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Abstract

The coopeartive art gallery problem asks for the minimum number of co-
operative point guards that can collectively monitor a simple polygon with n
vertices. A guard set is cooperative if its visibility graph is connected. For sim-
ple polygons without holes, a tight bound of bn−2

2
c was shown by Ahlfeld and

Hecker and, independently, by Hernández-Peñalver. For galleries with holes, up
to know, the best upper bound has been bn+2h

2
c−1 (due to Ahlfeld and Hecker),

where h denotes the number of holes. In this paper, we improve this bound for
h = 1 by asserting that bn+1

2
c − 1 is a tight bound.
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1 Introduction

The original art gallery problem raised by Victor Klee asks how many guards are
sufficient to watch every point of the interior of an n-vertex simple polygon. The
guard is a stationary point that can see any point which can be connected to it with
a line segment within the polygon. In 1975, Chvátal [3] proved that bn

3 c guards are
occasionally necessary and always sufficient to cover a polygon with n vertices. Since
then many different variations of this problem have arisen; see [8], [11] for more details.

Herein we analyze the concept of cooperative guards that was proposed by Liaw,
Huang and Lee in [6]. The guard set S is said to be cooperative provided that its
visibility graph is connected. The idea behind this concept is that if something goes
wrong with one guard, all the others can be informed. It is worth pointing out that
a variation of the cooperative guards problem had been already raised before [6]:
in 1992, Ahlfeld and Hecker had studied the problem of determining the minimum
link-number for polygons, see [1] for more details.

Liaw et al. [6] established that the minimum cooperative guards problem for simple
polygons is NP-hard, but for spiral and 2-spiral polygons this problem can be solved
in linear time. For k-spiral polygons, the minimum number of cooperative guards
is at most Nk, the total number of reflex vertices in the k-spiral polygon [4]. The
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cooperative guards problem for general simple polygons has been completely settled
by Ahlfeld and Hecker [1] and, independently, by Hernández-Peñalver [5], who proved
that bn

2 c − 1 cooperative guards are always sufficient and occasionally necessary to
guard a polygon with n vertices.

As far as galleries with holes are considered, then up to now, the best upper
bound for cooperative guards in galleries with holes has been bn+2h

2 c−1 (Ahlfeld and
Hecker [1]). In this paper, we improve this bound for the case h = 1: we show that
bn+1

2 c−1 cooperative guards are always sufficient and occasionally necessary to guard
a one-hole polygon with n vertices, even if guards are restricted to be located at the
vertices. Our approach is similar to that of Shermer’s for arbitrary guards: in 1983,
Shermer [9, 10] established that bn+1

3 c is a tight bound for arbitrary vertex guards
in any polygon with exactly one hole. To show the sufficiency of this bound, he uses
an arbitrary triangulation of the polygon. This triangulation must contain a cycle
of triangles, i.e., the cycle of triangles corresponding to the cycle in the dual graph
surrounding the hole. Shermer first shows that to prove the sufficiency of bn+1

3 c vertex
guards for any triangulation, it is enough to provide a proof for a reduced triangulation
consisting of a cycle of triangles perhaps with at most single triangles attached. In
some of these triangulations, it is not possible to pick bn+1

3 c vertex guards so that
every triangle has a guard at one of its vertices. Shermer calls these configurations
tough triangulations, and makes a case study to show that in each situation bn+1

3 c
vertex guards are still sufficient.

The organization of our paper is as follows. Section 2 is devoted to notation,
terminology, and some preliminary results. The sufficiency proof for cooperative vertex
guards will be presented in Section 3. Finally, galleries with arbitrary number of holes
are discussed.

2 Definitions and preliminaries

An art gallery is a simple polygon P , i.e., a region bounded by a simple polyline P̄
(together with P̄ ). A guard g is any point of P . A point x ∈ P is said to be seen by
a guard g if the line segment with endpoints x and g is a subset of P . A collection
of guards S is said to cover polygon P if every point x ∈ P can be seen by some
guard g ∈ S. For a guard set S, we define the visibility graph V G(S) as follows: the
vertex set is S and two vertices v1, v2 are adjacent if they see each other. The guard
set S is said to be cooperative if its visibility graph V G(S) is connected. Finally, a
gallery with holes is a simple polygon P enclosing other simple polygons H1, . . . , Hh,
known as the holes; the boundaries of P, H1, . . . , Hh are mutually disjoint.

For an art gallery P with one hole, let us define CG1(P ) to be the minimum cardi-
nality of a cooperative guards set for P . Next, let us define cg1(n) to be the maximum
value of CG1(P ) over all one-hole polygons with n vertices, counting vertices on the
hole as well as on the outer boundary. The function cg1(n) represents the maximum
number of cooperative guards that are ever needed for an n-gon with one hole – cg1(n)
cooperative guards always suffice and cg(n) cooperative guards are necessary for at
least one n-vertex polygon with a hole.
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2.1 Reduction to combinatorial guards

A triangulation T of a polygon P is a partitioning of P into a set of triangles with
pair-wise disjoint interiors in such a way that the edges of those triangles are either
edges or diagonals of P joining pairs of vertices. As we know, such a triangulation
always exists ([8], Theorem 1.2).

A triangulation graph GT of an n-vertex polygon P is a graph whose vertices
correspond to n vertices of P and whose edges correspond to the edges of P and
diagonals of a triangulation T . A vertex guard in a triangulation graph GT is a single
vertex of GT . A set of guards S is said to dominate GT if every triangular face of
GT , except for the external face and the faces corresponding to the holes, has at
least one of its vertices assigned as a guard. The collection of guards S is said to
be cooperative if the subgraph of GT induced by set S is connected. Guards in a
graph are called combinatorial to distinguish them from geometric guards introduced
earlier. The reason for introducing triangulation graphs is that a proof of sufficiency
of a certain number of combinatorial guards establishes the sufficiency of the same
number of geometric guards.

Lemma 2.1. [5] Let P be an n-vertex polygon with one hole, and GT be one of its
triangulation graphs. If GT can be dominated by f(n) cooperative guards, then P can
be covered by f(n) geometric cooperative vertex guards.

Thus in general, the idea of the sufficiency proof is to solve the cooperative guards
problem on triangulation graphs, and then to extend this result to polygons. Before
commencing the proof, let us recall two facts.

Theorem 2.2. [5] A triangulation graph of a hole-free polygon with n ≥ 4 vertices
can always be dominated by bn

2 c − 1 cooperative guards.

Lemma 2.3. [12] Let GT be a triangulation graph of a hole-free polygon P with n ≥ 3
vertices, and let e = {v1, v2} be an edge of P . Then:

a) if n is odd, then bn−1
2 c cooperative guards with one guard placed at any endpoint

of e suffice to dominate GT ;

b) otherwise, bn−1
2 c cooperative guards with one guard placed either at v1 or at v2

suffice to dominate GT .

3 Triangulation graphs of galleries with one hole

In this section, we will prove that cg1(n) = bn−1
2 c, even for vertex guards. The idea

of the proof of the sufficiency of bn−1
2 c cooperative vertex guards for galleries with

one hole follows the main outlines of Shermer’s proof for vertex (arbitrary) guards
in [9, 10].

We say that a triangulation of a one-hole polygon is simple if the dual graph of
the triangulation is a cycle (surrounding the hole). Let us recall that the (weak) dual
graph of a triangulation of a one-hole polygon, with a vertex for each triangle and an
edge connecting two vertices whose triangles share a diagonal, is a single cycle with
some number of attached trees, and each vertex of the dual graph is of degree at most
3.
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Fig. 1. (a) A triangulation graph of 8 vertices with string (t/)8 that requires 4
combinatorial cooperative guards: the 3 shown (dots) do not cover the shaded triangle. (b)

A triangulation graph of 4 vertices with string (t/)4 that requires
2 combinatorial cooperative guards: the 1 shown (dot) do not cover

the shaded triangle.

Let P be a one-hole polygon, and let T be one of its triangulation. Suppose T
to be simple. A cycle triangle of T is based on the inner boundary if it has exactly
one vertex, its apex, on the outer boundary, and based on the outer boundary if just
its apex vertex is on the inner boundary. Let us label a cycle triangle “t”. Then
T is represented as a string of characters over the alphabet {“t”,“/”}, formed by
concatenating all the labels of the cycle triangles, and inserting a “/” between labels
t1 and t2 if the triangle t1 is based on the inner boundary and the triangle t2 is based
on the outer boundary, or vice versa. Thus each “/” records a switch in basing. This
string of characters will be called the string associated with T .

Fig. 1(a) shows an example. Starting at the indicated leftmost triangle and pro-
ceeding counterclockwise, we obtain the string t/t/t/t/t/t/t/t/. We employ standard
regular expression notation to condense the strings: sk for k repetitions of string s,
and s? for zero or more repetitions of s. Thus the above string is equivalent to (t/)8.
We consider two strings equivalent if one is a cyclic shift of the other, or a cyclic shift
of the reverse of another. Finally, note that the strings make no distinction between
the inner and outer boundaries.

The main difficulty in the sufficiency proof is the existence of triangulation graphs
that require as many as bn

2 c combinatorial cooperative guards for complete domina-
tion.

Lemma 3.1. The triangulation graph of a triangulation T of a one-hole polygon
requires bn

2 c combinatorial cooperative guards for complete domination iff the string
for T has the form (t/)2k+4, k ≥ 0.

We will call a string that is an instance of (t/)2k+4 tough. Fig. 1(a) satisfies the
lemma: n = 8 and it requires b 8

2c = 4 combinatorial cooperative guards; an attempted
cover with three guards is shown in the figure. Note that even triangulations whose
strings are tough but do not correspond to any non-degenerate polygon require bn

2 c
combinatorial cooperative guards. Fig. 1(b) shows the smallest possible instance, (t/)4,
where n = 4 and it requires b 4

2c = 2 combinatorial cooperative guards.
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Fig. 2. A tough triangulation requires bn
2
c combinatorial cooperative guards.

Proof.We will first prove that a triangulation graph GT with a tough string requires
bn

2 c combinatorial cooperative guards. Let us consider a sequence s of triangles that
is shown in Fig. 2(a). It is easy to see that it has the following properties:

1) It requires bm
2 c combinatorial cooperative guards, where m is the number of

triangles.
2) If a guard is required either at vertex lt or rb, then the sequence requires
bm+2

2 c combinatorial cooperative guards, where m is the number of triangles.
3) If guards are required at both vertices lb and rt, then the sequence requires
bm+2

2 c combinatorial cooperative guards, where m is the number of triangles.

Next, if we enclose the sequence s with two triangles, see Fig. 2(b), we will get
a tough string. The above properties ensure us that at least bm+2

2 c combinatorial
cooperative guards are required for complete domination of the string. As m+2 = n,
we are done.

Now we will prove the lemma in the other direction, in the contrapositive form: if a
triangulation T is not an instance of a tough string, then fewer than bn

2 c combinatorial
cooperative guards suffice for domination. Each t in a tough triangulation must be
followed by /. Thus any non-tough triangulation must contain a fragment of the form
tt with the apex at some vertex v.

Without loss of generality, we can assume that the sequence t/ is followed by tt.
Otherwise, we can remove triangles ttt from the triangulation graph GT and split
vertex v into two. The resulted hole-free triangulation graph can be dominated by
bn−1

2 c − 1 combinatorial cooperative guards. The same guard placement in GT with
one additional guard at v yields a domination of GT by bn−1

2 c combinatorial cooper-
ative guards.

Therefore let triangles from the tt/t-fragment be labeled t1, t2 and t3, respectively,
and let {x, v} be the diagonal shared between triangles t1 and t2. Removing triangles
t2 and t3 from graph GT results in a triangulation graph G′T of a hole-free polygon
with n vertices, see Fig. 3. By Lemma 2.3, graph G′T can be dominated by bn−1

2 c
combinatorial cooperative guards with one guard located either at x or at v. As t1
and t2 form the tt-fragment in GT , without loss of generality, we can assume v to be
assigned as a guard. Then the same guard placement in GT yields a domination of GT

by bn−1
2 c combinatorial cooperative guards, as triangles t2 and t3 will be dominated

by the guard at v. 2
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Fig. 3. An existence of a tt-fragment leads to a domination by bn−1
2
c combinatorial

cooperative guards.

Fig. 4. A graph Gr attached at diagonal {a, b} to a cycle triangle.

Now, let P be one-hole polygon with n vertices, and let T be one of its triangula-
tions. The next lemma shows that the only triangulations “difficult” to be dominated
by bn−1

2 c combinatorial cooperative guards are the tough ones.

Lemma 3.2. Let P be a one-hole polygon with n vertices, and suppose that there
exists a triangulation T of P that is not tough, that is, P has either a triangulation
whose dual is a cycle with at most one tree attached to the cycle or P has a non-tough
simple triangulation. Then the triangulation graph of T can be dominated by bn−1

2 c
cooperative guards.

Proof.The proof is by induction on the number of trees attached to a cycle of the dual
graph of a triangulation T . The basis is established by Lemma 3.1: bn−1

2 c combina-
torial cooperative guards are sufficient to dominate a non-tough simple triangulation
graph, which by definition has no attached trees in the dual. For the general step,
assume that bn−1

2 c combinatorial cooperative guards suffice for any non-tough trian-
gulation with the dual of s′ < s trees.

Let GT be the triangulation graph of T , and let Gr be the triangulation graph
whose dual graph corresponds to a tree detachable from GT by the removal of one arc
r. This situation is illustrated in Fig. 4. Let a and b be the endpoints of the diagonal
whose dual is r. Let m be the number of vertices in Gr, not including a and b. The
proof proceeds in three cases, depending on the value (n mod 2) and (m mod 2). The
easiest cases are considered first.

Case 1: n = 2k + 1. The sufficiency of bn−1
2 c-bound follows immediately from Theo-

rem 2.2. The idea is to cut graph GT along an internal diagonal in order to remove the
hole by connecting it to the exterior face. The resulted graph G′T has n + 2 vertices,
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Fig. 5. Case 3: n = 2t and m = 2l + 1.

as two new vertices are introduced, and it can be dominated by bn+2
2 c − 1 = bn−1

2 c
cooperative guards, as n is odd. The same guard placement will dominate all of GT .

Case 2: n = 2k and m = 2l. Augment Gr to Gx
r by adding a triangle on the other

side of {a, b}, whose apex is x. Next, cutting GT along diagonals {x, a} and {x, b}
results in two triangulation graphs G′T and Gx

r , each of n − m + 1 and m + 3 ver-
tices, respectively. By Theorem 2.2, G′T can be dominated by bn−m−1

2 c combinatorial
cooperative guards. With the same arguments, Gx

r can be dominated by bm+3
2 c − 1

combinatorial cooperative guards with a guard at one of vertices a, b or x. As m is
even, bm+3

2 c − 1 = bm
2 c. The same guard placement in GT yields a domination by

bn−m−1
2 c + bm

2 c ≤ bn−1
2 c combinatorial guards, and the guard set is cooperative, as

one of vertices a, b or x was chosen for the location of a guard.

Case 3: n = 2k and m = 2l + 1. Again augment Gr to Gx
r by adding a triangle on

the other side of {a, b}, whose apex is x. By Lemma 2.3, Gx
r can be dominated by

bm+2
2 c combinatorial cooperative guards with one guard located either at a or at x.

If x is assigned as a guard, it may be removed to a. Thus we can assume vertex a
to be assigned as a guard in Gx

r . Let G′T be the result of removing all triangles of
Gx

r and all triangles incident to a. G′T has n −m − 1 vertices, since it is missing m
vertices of Gx

D and vertex a. Note that G′T is not necessarily a triangulation graph of
a polygon, as pieces may be attached at vertices only. But now connect each vertex
of G′T that was adjacent to a in GT to b. In Fig. 5, vertices v1, . . . , v4 are connected.
These connections are not always geometrically possible, but for this case we are only
concerned with the combinatorial structure of the graph. The reconnections do not
increase the number of vertices, but they restore G′T to be a triangulation graph of a
polygon with one hole, with smaller number of trees attached to the cycle of the dual
graph of G′T .

If G′T is non-tough, then by the induction hypothesis, G′T can be dominated by
bn−m−2

2 c = bn−m−3
2 c combinatorial cooperative guards, as n − m is odd. And it is

easy to see that placing guards at vertices of GT assigned as guards either in G′T or
in Gx

r yields a combinatorial cooperative domination of GT by at most bn−1
2 c guards.

Otherwise, the toughness of G′T implies the following properties of GT :

1) The dual graph of GT is a single cycle with one attached tree (corresponding
to graph Gx

r ).
2) Since connecting b to vertices to which a was adjacent results in a tough
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Fig. 6. In the case of toughness of G′T , one of the above configurations
must have occurred.

Fig. 7. A c-triplet is covered if A and C are covered (a), but B would not be necessarily
covered if the triangles do not form a c-triplet.

string (t/)2k+4, by simple enumeration of cases, cycle triangles of GT (without
triangles of Gr) must have been of the form tt/t/(t/)2k+2, and either vertex a
or b must has belong only to triangles from the tt-fragment. Therefore without
loss of generality, either the configuration shown in Fig. 6(a) or Fig. 6(b) must
hold.

Subcase 3.a: GT is of the form shown in Fig. 6(a). Then instead of connecting b to
v2, let us connect v1 with x, that is, we have to flip a diagonal in a quadrilateral
(b, v1, v2, x) in G′T . Again let us note that this is only a combinatorial “procedure”.
This flipping results in a non-tough triangulation, and thus we can proceed in a way
similar to that in the case of non-toughness of G′T .

Subcase 3.b: GT is of the form shown in Fig. 6(b). Then instead of considering vertex
a in the first step of the proof, we have to consider vertex b. It is easy to see that this
will lead to Subcase 3.a. 2

The next step is to involve the geometry on the triangulation and use geometric
guards in the case of a tough triangulation. In particular, if a tough triangulation
contains either “c-pair” or a “c-triplet”, then bn−1

2 c vertex cooperative guards suffice.
The final step is to show that every tough triangulation contains one of these two
structures. The next section follows exactly the same reasoning as in [9, 10].
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3.1 c-pairs and c-triplets

A c-pair is a pair of adjacent cycle triangles that together form a convex quadrilateral.

Lemma 3.3. A polygon with a tough triangulation containing a c-pair may be covered
with bn−1

2 c vertex cooperative guards.

Proof.Flipping the diagonal of the c-pair will change the structure of the triangulation
to non-tough. By Lemma 3.2, the resulted triangulation graph can be dominated by
bn−1

2 c combinatorial cooperative guards, and hence all of P can be covered with bn−1
2 c

vertex cooperative guards. 2

A c-triplet is a triple (A,B, C) of consecutive triangles such that the union of
three triangles may be partitioned into two convex pieces. By cutting of a polygon
along diagonals shared by triangles A,B and B,C of any triple (A, B,C), we get the
following lemma (compare [9, 10]).

Lemma 3.4. A polygon with a tough triangulation containing a c-triplet may be cov-
ered with bn−1

2 c vertex cooperative guards.

Proof.Let a be a vertex common to the c-triplet triangles A, B and C, as shown in
Fig 7(a). Delete B and split vertex a into two. The result is a hole-free polygon with
n + 1 vertices, which may therefore be covered with bn−1

2 c vertex guards by [1, 5].
In particular, both A and C must have a guard in one of its corners (Theorem 2.2).
Now put back B. Because the three triangles form a c-triplet, B is also covered by
the guards covering A and C. Note that if the triangles did not form a c-triplet, as in
Fig. 7(b), B would not be necessarily covered. 2

The final property we need is that every tough triangulation contains one of these
structures. And this is guaranted by Shermer’s lemma1.

Lemma 3.5. [9, 10] Any tough triangulation of a polygon contains either a c-pair or
a c-triplet.

With all preceding lemmas we are just led to the following theorem.

Theorem 3.6. bn−1
2 c vertex cooperative guards suffice to cover any n-vertex polygon

with one hole.

Proof.Lemma 3.2 established that if there exists a non-tough triangulation, then bn−1
2 c

vertex cooperative guards suffice. So we only need to consider polygons with tough
triangulations. Lemmas 3.3 and 3.4 show that if a tough triangulation contains c-pair
or c-triplet, then bn−1

2 c vertex cooperative guards suffice. And Lemma 3.5 shows that
every tough triangulation contains one of these structures, so there are no further
possibilities. 2

Theorem 3.7. For all n ≥ 6, cg1(n) = bn−1
2 c, even for vertex guards.

1Although our definition of the tough string differs a little from that introduced by Shermer,
exactly the same proof provides the required property for both definitions, see [9, 10] for more
details.
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Fig. 8. A one-hole polygon can require as many as bn−1
2
c cooperative guards.

Fig. 9. A polygon with holes can require as many as bn
2
c cooperative vertex guards.

Proof.The necessity is established by a class of polygons shown in Fig. 8. It is easy to
see that they require as many as bn−1

2 c cooperative guards. Therefore cg1(n) ≥ bn−1
2 c.

For sufficiency, apply Theorem 3.6. 2

4 Final remarks

It does not seem easy to extend the proof of Theorem 3.6 to more than one hole.
Let us recall that an art gallery with holes is a polygon P enclosing other polygons
H1, . . . ,Hh, known as the holes (H1, . . . ,Hh, and the boundary of P are mutually
disjoint. Similarly to one-hole art galleries, let us define cgh(n) to be the maximum
value of CG(P ) over all polygons with h holes and n vertices in total, i.e., counting
vertices on the holes as well as on the outer boundary. The function cgh(n) represents
the maximum number of cooperative guards that are ever needed for an art gallery
with n vertices and h holes. The cooperative guards problem for polygons with an
arbitrary number of holes generally remains unsolved. The best upper bound for
vertex guards, due to Ahlfeld and Hecker [1], is bn

2 c+ h− 1.

Theorem 4.1. [1] A triangulation graph of an n-vertex simple polygon with h holes
can always be dominated by bn

2 c+ h− 1 cooperative guards.

But this theorem is weak in a sense that so far no one has found examples of poly-
gons that require so many guards. Fig. 9 shows an example from the class of n-vertex
polygons with h holes that require bn

2 c vertex cooperative guards. We conjecture that
this bound is tight.
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Conjecture 4.2. bn
2 c cooperative vertex guards always suffice to cover

an n-vertex polygon with h holes.

Although the cooperative guards problem for arbitrary polygons with an arbi-
trary number of holes remains unsolved, by using the result of Bjorling-Sachs and
Souvaine [2], we can easily provide a new upper bound for cooperative point guards.

In 1995, Bjorling-Sachs and Souvaine [2] showed that bn+h
3 c arbitrary guards are

sufficient in any polygon with n vertices and h holes. Their approach is to connect
each hole to the exterior by cutting away a quadrilateral channel ci, i = 1, . . . , h,
such that one vertex is introduced for each channel, and there is a triangle Ti in the
remaining polygon such that any point in it sees all of the channel ci, i = 1, . . . , h. This
triangle is then forced to be in a triangulation of the hole-free version of the polygon.
A guard assignment based on 3-coloring will cover the hole-free polygon and all the
channels as well. Since the new polygon has n + h vertices, the number of guards is
bn+h

3 c. These guards are vertex guards in the hole-free polygon, but point guards in
the original polygon, since new vertices were added during the channel constructions.
The main result of Bjorling-Sachs and Souvaine’s paper is the following theorem.

Theorem 4.3. [2] In any polygon P with n vertices and h holes, all channels ci,
i = 1, . . . , h, can be removed in such a way that the remaining polygon has:

1) n + h vertices.
2) No holes.
3) A triangulation T with (disjoint) triangles ti, i = 1, . . . , h, as leaves in the
dual graph of T from whose vertices the areas of the removed channels are visible
in P .

Let P be a polygon with n vertices and h holes, and let T be a triangulation whose
existence is guaranteed by the above theorem. By Theorem 2.2 a triangulation graph
GT can be dominated by bn+h

2 c − 1 combinatorial cooperative guards, and thus all
of the hole-free polygon can be covered by the same number of cooperative guards.
Since each of the triangles ti of T , i = 1, . . . , h, has a guard at one of its vertices,
by Theorem 4.3 these guards see all of the channels as well. Thus all of P is covered
by bn+h

2 c − 1 cooperative guards. Note that the guards are point guards, since the
hole-free polygon has vertices not present in P . This proves the following corollary.

Corollary 4.4. For all h ≥ 0 and n ≥ 3+3h, cgh(n) ≤ bn+h
2 c−1, that is, bn+h

2 c−1
cooperative guards are sufficient to cover the interior of an art gallery with n vertices
and h holes.
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57 Wita Stwosza, 80952 Gdańsk, Poland
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