1 on $\mathcal{J}^1 E$ can be considered. For $r \geq 1$, the canonical projection $\pi_{r-1}^r : \mathcal{J}^r E \to \mathcal{J}^{r-1} E$ is also an affine bundle, with the director vector bundle $\operatorname{Hom}((\nu F)^r, E))$. For r = 0 one obtain a bundle $\pi_{-1}^r : \mathcal{J}^r E \to M$. If $p: E \to M$ is a *foliated vector bundle*, then $\pi_{-1}^r : \mathcal{J}^r E \to M$ is also a foliated vector bundle and a natural vector subbundle of $\mathcal{J}^1 \mathcal{J}^{r-1} E \to M$, the first jet bundle of $\pi_{-1}^{r-1} : \mathcal{J}^{r-1} E \to M$.

Theorem 2.1. The lifted foliation \mathcal{F}^r is Riemannian for some $r \geq 1$ iff \mathcal{F} is Riemannian.

Considering the induced foliation \mathcal{F}_0^r on the slashed vector bundle $\mathcal{J}_*^r = \mathcal{J}^r \setminus \{\bar{0}\}$, then Theorem 2.1 can not give any answer to the following question: when is \mathcal{F} Riemannian if \mathcal{F}_0^r is Riemannian for some $r \geq 1$?

Theorem 2.2. Let \mathcal{F} be a foliation on a manifold M and \mathcal{F}_0^r be the lifted foliation on the slashed bundle of r-jets of sections of the normal bundle $\nu \mathcal{F}$. Then \mathcal{F}_0^r is Riemannian and vertically exact for some $r \geq 1$ iff \mathcal{F} is Riemannian.

In particular, it follows that any invariant metric g on νF gives rise to a canonical Lagrangian on \mathcal{J}^r , coming from the vertical part of the vertically exact invariant

Riemannian metric on νF^r . So, it is natural to ask for the converse: does the existence of a Lagrangian on \mathcal{J}^r give guaranties that \mathcal{F} is Riemannian?

Theorem 2.3. Let $p: E \to M$ be a foliated vector bundle over a foliated manifold (M, \mathcal{F}) . There is a positively admissible Lagrangian on $\mathcal{J}^r E$ for some $r \ge 1$ iff the foliation \mathcal{F} is Riemannian.

The key result to prove the above Theorems, as well as the main results is the following statement.

Proposition 2.4. Let $p_1 : E_1 \to M$ and $p_2 : E_2 \to M$ be foliated vector bundles over a foliated manifold (M, \mathcal{F}) and $q_2 : E_{2*} \to M$ be the slashed bundle. If there are a positively admissible Lagrangian $L : E_2 \to \mathbb{R}$ and a metric b on the pull back bundle $q_2^*E_1 \to E_{2*}$, foliated with respect to $\mathcal{F}_{E_{2*}}$, then there is a foliated metric on E_1 , with respect to \mathcal{F} .

3 The acceleration bundle case

We consider now the higher order transverse foliated bundle of order $r \geq 1$ of a foliation \mathcal{F} on M, denoted by $\nu^r \mathcal{F}$, as spaces of classes of transverse curves having a transverse contact of order $r \geq 0$. Notice that in the foliate case the transverse $\nu \mathcal{F}^r$ play a role of a tangent space for $\nu^r \mathcal{F}$, as the tangent space $\tau T^r M$ is for $T^r M$ in the non-foliate case in [5]. We denote by \mathcal{F}^r the foliation on $\nu^r \mathcal{F}$. In a similar way as in the non-foliate case in [5, Sect. 6.1], some constructions can be performed. For example, various bundle structures can be considered over a $\nu^r \mathcal{F}$; for example, for $0 \leq r' \leq r$, the canonical projection $\pi_{r'}^r : \nu^r \mathcal{F} \to \nu^{r'} \mathcal{F}$ is a foliated bundle. In particular, for $r \geq 1$, $\pi_{r-1}^r : \nu^r \mathcal{F} \to \nu^{r-1} \mathcal{F}$ is a (foliated) affine bundle for r > 1 and $\pi_0^1 : \nu \mathcal{F} \to \nu^0 \mathcal{F} = M$ is a (foliated) vector bundle (for r = 1).

Proposition 3.1. For $1 \leq r' \leq r$, there is an inclusion of foliated submanifolds (in fact of foliated subbundles over M), $I_{r'}^r : \nu^{r'} \mathcal{F} \to \nu^r \mathcal{F}$, where the inclusion assigns to an equivalence class in $[\gamma] \in \nu_{;m}^{r'} \mathcal{F}$ an equivalence class in $\nu_{;m}^r \mathcal{F}$ that the first r - r' derivatives vanish, then the next r' derivatives are the same as the first r' derivatives of γ .

Thus we have $I_0^r(M) \subset I_1^r(\nu \mathcal{F}) \subset I_2^r(\nu^2 \mathcal{F}) \subset \cdots \subset I_{r-1}^r(\nu^{r-1} \mathcal{F}) \subset \nu^r \mathcal{F}.$

A transverse vector field $\bar{X} \in \Gamma(\nu \mathcal{F})$ lifts in this way to the transverse section $I_1^r(\bar{X}): M \to \nu^r \mathcal{F}$ of the bundle $\pi_0^r: \nu^r \mathcal{F} \to M$. An other lift can be constructed as it follows. Denoting by γ_t^X the one parameter group of local transformations of X, we consider $[\gamma_{t=0}^X(m)] \in \nu_{;m}^r \mathcal{F}$. The simplest case is when $\bar{X} = \bar{0}$ is the null vector field; its lift is the null section $\bar{0}^r: M \to \nu^r \mathcal{F}, \bar{0}^r(m) = I_0^r(m)$.

For every $r \geq 1$ and $0 \leq r' \leq r$, the canonical projection $\pi_{r'}^r : \nu^r \mathcal{F} \to \nu^{r'} \mathcal{F}$ induces a transverse map $\bar{\pi}_{r'}^r : \nu \mathcal{F}^r \to \nu \mathcal{F}^{r'}$ that is a vector bundle map of foliated vector bundles; notice that $\pi_0^r = \pi^r$, $\mathcal{F}^0 = \mathcal{F}$, $\nu^1 \mathcal{F} = \nu \mathcal{F}$, $\nu^0 \mathcal{F} = M$ and $\bar{\pi}_0^r = \bar{\pi}^r$. We denote the kernel vector subbundle ker $\bar{\pi}_{r'}^r \subset \nu \mathcal{F}^r$ by $\bar{V}_{r'}^r$; it is a foliate vector bundle as well. Since for $r_1 \leq r_2 \leq r_3$, one have $\pi_{r_1}^{r_3} = \pi_{r_2}^{r_3} \circ \pi_{r_1}^{r_3}$ and $\bar{\pi}_{r_1}^{r_3} = \bar{\pi}_{r_2}^{r_3} \circ \bar{\pi}_{r_1}^{r_2}$, it follows that there are foliated vector subbundles $V_{r-1}^r \subset \bar{V}_{r-2}^r \subset \cdots \subset \bar{V}_0^r \subset \nu \mathcal{F}^r$. Notice that $\nu^{r+1}\mathcal{F} \subset \nu \mathcal{F}^r$ is an affine subbundle over $\nu^r \mathcal{F}$, for $r \geq 1$, while $\nu^1 \mathcal{F} = \nu \mathcal{F}^0 = \nu \mathcal{F}$ for r = 0. There is an r-transverse structure in the fibers of on $\nu \mathcal{F}^r$, i.e. a vector bundle map $J: \nu \mathcal{F}^r \to \nu \mathcal{F}^r$ (analogous of the r-tangent structures in the non-foliate case), and its dual $J^*: \nu^* \mathcal{F}^r \to \nu^* \mathcal{F}^r$.

A transverse r-nonlinear connection is a splitting of $\nu \mathcal{F}^r$ as a Whitney sum of transverse vector bundles

(3.1)
$$\nu \mathcal{F}^r = \bar{V}_0^r \oplus \bar{H}_0^r,$$

where \bar{H}_0^r is the *r*-horizontal vector bundle, that is canonically isomorphic with $(\bar{\pi}^r)^* \nu \mathcal{F}$. We denote by $h : \nu \mathcal{F}^r \to \bar{H}_0^r$ the projector given by the above decomposition.

Given a transverse r-nonlinear connection by a splitting (3.1), the consecutive images by J in the fibers of $\nu \mathcal{F}^r$,

$$J\left(\bar{H}_{0}^{r}\right) = \bar{H}_{1}^{r}, \dots, J\left(\bar{H}_{r-1}^{r}\right) = \bar{H}_{r}^{r}$$

define some transverse vector subbundles of $\nu \mathcal{F}^r$, all isomorphic with \bar{H}_0^r , such that there are the following Whitney sum decompositions

(3.2)
$$\bar{V}_0^r = \bar{H}_1^r \oplus \cdots \oplus \bar{H}_r^r, \ \nu \mathcal{F}^r = \bar{H}_0^r \oplus \bar{H}_1^r \oplus \cdots \oplus \bar{H}_r^r.$$

Notice that $\bar{H}_r^r = \bar{V}_{r-1}^r$ and we can prove the following result.

Proposition 3.2. Any splitting $\nu \mathcal{F}^r = \bar{V}_{r-1}^r \oplus \bar{H}_{r-1}^r$ gives rise to a splitting (3.1).

A transverse r-semispray is a foliate section $S: \nu^r \mathcal{F} \to \nu^{r+1} \mathcal{F}$ of the affine bundle $\pi_r^{r+1}: \nu^{r+1} \mathcal{F} \to \nu^r \mathcal{F}$. Since $\nu^{r+1} \mathcal{F} \subset \nu \mathcal{F}^r$, it follows that an r-semispray can be regarded as well as a transverse section $S: \nu^r \mathcal{F} \to \nu \mathcal{F}^r$.

Proposition 3.3. Any transverse r-semispray gives rise to a transverse r-nonlinear connection, i.e. a splitting (3.1).

A fact that we use latter is the following result.

Proposition 3.4. A transverse r-nonlinear connection and a transverse Riemannian metric in the fibers of \bar{V}_{r-1}^r give a transverse Riemannian metric on $\nu \mathcal{F}^r$. Conversely, a transverse Riemannian metric on $\nu \mathcal{F}^r$ gives a transverse r-nonlinear connection and a transverse Riemannian metric in the fibers of \bar{V}_{r-1}^r .

4 The Lagrangian case

Some *r*-transverse non-linear connections, semi-sprays and Riemannian metrics are involved in the case of regular *r*-transverse Lagrangians that we consider in the sequel.

An *r*-transverse Lagrangian (a transverse Lagrangian of order $r \geq 1$, i.e. locally projectable on an *r*-Lagrangian) is a continuous real map $L: \nu^r \mathcal{F} \to \mathbb{R}$, smooth on an open fibered submanifold $\nu_*^r \mathcal{F} \subset \nu^r \mathcal{F}$. The cases studied in the paper are when $\nu_*^r \mathcal{F} = \nu^r \mathcal{F}$, i.e. L is smooth, or when $\nu^r \mathcal{F} \setminus \nu_*^r \mathcal{F}$ contains $I_{r-1}^r(\nu^{r-1}\mathcal{F})$, i.e. L is slashed. For sake of simplicity, we perform the next constructions in the case of a smooth L, in the slashed case we must be care of domains where the objects are defined. As usually, the vertical Hessian of L is the bilinear form h in the fibers of \bar{V}_{r-1}^r , given in some generic coordinates by the second order derivatives. We say that L is regular if its vertical Hessian is non-degenerated. The fibers of the fibered manifold $\nu^r \mathcal{F} \to \nu^{r-1} \mathcal{F}$ are affine spaces. **Proposition 4.1.** 1) If an r-Lagrangian L is regular, then it can define canonically a transverse r-semispray and a transverse r-nonlinear connection.

2) If the vertical Hessian of an r-Lagrangian L is positively defined, then \mathcal{F}^r is a Riemannian foliation.

As in the case of trivial foliation of M by points in [9], $\nu^{r-1}\mathcal{F} \times_M \nu^* \mathcal{F} \stackrel{not.}{=} \nu^{r*}\mathcal{F}$ play the role of the vectorial dual of the affine bundle $\nu^r \mathcal{F} \to \nu^{r-1} \mathcal{F}$. The usual partial derivatives of L in the highest order transverse coordinates define a well-defined Legendre map $\mathcal{L}: \nu^r \to \nu^{r*}\mathcal{F}$. If L is regular, then \mathcal{L} is a local diffeomorphism; if \mathcal{L} is a global diffeomorphism we say that L is hyperregular. We say that $H: \nu^{r*}\mathcal{F} \to I\!\!R$, $H = L \circ \mathcal{L}^{-1}$ is the pseudo-Hamiltonian associated with L. For $0 \leq r' \leq r$, let us denote $\nu^{r',(r-r')*}\mathcal{F} = \nu^{r'}\mathcal{F} \times_M (\nu^*\mathcal{F})^{r-r'}$, where $(\nu^*\mathcal{F})^{r-r'} = \nu^*\mathcal{F} \times_M \cdots \times_M \nu^*\mathcal{F}$, with the fibered product of (r-r')-times. In particular, $\nu^{r*} = \nu^{r-1,r*}\mathcal{F} = \nu^{r-1}\mathcal{F} \times_M \nu^*\mathcal{F}$. A transverse slashed Lagrangian of order r is a continuous map $L^r: \nu^r\mathcal{F} \to I\!\!R$ that is differentiable on an open fibered submanifold $\nu^r_*\mathcal{F} \subset \nu^r\mathcal{F}$, called a slashed bundle. All the above constructions can be adapted for slashed Lagrangians.

Let us suppose that L^r is hyperregular, i.e. the Legendre map $\mathcal{L}^{(r)}: \nu_*^r \to$ Let us suppose that D is hyperregular, let the beginner map $\mathcal{L} \to \mathcal{L}_*$ $\nu^{1,(r-1)*}\mathcal{F} = \nu^{r-1}\mathcal{F} \times_M \nu^*\mathcal{F}$ is an diffeomorphism on its image. Let us suppose also that $\mathcal{L}^{(r)}(\nu^r_*) = \nu^{1,(r-1)*}\mathcal{F} = \nu^{r-1}\mathcal{F} \times_M \nu^*\mathcal{F}$; here $\nu^*_*\mathcal{F} = \nu^*\mathcal{F} \setminus \{\bar{0}\}$ (where $\{\bar{0}\}$ is the zero section) and $\nu^{r-1}_*\mathcal{F}$ is a slashed subbundle of $\nu^{r-1}\mathcal{F}$. We denote by $H^{1,r-1} = L^r \circ (\mathcal{L}^{(r)})^{-1} : \nu^{1,(r-1)*}_*\mathcal{F} \to \mathbb{R}$ its pseudo-Hamiltonian. (See [9] for its classical definition and [8] for a coordinate description of the whole construction in the non-foliate case). Analogous, for $0 \leq j < r - 1$, we suppose, step by step, backward from r-1 from 0, that the usual partial derivatives of $L^{(j+1)}$: $\nu_*^{j+1,(r-j-1)*}\mathcal{F} = \nu_*^{r-j-1}\mathcal{F} \times_M (\nu_*^*\mathcal{F})^{j+1} \to I\!\!R$ in the highest order transverse coordinates (of order j+1) define a well-defined Legendre map $\mathcal{L}^{(j+1)}: \nu_*^{j+1,(r-j-1)*}\mathcal{F} = \nu_*^{j+1}\mathcal{F} \times_M (\nu_*^*\mathcal{F})^{r-j-1} \to \nu^{j,(r-j)*}\mathcal{F} = \nu^j \mathcal{F} \times_M (\nu^*\mathcal{F})^{r-j}$. We suppose that $\mathcal{L}^{(j+1)}$ is a diffeomorphism on its image and the image is exactly $\mathcal{L}^{(j+1)}\left(\nu_*^{j+1,(r-j-1)*}\mathcal{F}\right) =$ $\nu_*^{j,(r-j)*}\mathcal{F} = \nu_*^j \mathcal{F} \times_M (\nu_*^*\mathcal{F})^{r-j}$. Then the pseudo-Hamiltonian $L^{(j)} = L^{(j+1)} \circ (\mathcal{L}^{(j+1)})^{-1} : \nu_*^{j,(r-j)*}\mathcal{F} \to \mathbb{R}$ can be considered. Finally, for j = 0, we obtain a transverse slashed Lagrangian $L^{(0)} = L^1 \circ (\mathcal{L}^{(1)})^{-1} : \nu_*^{0,r*}\mathcal{F} = (\nu_*^*\mathcal{F})^r \to \mathbb{R}$ and we suppose that $\mathcal{L}^{(1)} : \nu_*^{1,(r-1)*}\mathcal{F} = \nu_*\mathcal{F} \times_M (\nu_*^*\mathcal{F})^{r-1} \to \nu_*^{0,r*}\mathcal{F} = (\nu_*^*\mathcal{F})^r \subset \nu^{0,r*}\mathcal{F} = (\nu^*\mathcal{F})^r$ is a diffeomorphism. It follows a diffeomorphism $\mathcal{L} = \mathcal{L}^{(1)} \circ \cdots \circ \mathcal{L}^{(r)} : \nu_*^r \to (\nu_*^*\mathcal{F})^r$ and a transverse slashed Lagrangian $L^{(0)} : (\nu_*^*\mathcal{F})^r \to \mathbb{R}$. The canonical diagonal inclusion $\nu^* \mathcal{F} \to (\nu^* \mathcal{F})^r$ sends $\nu^* \mathcal{F} \to (\nu^* \mathcal{F})^r$. We suppose that the restriction of $L^{(0)}$ to the diagonal is a positively admissible Lagrangian on $\nu^* \mathcal{F}$, in fact a transverse Hamiltonian $H: \nu_*^* \mathcal{F} \to \mathbb{R}$. If the given transverse Lagrangian $L^r: \nu^r \mathcal{F} \to \mathbb{R}$ fulfills all the above conditions, we say that L itself is a *positively admissible Lagrangian* (of order r) and H is its diagonal Hamiltonian. The existence of a lifted metric, from the base space to the higher order tangent bundle, is an well-known fact in the non-foliate case (see, for example [5, Sect. 9.2]); we have to consider a simpler construction in the foliated case, that it is also vertically exact, as in [7, 8, 9].

Proposition 4.2. Any transverse metric g on νF gives canonically a positively admissible Lagrangian $L^{(r)}$ of order r and a canonical vertically exact invariant Riemannian metric $g^{(r)}$ on $\nu^r \mathcal{F}$, for any $r \geq 1$.

We can state the following results.

Theorem 4.3. The lifted foliation \mathcal{F}^r is Riemannian for some $r \geq 1$ iff \mathcal{F} is Riemannian.

We say that a foliation \mathcal{F} is transversely almost parallelizable if there is a \mathcal{F} -transverse vector bundle ξ over M, such that $\xi \oplus \nu \mathcal{F}$ is transversely parallelizable. Obviously, if a foliation \mathcal{F} is transversely parallelizable, then it is a Riemannian one.

Corollary 4.4. If the lifted foliation \mathcal{F}^r is transversely parallelizable of almost parallelizable, then \mathcal{F} is a Riemannian foliation.

The proof of Theorem 4.3 can not give any answer to the following question: when is \mathcal{F} Riemannian if the foliation induced on $\nu^r \mathcal{F} \setminus I_{r-1}^r (\nu^{r-1} \mathcal{F})$ is Riemannian for some $r \geq 1$? We are going to relate this question to the existence of a certain transverse slashed Lagrangian L^r of order r, asking that the open subset $\nu^r_* \mathcal{F} \subset \nu^r \mathcal{F}$ does not contains $I_{r-1}^r (\nu^{r-1} \mathcal{F})$. We say that a such Lagrangian L^r is r-regular if its vertical Hessian, according to the induced affine bundle structure $\pi_{r-1}^r : \nu^r \mathcal{F} \to \nu^{r-1} \mathcal{F}$, is non-degenerate. In order to give an answer to the above question, we are going to consider below some other regularity conditions for these slashed Lagrangians of order r, as it follows.

A transverse bundle of order r, $\nu^r \mathcal{F}$ can be regarded as a fibered manifold $\pi_{r'}^r$: $\nu^r \mathcal{F} \to \nu^{r'} \mathcal{F}$, $(\forall) 0 \leq r' < r$. We denote $\nu^{r',(r-r')*} \mathcal{F} = \nu^{r'} \mathcal{F} \times_M (\nu^* \mathcal{F})^{r-r'}$ (where $(\nu^* \mathcal{F})^{r-r'} = \nu^* \mathcal{F} \times_M \cdots \times_M \nu^* \mathcal{F}$, with the fibered product of (r-r')-times and $\nu^* \mathcal{F}$ is the transverse bundle dual to $\nu \mathcal{F}$).

In particular, according to the case of trivial foliation of M by points in [9], $\nu^{1.(r-1)*}\mathcal{F} = \nu^{r-1}\mathcal{F} \times_M \nu^*\mathcal{F}$ is denoted by $\nu^{r*}M$ and play the role of the vectorial dual of the affine bundle $\nu^r \mathcal{F} \to \nu^{r-1} \mathcal{F}$.

A transverse slashed Lagrangian of order r is a map $L^r : \nu^r \mathcal{F} \to \mathbb{R}$ that is differentiable on an open subset $\nu^r_* \mathcal{F} \subset \nu^r \mathcal{F}$, where $\nu^r \mathcal{F} \setminus \nu^r_* \mathcal{F}$ contains $I^r_{r-1}(\nu^{r-1} \mathcal{F})$.

We can now state and prove the following Theorems, where the main technical tool to prove the necessity is Proposition 2.4.

Theorem 4.5. Let \mathcal{F} be a foliation on a manifold M and \mathcal{F}_0^r be the lifted foliation in a suitable slashed bundle $\nu_*^r \mathcal{F}$ of the r-normal bundle $\nu^r \mathcal{F}$. Then \mathcal{F}_0^r is Riemannian and vertically exact for some $r \geq 1$ iff \mathcal{F} is Riemannian.

In particular, it follows that any transverse metric g on νF gives rise to a canonical Lagrangian on $\nu^r \mathcal{F}$, coming from the vertical part of the vertically exact invariant Riemannian metric on $\nu \mathcal{F}^r$. So, it is natural to ask that only the existence of a Lagrangian on $\nu^r \mathcal{F}$ guaranties that \mathcal{F} is Riemannian. One have a positive answer, as it follows.

Theorem 4.6. If (M, \mathcal{F}) is a foliated manifold, then there is a positively admissible Lagrangian on $\nu^r \mathcal{F}$ for some $r \geq 1$ iff the foliation \mathcal{F} is Riemannian.

Finally, as in the jet bundle case, the following question arises: can we drop in Theorem 4.5 the condition that \mathcal{F}_0^r is vertically exact?

As a conclusion, the results in both cases (jets and accelerations), confirm that imposing some minimal conditions in each case on some higher order Lagrangians, the given foliation must be Riemannian; thus: Riemannian foliations are necessary setting to study certain transverse Lagrangians, subject to some natural conditions, considered on jet transverse bundles or on higher order transverse bundles of a foliation.

Acknowledgements. This work was partially supported by the grant number 19C/2014, awarded in the internal grant competition of the University of Craiova.

References

- A. M. Blaga, M. Crasmareanu, C. Ida, Poisson and Hamiltonian structures on complex analytic foliated manifolds, J. Geom. Phys., 78 (2014), 19–28.
- [2] C. Ida, Vertical tangential invariants on some foliated Lagrange spaces, International Journal of Geometric Methods in Modern Physics, 10, 4 (2013), 1320002.
- [3] M. Józefowicz, R. Wolak, Finsler foliations of compact manifolds are Riemannian, Differential Geometry and its Applications, 26, 2 (2008), 224–226.
- [4] A. Miernowski, W. Mozgawa, Lift of the Finsler foliation to its normal bundle, Differential Geometry and its Applications, 24 (2006), 209–214.
- [5] R. Miron, The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics, FTPH no. 82, Kluwer Academic Publisher, 1997.
- [6] P. Molino, *Riemannian foliations*, Progress in Mathematics, Vol. 73, Birhäuser, Boston, 1988.
- M. Popescu, Totally singular Lagrangians and affine Hamiltonians, Balkan Jour. Geom. Appl. 14, 1 (2009), 60-71.
- [8] M. Popescu, P. Popescu, Lagrangians and higher order tangent spaces, Balkan Jour. Geom. Appl. 15, 1 (2010), 142-148.
- [9] P. Popescu, M. Popescu, Affine Hamiltonians in higher order geometry, International Journal of Theoretical Physics, 46, 10 (2007), 2531-2549.
- [10] P. Popescu, M. Popescu, Lagrangians adapted to submersions and foliations, Differential Geometry and its Applications, 27, 2 (2009) 171-178.
- P. Popescu, M. Popescu, Foliated vector bundles and Riemannian foliations, C. R. Acad. Sci. Paris, Ser. I 349 (2011), 445–449.
- [12] P. Popescu, Higher order transverse bundles and Riemannian foliations, Mediterr. J. Math. 11, 2 (2014), 799-811.
- [13] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Acad. Publ., 2001.
- [14] C. Tarquini, Feuilletages de type fini compact, C. R. Acad. Sci. Paris, Ser. I 339 (2004), 209–214.
- [15] R.A. Wolak, Leaves of foliations with a transverse geometric structure of finite type, Publ. Mat. 33, 1 (1989), 153–162.

Author's address:

Paul Popescu and Marcela Popescu Department of Applied Mathematics, University of Craiova, PO Box 1473, Postal Office 4, Craiova, Romania. E-mail: paul_p_popescu@yahoo.com , marcelacpopescu@yahoo.com.