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Abstract. In this paper we propose some thermodynamic theories of ma-
terials with internal variables. In concrete, we extend the arguments of the
theories of the thermoelasticity of type I, II and III proposed by Green and
Naghdi to the case of materials with internal variables. We state the sys-
tem of equations in the linear case when the material is centrosymmetric.
We end with an existence and uniqueness result for the linear equations
in the cases of type I and II.
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1 Introduction

The usual theory of heat conduction based on the Fourier law allows the phenomena of
the ”infinite diffusion velocity”. This is not well accepted from a physical point of view.
The articles of Dreyer and Struchtrup [11] and Caviglia et al. [1] provide an extensive
survey of work on experiments involving the propagation of heat as a thermal wave.
They report instances where the phenomena of second sound has been observed in
several kinds of materials. In [10, 9] and in the books of Jou et al. [18] and Müller
and Ruggeri [23] alternative formulations for the heat conduction are considered. In
the recent surveys of Chandrasekharaiah [3, 2] and Hetnarski and Ignaczak [17] the
theory proposed by Green and Naghdi [12]-[16] is considered as an alternative way of
formulation of the thermomechanical theories. This theory is developed in a rational
way to produce a fully consistent. It makes use of a general entropy balance rather
than an entropy inequality. The development is quite general and the characterization
of material response for the thermal phenomena is based on three types of constitutive
functions.

We consider this theory that is a good model to explain the heat conduction for
several kinds of solids and fluids. A natural question is to know what happens when
the mechanical structure is more complicated than the simple elastic materials. In
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fact the works of Green and Naghdi [13] seem to have a similar point of view, but in
a more general context. Here, we try to extend this theory to the case of materials
with internal variables.

We believe that the mathematical and physical analysis will reveal the usefulness
of this theory and it is to this end that the present paper is addressed. In this sense
our work tries to follow the work initiated in [24, 25].

Materials with internal variables have deserved a great attention in recent years
[19], [20],[22], [21]. This theory allow us to describe several inelastic questions [8],
[6], [4]. It is worth recalling the works of Ciancio et al. [7, 5], where the authors
proposed a thermodynamic theory for thermoelastic and viscoanelastic solids with
non-euclidean structure in which an additional dissipation occur no related to heat
conduction. In these references the non-euclidean structure is described by a intrinsic
material metric in which the metric tensor, G, plays a role of thermodynamic internal
variable and whose evolution obeys the usual thermodynamic constrains of positive
rate of dissipation and the thermal structure was based on the entropy inequality.

Inspired in this approach we propose a theory of materials with internal variables
where the thermal structure is based in an entropy equality following the works of
Green and Naghdi.

The structure of this paper is as follows. In the second section we give some
preliminaries concerning the basic equations and variables in the theory of Green and
Nagdhi. The basic equations for the theories of type I, II and III are developed in
the sections three, four and five respectively. In section six we propose the existence,
uniqueness and continuous dependence of solutions with respect initial conditions and
supply terms for the linear problem of the type I theory. In the last section we make
the same, but for the type II theory.

2 Preliminaries

In this section we summarize the main kinetic, basic concepts and balance equation
in the form proposed by Green and Naghdi [12]-[16]. We consider a material volume
B with boundary ∂B; and we denote B the corresponding region in the reference
configuration.

The equations for mass conservation and balance of linear momentum are

ρ̇ + ρ div ẋ = 0,(2.1)

ρẋ = div T + ρb.(2.2)

In equations (2.1), (2.2), x(X, t) means the motion of the point which in the reference
configuration occupies the point X at the moment t, ρ is the mass density in the
reference configuration, b is the external body force and T is the stress tensor. The
expression div means the divergence operator with respect the material coordinates.

The main thermal variables that we will utilize in the remainder of the paper are:
1. α is the thermal displacement, α = α(X, t).
2. θ is the temperature, α̇ = θ.
3. S is the external rate of supply entropy.
4. ξ is the internal rate of production of entropy.
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5. Φ is the internal flux of entropy.
6. q = θ Φ is the heat of flux.
7. η is the entropy.
The balance of the entropy can be postulated as

ρη̇ = ρ(S + ξ) + div Φ.(2.3)

The balance of the energy can be written in the form

ρė = T : ∇ẋ + div q + ρSθ,(2.4)

where e is the internal energy. If we introduce the free energy

Ψ = e− θη,(2.5)

we obtain

ρ(Ψ̇ + θ̇η)− T : ∇ẋ + ρθξ −Φ · ∇θ = 0.(2.6)

3 Theory of type I

In the theory of type I we postulate the following constitutive equations

Ψ = Ψ̂(A), T = T̂ (A), η = η̂(A), Φ = Φ̂(A), ξ = ξ̂(A), Ġ = Ĥ(A)(3.1)

where

A = (∇x, θ,∇θ, G).(3.2)

We assume that the response functions are of C1-class. Substituting the constitu-
tive equations into (2.6), we have

ρ(
∂Ψ
∂θ

+ η)θ̇ + (ρ
∂Ψ
∂∇x

− T ) : ∇ẋ + ρ
∂Ψ
∂∇θ

· ∇θ̇ −Φ · ∇θ + ρξθ + ρ
∂Ψ
∂G

: Ġ = 0.

(3.3)

From this equality we see that the constitutive equations which are compatible
with the energy equation have the form

∂Ψ
∂∇θ

= 0, η = −∂Ψ
∂θ

, T = ρ
∂Ψ
∂∇x

,(3.4)

ρθξ = Φ · ∇θ − ρ
∂Ψ
∂G

: Ġ.(3.5)

In the relation (3.5) we see that the constitutive equation for the internal rate of
production of the entropy can be given in terms of the internal flux of the entropy
and the constitutive equations for the variation of the internal variables.
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The equations which govern the evolution of the thermodynamics of materials with
internal variables in the context of the theory of type I are given by the evolutionary
equations (2.2), (2.3) and the constitutive equations (3.4), (3.5).

If we assume that

∂e

∂θ
6= 0,(3.6)

we can consider the set of variables

A = (e,∇x,∇θ, G).(3.7)

If we apply again the energy equation we see that

ρ
(
1− θ

∂η

∂e

)
ė + (ρθ

∂η

∂∇x
+ T ) : ∇ẋ + ρθ

∂η

∂∇θ
· ∇θ̇ −Φ · ∇θ + ρθξ + ρθ

∂η

∂G
: Ġ = 0.

(3.8)

Thus, we obtain

∂η

∂∇θ
= 0, θ−1 =

∂η

∂e
, T = −ρθ

∂η

∂∇x
(3.9)

and

ρθξ = Φ · ∇θ − ρθ
∂η

∂G
: Ġ.(3.10)

In the remain of this section we assume that at time t = 0, we have

θ(X, 0) = T0, G(X, 0) = G0,(3.11)

where T0 and G0 are constants. We denote by

ui = xi − δiAXA, h = G−G0,(3.12)

where δiA is the Kronecker delta and

T = θ − T0.(3.13)

In the linear theory we assume that

u = εu′, T = εT ′, h = εh′,(3.14)

where ε is a parameter small enough for the squares and higher powers to be neglected
and u′, T ′ and h′ are independent of ε.

In the case of centrosymmetric materials we assume that

ρΨ =
1
2
∇u : C∇u− 1

2
aT 2 − T β : ∇u +∇u : m1h− T m2 : h +

1
2

h : m3h(3.15)

Φ = K0∇T,(3.16)
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ḣ = m4∇u + T m5 + m6h.(3.17)

where m1,m3,m4,m6 are tensors of order four while β,K0, h,m2,m5 of order two.
Here C and K0 satisfy the symmetry

C = Ct, K0 = Kt
0.(3.18)

The tensor C is called elasticity tensor, a, K0 and β are related with the heat capacity,
thermal conductivity and the thermal dilatation and m1, ..., m6 are related with the
internal variables.

From (3.4), (3.5) we have

T = C∇u− βT + m1h, ρη = β : ∇u + m2 : h + aT, ξ = 0.(3.19)

Thus, the system of equations that governs our problem is

ρü = div
(
C∇u− βT + m1h

)
+ ρb,(3.20)

aṪ = −β : ∇u̇−m2 :
(
m4∇u + m5T + m6h

)
+ div (K0∇T ) + ρS,(3.21)

and the equation (3.17). It is worth noting that equation (3.21) can be written as

aṪ = −β : ∇u̇ + div (K0∇T ) + p1 : ∇u + p2 : h + p3T + ρS,(3.22)

where p1, p2 and p3 can be given in terms of the mi.
To have a defined problem we need to impose boundary and initial conditions.

The Dirichlet homogeneous boundary conditions are

u = 0, T = 0, X ∈ ∂B.(3.23)

The initial conditions are

u(X, 0) = u0, u̇(X, 0) = v0, T (X, 0) = T 0, h(X, 0) = h0.(3.24)

Remark. A particular case corresponds when m1 = m4 = 0. Then p1 = 0 and p2, p3

are easily computable.

4 Theory of type II

For the theory of type II we postulate constitutive equations (3.1) where

A = (∇x, θ,∇α, G).(4.1)

In this case we obtain the relation

ρ(
∂Ψ
∂θ

+ η)θ̇ + (ρ
∂Ψ
∂∇x

− T ) : ∇ẋ + (ρ
∂Ψ

∂∇α
−Φ) · ∇θ + ρξθ + ρ

∂Ψ
∂G

: Ġ = 0.(4.2)

From (4.2) we see that the constitutive equations which are compatible with the
energy equation take the form
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Ψ = Ψ(A), η = −∂Ψ
∂θ

, T = ρ
∂Ψ
∂∇x

, Φ = ρ
∂Ψ

∂∇α
, Ġ = H(A)(4.3)

ρθξ = −ρ
∂Ψ
∂G

: Ġ.(4.4)

Thus, we see that the constitutive equation for the internal rate of production of
entropy can be given in terms of the variation of the internal variables. For the theory
of type II the system of equations which governs the evolution of the thermodynamics
of materials with internal variables is given by the equations (2.2) and (2.3) with the
constitutive equations (4.3), (4.4).

When we assume that condition (3.6) holds, we may consider the set of variables

A = (∇x, e,∇α, G).(4.5)

The energy equation implies that

ρ
(
1− θ

∂η

∂e

)
ė + (ρθ

∂η

∂∇x
+ T ) : ∇ẋ + (ρθ

∂η

∂∇α
−Φ) · ∇θ + ρθξ + ρθ

∂η

∂G
: Ġ = 0.

(4.6)

This relation implies that

θ−1 =
∂η

∂e
, T = −ρ θ

∂η

∂∇x
, Φ = ρ θ

∂η

∂∇α
,(4.7)

and

ξ = − ∂η

∂G
: Ġ.(4.8)

Now we state the linear equations which govern the problem in the case of the
type II theory. In the remain of this section we assume that at time t = 0, we have
(3.11) and

α(X, 0) = α0,(4.9)

where α0 is constant. We also use the notation of (3.12), (3.13) and

τ =
∫ t

0

T (s)ds.(4.10)

It follows that

α = τ + T0t + α0, ∇α = ∇τ, τ̇ = T.(4.11)

In the linear theory we assume that u, T, h are given as in (3.14). In the case of
centrosymmetric materials we assume that

ρΨ =
1
2
∇u : C∇u− 1

2
aT 2 +

1
2
∇τ ·K∇τ − β : ∇uT +∇u : m1h− Tm2 : h +

1
2
h : m3h,

(4.12)
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and ḣ is given in (3.17). Again C satisfies the symmetry (3.18) and K is also symmet-
ric. The meaning of the tensors C, a, β and m1, ..., m6 is given in the previous section.
Here we have a new tensor K. This is a tensor which is usual in the type II theory.
We have that T , ρη and ξ are given as in (3.19). A relevant difference is that

Φ = K∇τ,(4.13)

Thus, the system of equations that governs our problem is

ρü = div
(
C∇u− βT + m1h

)
+ ρb,(4.14)

aτ̈ = −β : ∇u̇−m2 :
(
m4∇u + m5T + m6h

)
+ div (K∇τ) + ρS,(4.15)

and the equation (3.17). It is worth noting that equation (4.15) can be written as

aτ̈ = −β : ∇u̇ + div (K∇τ) + p1 : ∇u + p2 : h + p3T + ρS,(4.16)

where p1, p2 and p3 can be given in terms of the mi.
To have a defined problem we need to impose boundary and initial conditions.

The Dirichlet homogeneous boundary conditions are (3.23) and

τ = 0, X ∈ ∂B.(4.17)

The initial conditions are (3.23) and

τ(X, 0) = τ0.(4.18)

Remark. We can do a remark with respect the tensors pi which is similar to the one
at the end of the previous section.

5 Theory of type III

In the case of the theory of type III we have the following set of variables

A = (∇x, θ,∇α,∇θ,G).(5.1)

The energy equation gives

ρ(∂Ψ
∂θ + η)θ̇ +(ρ ∂Ψ

∂∇x − T ) : ∇ẋ + (ρ ∂Ψ
∂∇α − φ) · ∇θ

+ρ ∂Ψ
∂∇θ · ∇θ̇ + ρξθ + ρ∂Ψ

∂G : Ġ = 0.
(5.2)

In this situation the constitutive equations which are compatible with the energy
equation take the form

∂Ψ
∂∇θ

= 0, η = −∂Ψ
∂θ

, T = ρ
∂Ψ
∂x

, Ġ = H(A)(5.3)
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ρ θ ξ = −ρ
∂Ψ
∂G

: Ġ− (ρ
∂Ψ

∂∇α
− φ) · ∇θ.(5.4)

When condition (3.6) holds, we can use the set of variables

A = (∇x, e,∇α,∇θ, G).(5.5)

A similar argument to those used previously shows that

θ−1 =
∂η

∂e
, T = −ρθ

∂η

∂∇x
,(5.6)

and

ρ θ ξ = − ∂η

∂G
: Ġ− (ρ

∂Ψ
∂∇α

− φ) · ∇θ.(5.7)

Now we state the linear equations which govern the problem in the case of the
type III theory. In the remain of this section we assume that at time t = 0, we have
(3.11) and (3.12). We also use the notation of (3.13) and (4.10). It follows (4.11).
Again u, T, h are given as in (3.14). In the case of centrosymmetric materials we have
that ρΨ is given as in (4.12) and ḣ is defined as in (3.17).

We have that T , ρη and ξ are given as in (3.19). A new relevant difference is that

φ = K0∇T + K∇τ(5.8)

Here we have tensors K0, and K. They are usual in the type III theory. Thus, the
system of equations that governs our problem is

ρü = div
(
C∇u− βT + m1h

)
+ ρb,(5.9)

aτ̈ = −β : ∇u̇ + div (K∇τ + K0∇T ) + p1 : ∇u + p2 : h + p3T + ρS,(5.10)

and the equation (3.17).

6 Existence in type I

In this section we obtain an existence theorem of solutions of the problem determined
by system (3.20), (3.22), (3.17), initial conditions (3.24) the boundary conditions
(3.23). To this end we assume that
(i) ρ > 0 and a > 0.
(ii) There exists a positive constant C0 such that

∇u : C∇u ≥ C0∇u : ∇u.(6.1)

(iii) There exists a positive constant K0 such that

∇T ·K0∇T ≥ K0∇T · ∇T.(6.2)
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We now transform the boundary-initial-value problem into an abstract problem
on a suitable Hilbert space. We denote

Z = {(u, v, T, h);u ∈ W 1,2
0 , v ∈ L2, T ∈ L2, h ∈ [

L2
]2},

where W 1,2
0 and L2 are the usual Sobolev spaces and W 1,2

0 and L2 means
[
W 1,2

0

]3

and
[
L2

]3

respectively.
Let us consider the operators

A(u) = ρ−1 div (C∇u),

BT = −ρ−1 div βT, Dh = ρ−1 div m1h,

L(u) = a−1(p1 : ∇u), M(v) = −a−1(β : ∇v),

QT = a−1 div (K0∇T ) + a−1(p3T ), Nh = a−1(p2 : h),

J1(u) = m4∇u, J2T = m5T, J3h = m6h,

and

A =




0 I 0 0
A 0 C D
L M Q N
J1 0 J2 J3


 ,(6.3)

where I is the identity operator.
We note that

(W 1,2
0 ∩W 2,2)×W 1,2

0 ×W 1,2
0 ×

[
W 1,2

]2

,

is a subset of the domain of A that is dense in Z. Our boundary-initial-value problem
can be transformed into the abstract equation

dω

dt
= Aω(t) + F(t), ω(0) = ω0,(6.4)

where
ω = (u, v, T, h), ω0 = (u0, v0, T 0, h0),

and
F(t) = (0, ρ−1b, ρa−1S, 0).

We introduce in Z the following inner product

< (u, v, T, h), (u∗, v∗, T ∗, h∗) >(6.5)

=
1
2

∫

B

(
ρv.v∗ + aTT ∗ + λh : h∗ +∇u : C∇u∗ +

(∇u : m1h
∗ +∇u∗ : m1h

))
dV,

where λ is a sufficiently large positive constant in order to guarantee that this bilinear
form defines an inner product in the Hilbert space Z. It is equivalent to the usual one
in this space
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It is worth noting the inclusion of the term∇u : m1h
∗+∇u∗ : m1h in the definition

of the inner product. The point is to control the derivative of the term v.v. Then,
we need to include the parameter (sufficiently large) λ to assure the positivity of the
energy.

Now, we use the theory of semigroups of linear operators to obtain the existence
of solutions for the equation (6.4).

Lemma 6.1. The operator A satisfies that there exists a positive constant µ1 such
that

< Aω, ω >≤ µ1||ω||2.(6.6)

for any ω in the domain of A.

Proof. Let ω be in the domain of A. Using the divergence theorem and the
boundary conditions, we find that

< Aω, ω >=
∫

B

(
∇u : m1(m4∇u + m5T + m6h) + Tp1 : ∇u + Tp2 : h + p3T

2

+λ(m4∇u + m5T + m6h) : h−∇T.K0∇T
)
dV.

It is clear that we can select a positive constant ν such that

< Aω, ω >≤ ν

∫

B

(
∇u : ∇u + T 2 + h : h)dV.

Then, we can obtain µ1 satisfying estimate (6.6).

Lemma 6.2. The operator A satisfies that there exists a positive constant µ2 such
that

Rang (µ2I − A) = Z.(6.7)

Proof. Let $∗ = (u∗, v∗, T ∗, h∗) ∈ (W 2,2)2×W 2,2×
[
W 1,2

]2

. We must prove that
the equation

µ2$ −A$ = $∗,(6.8)

has a solution $ = (u, v, T, h) ∈ D(A) for µ2 sufficiently large. From the definition of
A, we obtain the system:

µ2u− v = u∗,(6.9)

µ2v −Au− CT −Dh = v∗,(6.10)

µ2T − Lu−Mv −QT −Nh = T ∗,(6.11)

µ2h− J1u− J2T − J3h = h∗.(6.12)



26 V. Ciancio and R. Quintanilla

Substituting (6.9), in (6.10), (6.11), we get

µ2
2u−Au− CT −Dh = µ2u

∗ + v∗,(6.13)

µ2T − Lu− µ2Mu−QT −Nh = T ∗ −Mu∗,(6.14)

µ2h− J1u− J2T − J3h = h∗.(6.15)

To study the system (6.13)-(6.15) we introduce the following bilinear form on

W 1,2
0 ×W 1,2

0 ×
[
L2

]2

Bµ2

[
(u, T, h), (ũ, T̃ , h̃)

]
=<




µ2
2 −A −C −D

−µ2M − L µ2 −Q −N
−J1 −J2 µ2 − J3







u
T
h


 , (ũ, T̃ , h̃) > .

(6.16)

After several uses of the divergence theorem and the arithmetic-geometric mean in-
equality we can prove that Bµ2 (for µ2 sufficiently large ) is bounded and coercive.
The right hand side of (6.13)-(6.15) lies in W−1 ×W−1 × L2. Hence Lax- Milgram
theorem implies the existence of a solution of the system (6.13)-(6.15). Thus, we can
solve the equation (6.8).

The previous lemmas and the use of the Lumer-Phillips corollary to the Hille-
Yosida theorem allow us to obtain the theorems:

Theorem 6.1. The operator A generates a quasi-contractive semigroup in Z.

Theorem 6.2. . Let us assume that the conditions (i)-(iii) are satisfied and the
supply terms b ∈ C1([0, T ], L2(B)) ∩ C0([0, T ],W 1,2

0 (B)), S ∈ C1([0, T ], L2(B)) ∩
C0([0, T ],W 1,2

0 (B)). Then, for any (u0, v0, T0, h0) in D, there exists a unique solu-
tion to the evolution equations; namely, there exists a unique (u(t), v(t), T (t), h(t)) ∈
C1([0, T ],Z) ∩ C0([0, T ],D).

Since the solutions are defined by means of a quasi-contractive semigroup, we may
obtain a continuous dependence of the solutions upon initial data and body loads. In
particular we have the following estimate for the solutions

||(u(t), v(t), T (t), h(t))|| ≤ exp(δt)
(
||(u0, v0, T0, h0)||(6.17)

+
∫ t

0

( ∫

B

(b.b + S2)dv
)1/2)

.

Thus, under assumptions (i)-(iii) the problem of the linear thermodynamic theory
materials with internal variables in the context of the type I theory is well posed.

Remark. When m1 = 0 we can take in (7.5) the parameter λ = 1. When we
assume that m4 = 0, we obtain that

< Aω, ω >≤
∫

B

(
Tp2 : h + p3T

2 + Tm5 : h + m6h : h−∇T.K0∇T
)
dV.

Thus if we assume that the expression inside the integral is less or equal than zero the
semigroup is dissipative and when the supply terms are absent we obtain stability of
solutions.
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7 Existence in type II

In this section we obtain an existence theorem of solutions of the problem determined
by system (4.14), (4.16), (3.17), initial conditions (3.24), (4.18) the boundary condi-
tions (3.23), (4.17). To this end we assume that conditions (i), (ii) of the section 6
hold. We also assume that

(iii’) There exists a positive constant K0 such that

∇τ ·K∇τ ≥ K0∇τ · ∇τ.(7.1)

Again we transform the boundary-initial-value problem into an abstract problem
on a suitable Hilbert space. We denote

Z = {u, v, τ, T, h); u ∈ W 1,2
0 , τ ∈ W 1,2

0 , v ∈ L2, T, h ∈
[
L2

]2

}.
Let us consider the operators

A(u) = ρ−1 div (C∇u),

BT = −ρ−1 div βT, Dh = ρ−1 div m1h,

L(u) = a−1(p1 : ∇u), M(v) = −a−1(β : ∇v),

Qτ = a−1 div (K∇τ), RT = a−1(p3T ), Nh = a−1(p2 : h),

J1(u) = m4∇u, J2T = m5T, J3h = m6h,

and

A =




0 I 0 0 0
A 0 0 C D
0 0 0 I 0
L M Q R N
J1 0 0 J2 J3




,(7.2)

where I and I are the identity operator in the respective spaces.
We note that

(W 1,2
0 ∩W 2,2)×W 1,2

0 × (W 1,2
0 ∩W 2,2)×W 1,2

0 ×
[
W 1,2

]2

,

is a subset of the domain of A that is dense in Z. Our boundary-initial-value problem
can be transformed into the abstract equation (6.4) where

ω = (u, v, τ, T, h), ω0 = (u0, v0, τ0, T 0, h0),

and
F(t) = (0, ρ−1b, 0, ρa−1S, 0).

We introduce in Z the following inner product

< (u, v, τ, T, h), (u∗, v∗, τ∗, T ∗, h∗) >(7.3)

=
1
2

∫

B

(
ρv.v∗+aTT ∗+λh : h∗+∇u : C∇u∗+∇τ.K∇τ∗+

(∇u : m1h
∗+∇u∗ : m1h

))
dV,

where λ is a sufficiently large positive constant in order to guarantee that this bilinear
form defines an inner product in the Hilbert space Z. It is equivalent to the usual one
in this space
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Lemma 7.1. The operator A satisfies that there exists a positive constant µ1 such
that

< Aω, ω >≤ µ1||ω||2.(7.4)

for any ω in the domain of A.

Proof. Let ω be in the domain of A. Using the divergence theorem and the
boundary conditions, we find that

< Aω, ω >=
∫

B

(
∇u : m1(m4∇u + m5T + m6h) + Tp1 : ∇u + Tp2 : h + p3T

2

+λ(m4∇u + m5T + m6h) : h
)
dV.

It is clear that we can select a positive constant ν such that

< Aω, ω >≤ ν

∫

B

(
∇u : ∇u + T 2 + h : h)dV.

Then, we can obtain µ1 satisfying estimate (7.5).

Lemma 7.2. The operator A satisfies that there exists a positive constant µ2 such
that

Rang (µ2I − A) = Z.(7.5)

Proof. Let $∗ = (u∗, v∗, τ∗, T ∗, h∗) ∈ (W 2,2)2 × (W 2,2)2 ×
[
W 1,2

]2

. We must
prove that the equation

µ2$ −A$ = $∗,(7.6)

has a solution $ = (u, v, τ, T, h) ∈ D(A) for µ2 sufficiently large. From the definition
of A, we obtain the system:

µ2u− v = u∗,(7.7)

µ2v −Au− CT −Dh = v∗,(7.8)

µ2τ − T = τ∗,(7.9)

µ2T − Lu−Mv −Qτ −RT −Nh = T ∗,(7.10)

µ2h− J1u− J2T − J3h = h∗.(7.11)

Substituting (7.7), (7.9) in (7.8), (7.10), we get

µ2
2u−Au− Cτ −Dh = µ2u

∗ + v∗ + Cτ∗,(7.12)
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µ2
2τ − Lu− µ2Mu−Qτ − µ2Rτ −Nh = µ2τ

∗ −Rτ∗ −Mu∗,(7.13)

µ2h− J1u− µ2J2τ − J3h = h∗ − J2τ
∗.(7.14)

To study the system (7.12)-(7.14) we introduce the following bilinear form on

W 1,2
0 ×W 1,2

0 ×
[
L2

]2

Bµ2

[
(u, τ, h), (ũ, τ̃ , h̃)

]
=<




µ2
2 −A −µ2C −D

−µ2M − L µ2
2 −Q− µ2R −N

−J1 −µ2J2 µ2 − J3







u
τ
h


 , (ũ, τ̃ , h̃) > .

(7.15)

After several uses of the divergence theorem an the arithmetic-geometric mean in-
equality we can prove that Bµ2 (for µ2 sufficiently large ) is bounded and coercive.

The right hand side of (7.12)-(7.14) lies in W−1×W−1×
[
L2

]2

. Hence Lax- Milgram
theorem implies the existence of a solution of the system (7.12)-(7.14). Thus, we can
solve the equation (7.6).

The previous lemmas and the use of the Lumer-Phillips corollary to the Hille-
Yosida theorem allow us to obtain the theorems:

Theorem 7.1. The operator A generates a quasi-contractive semigroup in Z.

Theorem 7.2. . Let us assume that the conditions (i)-(ii) and (iii’) are satisfied and
the supply terms b ∈ C1([0, T ], L2(B)) ∩ C0([0, T ],W 1,2

0 (B)), S ∈ C1([0, T ], L2(B)) ∩
C0([0, T ],W 1,2

0 (B)). Then, for any (u0, v0, τ0, T0, h0) in D, there exists a unique solu-
tion to the evolution equations; namely, there exists a unique (u(t), v(t), τ(t), T (t), h(t)) ∈
C1([0, T ],Z) ∩ C0([0, T ],D).

Since the solutions are defined by means of a quasi-contractive semigroup, we may
obtain a continuous dependence of the solutions upon initial data and body loads. In
particular we have the following estimate for the solutions

||(u(t), v(t), τ(t), T (t), h(t))|| ≤ exp(δt)
(
||(u0, v0, τ0, T0, h0)||(7.16)

+
∫ t

0

( ∫

B

(b.b + S2)dv
)1/2)

.

Thus, under assumptions (i)-(ii) and (iii’) the problem of the linear thermodynamic
theory materials with internal variables in the context of the type II theory is well
posed.

Remark. When m1 = 0 we can take in (7.5) the parameter λ = 1. When we
assume that m4 = 0, we obtain that

< Aω, ω >=
∫

B

(
Tp2 : h + p3T

2 + Tm5 : h + m6h : h
)
dV.

Thus if we assume that the expression inside the integral is less or equal than zero the
semigroup is dissipative and when the supply terms are absent we obtain stability of
solutions.



30 V. Ciancio and R. Quintanilla

Remark. An existence theorem could be obtained in a similar way in the type III
theory.
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