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Abstract

The higher order bundles defined by an affine bundle E and a vector pseudo-
field on E are investigated this paper. The acceleration bundles become non-
trivial examples which motivate the above extension. Moreover, the main ideas
of our construction can be used as well in other cases.

Using affine bundles, a dual theory between Lagrangians and Hamiltoni-
ans (via Legendre transformations) is considered. A canonical way to induce a
Hamiltonian on an affine subbundle is given, too.
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Using the bundles of accelerations, a theory of higher order Finsler and Lagrange
spaces was developped in [15, 10], but a dual theory of higher order Hamilton spaces
was recentely studied [12, 16]. In this paper we investigate the possibility to use
these ideas in a more general setting. We perform a recursive definition of higher
order bundles defined by an affine bundle E and a vector pseudo-field on E. The
acceleration bundles are particular cases, but the ideas can be used in many other
cases (for example in the case of the non-holonomic spaces, which will be done in
a subsequent paper). Using affine bundles, a dual theory between lagrangians and
hamiltonians (via Legendre transformations) is considered. A canonical way to induce
a hamiltonian on an affine subbundle is also given, solving a problem from [17, 11]
concerning the possibility to induce an hamiltonian on a submanifold in an intrinsic
way.

1 Basic constructions on affine bundles

A surjective submersion E π→ M is usually called a fibered manifold. A morphism of
the fibered manifolds E′ π→ M ′ and E π→ M is a couple (f0, f), where M ′ f0→ M and

E′ f→ E satisfy the condition π ◦ f = f0 ◦ π′ (i.e. f sends fibers to fibers); it is also
said that f is an f0-morphism of fibered manifolds. Using local calculus, the change
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rules of the local coordinates are: x̄i = x̄i(xj) on M and x̄i = x̄i(xj), ȳα = ȳα(xi, yα)
on the total space E.

An affine bundle E π→ M is a fibered manifold in which the change rules of the
local coordinates on E have the form

x̄i = x̄i(xj), ȳα = gα
β (xj)yβ + vα(xj).(1)

An affine section in the bundle E is a differentiable map M s→ E such that π◦s = idM
and its local components change according to the rule s̄α(x̄i) = gα

β (xj)s̄β(xj)+vα(xj).
The set of affine sections is denoted by Γ(E) and it is an affine module over F(M),
i.e. for every f1, . . . , fp ∈ F(M) such that f1 + · · · + fp = 1 and s1, . . . , sp ∈ Γ(E),
then f1s1 + · · ·+ fpsp ∈ Γ(E), where the affine combination is taken at every point of
the base. Using a partition of unity on the base M it can be easily proved that every
affine bundle allows an affine section.

A vector bundle Ē π̃→ M can be canonically associated with the affine bundle E π→
M . More precisely, using local coordinates, the coordinates change on Ē following the
rules x̄i = x̄i(xj), z̄α = gα

β (xj)zβ , when the coordinates on E change according to the
formulas (1).

Some examples of affine bundles are given below.
1) Every vector bundle is an affine bundle, called a central affine bundle. In this

case vα(xj) = 0.
2) Consider an affine bundle E. If an affine section is given in Γ(E), then one can

consider a central affine structure on E. Thus the manifolds E and Ē are diffeomorphic
and the diffeomorphism depends only on the affine section.

3) The second acceleration bundle T (2)M of the manifold M is an affine bundle
over T (1)M = TM , having as local coordinates (xi, y(1)j , y(2)) which change according
to the rules

x̄i = x̄i(xj), ȳj =
∂x̄j

∂xp y(1)p, ȳ(2)k =
∂x̄j

∂xp y(2)p +
1
2

∂2x̄j

∂xp∂xq y(1)py(1)q.

4) The acceleration bundle of order k of a manifold M , denoted by T (k)M , can
be defined inductively as an affine bundle over T (k−1)M . The construction is quite
technical and we do not need it here in the sequel. Notice that in general the manifold
T (k)M is considered as a bundle over M [10, 12], but here we regard T (k)M as an
affine bundle over T (k−1)M .

Let ker π∗ = V E → E be the vertical vector bundle of E and Γ(V E) be the module
of vertical sections. The local coordinates on V E have the form (xi, yα, Y β) and change
according to the rules x̄i = x̄i(xj), ȳα = gα

β (xj)yβ + vα(xj) and Ȳ α = gα
β (xj)Y β .

A Liouville type section is a vertical section S ∈ Γ(V E) which has the local form
Sα(xi, yα) = yα + tα(xi). The change rules of the local functions Sα are S̄α(x̄j , ȳβ) =
gα

β (xi)Sβ(xj , yγ). Taking into account the forms of S̄α and Sβ , it follows that ȳα +
t̄α(x̄j) = gα

β (xi)(yα + tα(xj)). Since ȳα = gα
β (xi)yβ +vα(xi), it follows that −t̄α(x̄j) =

−gα
β (xi)tβ(xj)+vα(xj), thus the local functions (−tβ(xj)) are the local components of

a global section from Γ(E). Conversely, for a global section s ∈ Γ(E) having the local
components (sα(xj)), the local functions (yα−sα(xj)) on E are the local components
of a Liouville type section. Thus we have proved the following result.
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Proposition 1.1 Every Liouville type section in Γ(V E) defines an affine section in
Γ(E) and conversely. A one to one correspondence between the Liouville type sections
in Γ(V E) and the affine sections in Γ(E) follows.

The set of Liouville type sections in Γ(V E) is non-void since every affine bundle
allows affine sections. It is easy to see that the set of Liouville type sections is an
affine module over F(M).

An example of an affine section which defines a Liouville type section can be con-
structed using the affine bundle T (2)M → T (1)M defined by the second order acceler-
ation bundle T (2)M of a manifold M and the local coefficients {N i

j(x
k, yl)} of a non-

linear connection on T (1)M . The local functions s(2)i(xi, y(1)j) = −N i
k(xi, y(1)j)y(1)k

are the local components of an affine section on T (2)M . Indeed, since the local coef-
ficients of the non-linear connection change according the rule

N̄ i
k(x̄p, ȳq)

∂x̄k

∂xj =
∂x̄i

∂xk Nk
j (xp, yq)− 1

2
yp ∂2x̄i

∂xp∂xj ,

the assertion follows easily. This affine section defines a Liouville type section on the
vertical bundle of the affine bundle T (2)M → T (1)M .

More generally, a non-linear connection on T (k−1)M defines a section on the affine
bundle T (k)M using the dual coefficients, as in [12]. This affine section defines a
Liouville type section on the vertical bundle of the affine bundle T (k−1)M → T (k)M .

2 Vector pseudo-fields and iterated affine bundles

Consider a fibered manifold E π→ M and an atlas on E, which corresponds to an atlas
on M , i.e. if (xi) are coordinates on M on an open domain W ⊂ M , then there are
coordinates of the form (xi, yα) on an open domain U ⊂ E, π(U) = W . We say that
the atlas on E is adapted. In the case when the fibered manifold is locally trivial, then
U = π−1(W ) (for example it is the case of an affine bundle or of a vector bundle). A
vector pseudo-field on E is an association of a local vector field ΓU ∈ X (U) with every
domain U of the given atlas on E, such that ΓU (yα) = 0 and for every two domains
U and Ū , which have the coordinates (xi, yα) and (x̄j , ȳβ) respectively, then on the
intersection U ∩ Ū we have ΓU (xi) = ΓŪ (xi) and ΓU (x̄i) = ΓŪ (x̄i). It is easy to see
that the change rule on the interesection U ∩ Ū is

ΓŪ = ΓU − ΓU (ȳα)
∂

∂ȳα .(2)

Indeed, ΓŪ = ΓŪ (x̄i)
∂

∂x̄i = ΓU (x̄i)
∂

∂x̄i = ΓU − ΓU (ȳα)
∂

∂ȳα .

Conversely, it can be proved that the association of a local vector field ΓU ∈ X (U)
with the domain U , such that the condition (2) holds on the intersection U ∩ Ū , then
a vector pseudofield is obtained.

Some examples of vector pseudo-fields are given below.
1) Let E π→ M be a fibered manifold and X ∈ X (M) be a vector field on the base

M . If the vector field X has the local form X = Xi(xj)
∂

∂xi ∈ X (W ) (Xi are real
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functions on W and
{

∂
∂xi

}

are vector fields on W ), then ΓU = Xi(xj)
∂

∂xi ∈ X (W )

is a vector pseudo-field (Xi are real functions on U ⊂ π−1(W ) and
{

∂
∂xi

}

are vector

fields on U).

2) Let E = T (1)M → M be the tangent bundle. Considering some local coordi-

nates (xi, y(1)j) on an open set U ⊂ T (1)M , then ΓU = y(1)j ∂
∂xj ∈ X (U) defines a

vector pseudo-field.

3) The above example 2) can be extended. Let T (k)M → T (k−1)M be the affine
bundle defined by the total space of the acceleration bundle of order k. Then the

local vector field Γ = y(1)j ∂
∂xj + 2y(2)j ∂

∂y(1)j + · · ·+ ky(k)j ∂
∂y(k−1)j defines a vector

pseudo-field on T (k)M considered in [10].

4) Let E π→ M be a fibered manifold, D : V E → τM be a π-morphism of
vector bundles and Y ∈ X (V E) be a vertical vector field. Using local coordinates,

Y = Y α(xj , yα)
∂

∂yα ∈ X (V E) and

Y α(xj , yβ)
∂

∂yα
D→ Di

α(xj , yβ)Y α(xj , yβ)
∂

∂xi

(Xi are local real local functions on V E and
{

∂
∂xi

}

are local vector fields on M).

Then ΓU = Di
α(xj , yβ)Y α(xj , yβ)

∂
∂xi ∈ X (U) defines a vector pseudo-field (here

{

∂
∂xi

}

are local vector fields on E).

5) If E π→ M is a vector bundle, then a particular case of the previous example

can be considered using the vertical vector field Y = yα ∂
∂yα (called the Lioville vector

field). Then the vector pseudo-field has the form ΓU = Di
α(xj , yβ)yα ∂

∂xi ∈ X (U).

6) The previous examples can be extended considering on a fibered manifold
E π→ M an horizontal d-vector field X, i.e. X is defined by its local compo-
nents {Xi(xj , yα)} which change on the intersection of two domains of coordi-

nates following the rule X̄i(x̄j , ȳα) =
∂x̄i

∂xj Xj(xj , yα). For every connection in the

fibered manifold (i.e. a left splitting C of the inclusion V E → TE) which has
the local coefficients {Nα

i (xj , yβ)} (i.e. C has the local form (xi, yα, Xj , Y β) C→
(xi, yα, Y β + XjNβ

j (xi, yα))), then there is a global vector field X̃ on E which is

locally defined by X̃ = Xi(xi, yα)
δ

δxi , where
δ

δxi =
∂

∂xi− Nβ
j (xi, yα)

∂
∂yβ (X̃ is a

horizontal vector field, which is a section in the horizontal vector bundle of C). Then

ΓU = Xi(xj , yβ)
∂

∂xi ∈ X (U) defines a vector pseudo-field on E.
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Proposition 2.1 If E π→ M is an affine bundle and Γ is a vector pseudo-field on E,
then there is an affine bundle E′ π→ E and a vector pseudo-field Γ′ on E′ such that
the couple (E′, Γ′) is canonically associated with the couple (E, Γ).

Proof. We assume that the local coordinates change on E according to the formulas
(1) and we define the change rule of the coordinates on E′ by

z̄β(xi, yα, zβ) = gβ
γ (xi)zγ + Γ(ȳβ).

Let us show that E′ π′→ E is an affine bundle. Consider some new coordinates
(x̄i, ȳα, z̄β) which change according to the rules x̄i = x̄i(x̄j), ȳα = ḡα

β (x̄j)ȳβ + v̄α(x̄j),

thus z̄β = ḡβ
γ (x̄i)z̄γ + Γ̄(ȳβ). We have to express the link between the coordi-

nates (x̄i, ȳα, z̄β) and (xi, yα, zβ) respectively on the intersection of their domains.
The link between the couples of coordinates (xi, yα) and (x̄i, ȳα) respectively is
x̄i = x̄i(xj), ȳα = ḡα

β(xj)yβ+v̄α(xj), where ḡα
β = ḡα

γ gγ
β and v̄α = ḡα

β vβ+v̄α. We denote
by Γ and Γ̄ the local form of the given vector pseudo-field on E on the domains of the
coordinates (xi, yα) and (x̄i, ȳα) respectively. We have z̄β = ḡβ

γ (x̄i)z̄γ +Γ̄(ȳβ) = z̄β =
ḡβ

γ (x̄i)(gγ
δ (xi)zδ + Γ(ȳγ)) + Γ̄(ȳβ) = ḡα

δ zδ + ḡβ
γ Γ(ȳγ) + Γ̄(ȳβ). But ḡβ

γ Γ(ȳγ) + Γ̄(ȳβ) =

ḡβ
γ Γ(ȳγ) + Γ(ȳβ)− Γ(ȳγ)

∂ȳβ

∂ȳa = Γ(ȳβ). We have proved that z̄β = ḡα
δ zδ + Γ(ȳβ), thus

E′ π′→ E is an affine bundle. We define Γ′ = Γi(xi)
∂

∂xi + zα ∂
∂yα = Γ + zα ∂

∂yα

on π′−1(U), where U is the domain of Γ (and also the domain of the coordi-
nates (xi, yα)). We have to check that this assignment defines a vector pseudo-
field on E′. Indeed, Γ′(zα) = 0 and on the intersection of two domains in E′ we

have: Γ′(xi) = Γ(xi) = Γ̄(xi) = Γ̄′(xi); Γ′(x̄i) = Γ(x̄i) + zα ∂x̄i

∂yα = Γ(x̄i) =

Γ̄(x̄i) = Γ̄′(x̄i); Γ′(yα) = zα and Γ̄′(yα) = Γ̄(yα) + z̄β ∂yα

∂ȳβ = 0 + zα = Γ′(yα);

Γ̄′(ȳα) = Γ̄(ȳα) + z̄γ ∂ȳα

∂ȳγ = z̄α = Γ(ȳα) + gα
β zβ = Γ(ȳα) + zβ ∂ȳα

∂yβ = Γ′(ȳα). 2

The previous result allows to obtain the higher order manifold E(n), n ≥ 1 and
E(1) = E, defined by a couple (E, Γ), where E π→ M is an affine bundle (particularly
E can be a vector bundle) and Γ is a vector pseudo-field on E. The manifold E(n) is
obtained inductively from E(n−1), using the above Proposition.

An important particular case is obtained when E = TM and Γ is the vector
pseudo-field defined by the Liouville d-vector field, viewed as a horizontal d-vector

field (in local coordinates Γ = yi ∂
∂xi ). In this case E(n) = T (n)M is the total space

of the acceleration bundle of order k, studied for example in [14, 15, 10, 16].
More generally, any horizontal vector field on an affine bundle E π→ M defines

a vector pseudo-field on E, thus it allows iterations. For example, if E π→ M is a
vector bundle and E

ρ→ TM is a vector bundle map (called an anchor), then a
horizontal vector field X on E can be defined using the formula Xi(xj , ya) = yαρi

α(xj).
Particularly, ρ can be the inclusion morphism of a vector subbundle of TM , defined
by a non-necessarily integrable distribution, i.e. a non-holonomic space. This case is
of particular interest and will be studied in a subsequent paper.
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3 The Legendre and Legendre∗ transformations on
affine bundles

Let E be an affine bundle. A lagrangian on E is a differentiable function L : E → R.
In particular if E is a vector bundle, it can be viewed as a central affine bundle.

If the affine bundle E is a fibered manifold on an other base E → M0 such that a
global section s0 : M0 → E is given, then a lagrangian L : E → R is admissible if it
is globally continuous and smooth on Ẽ = E\ s0(M0). An (admissible) lagrangian is

non-degenerate if the vertical Hessian
(

∂2L
∂yαyβ

)

of L is non-degenerate. In this case

the vertical hessian defines a (pseudo)metric structure on the fibers of the vertical
bundle V E (or V Ẽ if the lagrangian is admissible).

An interesting example follows when M is a manifold and T (2)M → T (1)M is the
affine bundle on T (2)M . A lagrangian of second order is defined by L(2) : T (2)M → R.
Then T (1)M → M is the tangent bundle and T (2)M → M becomes the acceleration
bundle of order two, which allows the ”null” section s0 : M → T (2)M . Thus an allowed
lagrangian of order two is continuous on T (2)M and smooth on T (2)M\s0(M). For
every k ≥ 1, the ”null” section s0 : M → T (k)M of the acceleration bundle of order k,
T (k)M → M , is defined in an analogous way and the admissible lagrangians of order
k ≥ 1 are considered in [10, 12].

If E → M is an affine bundle, then we have denoted by Ē → M the vector bundle
canonically associated with E, which can be regarded as a central affine bundle. We
denote by Ē∗ → M its dual vector bundle. A hamiltonian defined by E is a lagrangian
H : Ē∗ → R defined on the central affine bundle Ē∗.

If L : E → R is a lagrangian, then the Legendre transformation is the fibered man-

ifold map L : E → Ē∗ defined in local coordinates by (xi, yα) L→ (xi,
∂L
∂yβ (xi, yα)). It

is easy to see that if L is a non-degenerate lagrangian, then L is a global diffeomor-
phism. Considering a non-degenerate and allowed lagrangian, then we can infer that
L is a local diffeomorphism.

The Legendre transformation defines an L-morphism of the vertical vector bundles
V E → V Ē∗ (called the vertical Legendre morphism) and expressed in local coordi-

nates by (xi, yα, Y β) → (xi,
∂L
∂yβ (xi, yα), Y β ∂2L

∂yβyγ (xi, yα)).

Theorem 3.1 Let s : M → E be an affine section and L : E → R be a non-
degenerate lagrangian.

Then there is a hamiltonian H : Ē∗ → R defined by L and s such that the vertical
Legendre morphism is an isometry and the vertical hessian of H does not depend on
the section s.

Proof. Let (xi) s→ (sα(xi)) be the local form of the section s. According to Proposition
1.1 the section s defines a Liouville section S : E → V E given in local coordinates
by (xi, yα) S→ (xi, yα, yα − sα(xi)). Since L is non-degenerate it means that L is a
diffeomorphism, thus considerH = L−1 : Ē∗ → E and denote by S̄ = S◦H:Ē∗ → V E.
Notice that H has the local form

(xi, pα) H→ (xi,Hβ(xi, pα)),
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where
Hγ(xi,

∂L
∂yβ (xi, yα)) = yγ and

∂L
∂yγ (xi,Hβ(xi, pα)) = pγ .

Differentiating the first formula, we obtain:

∂2L
∂yα∂yγ (xi, yγ)

∂Hγ

∂pβ
(xi,

∂L
∂yβ (xi, yα)) = δαβ .(3)

Substituting yγ = Hγ(xi, pθ) we also have

∂2L
∂yα∂yγ (xi,Hγ(xi, pθ))

∂Hγ

∂pβ
(xi, pθ) = δαβ .(4)

Then S̄ has the form (xi, pα) S̄→ (xi, Hβ(xi, pα), Hγ(xi, pα) − sγ(xi)). We define
H : Ē∗ → R using the formula

H(xi, pα) = pα
(

Hα(xi, pα)− sα(xi)
)

− L(xi,Hγ(xi, pα)).(5)

It is easy to see that H is globally defined on Ē∗. In order to prove that the vertical
hessian of H is non-degenerate and also that the vertical bundle morphism is an
isometry, it suffices to prove that

(

∂H2

∂pα∂pβ

(

xi,
∂L
∂yγ

(

xi, yδ)
))

=
(

∂L2

∂yα∂yβ

(

xi, yδ)
)−1

.

This can be obtained by a straightforward computation, as follows. Using formula (3),

we obtain
∂H
∂pα

(xi, pβ) = Hα(xi, pα), then using the relations (4) and (3), the above

formula follows. It is easy to see that the vertical hessian of the hamiltonian does not
depend on the section s. 2

If the lagrangian L is admissible and non-degenerate, then it is possible that the
differentiability of L misses on s0(M0). Then H is differentiable on L(E\s0(M0)).

An inverse construction is performed in the sequel. Starting from a hamiltonian
(i.e. a lagrangian on Ẽ∗), a lagrangian on E can be constructed.

Given a hamiltonian H : Ẽ∗ → R and a section s of E, the Legendre∗ transfor-
mation is the fibered manifold morphism H : Ẽ∗ → E defined by the local formula

(xi, pα) H→ (xi,
∂H
∂pβ

(xi, pα)+sβ(xi)). If the hamiltonian is regular, then the Legendre∗

transformation is a diffeomorphism.
The Legendre∗ transformation defines an H-morphism of the vertical vector bun-

dles V Ē∗ → V E (called the vertical Legendre∗ morphism) and expressed in local

coordinates by (xi, pα, Pβ) → (xi,
∂H
∂pβ

(xi, pα) + sβ(xi), Y β ∂2H
∂pβ∂pγ

(xi, pα)).

Theorem 3.2 Let s : M → E be an affine section and H : Ē∗ → R be a non-
degenerate hamiltonian.

Then there is a lagrangian L : E → R on E such that the vertical Legendre∗

morphism is an isometry and the vertical hessian of L does not depend on the section
s.
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Proof. The proof is analogous to the proof of Theorem 3.1. In fact we reverse the
order of H and L in the construction of H in the formula (5). We denote by L =
H−1 : E → Ē∗ the inverse of the Legendre∗ transformation. It has the local form
(xi, yα) L→ (xi, Lβ(xi, yα)), where

Lγ(xi,
∂H
∂pβ

(xi, pα) + sβ(xi)) = pγ and
∂H
∂pγ

(xi, Lβ(xi, yα)) + sγ(xi) = yγ .

We define H : Ē∗ → R using the formula

L(xi, yα) = Lα(xi, yα)
(

yα − sα(xi)
)

−H(xi, Lγ(xi, yα)).(6)

The proof follows in the same manner as the proof of Theorem 3.1. 2

4 Induced hamiltonians on affine subbundles

Besides the theory of Lagrange and Finsler submanifolds, which is studied by many
authors, (see the Bibliography), an attempt to study the Hamilton submanifolds is
performed in [17, 11], using an arbitrary section of the natural projection of the
cotangent bundles. Here we show that there is a distinguished section, which depends
only on the Hamiltonian. It solves a problem from [17, 11], concerning the possibility
to induce in an intrinsic way a hamiltonian on a submanifold.

If E π→ M is an affine bundle then an affine subbundle of E is a affine bundle

E′ π′→ M ′ such that E′ ⊂ E and M ′ ⊂ M are submanifolds, π′ is the restriction of π
and the affine structure on the fibers of E′ is induced by the affine structure on the
fibers of E. We denote by i : M ′ → M and I : E′ → E the submanifold inclusions.
We consider also a section s : M → E which restricts to a section s′ : M ′ → E′. The
existence of the section s is assured by the fact that M ′ ⊂ M is closed and every
section s′ : M ′ → E′ can be extended to a section s using a suitable partition of unity
on M .

There are some local coordinates (xu) on M ′ and (xu, ya) on E′ which extend
to local coordinates (xi) = (xu, xū) on M and (xi, yα) = (xu, xū, ya, yᾱ) on E′ re-
spectively, such that the points in M ′ and in E′ are characterized by the conditions
xū = 0 and xū = yᾱ = 0 respectively. ( i, j, k, . . . = 1,m, m = dim M , u, v, . . . = 1,m′,
ū, v̄, . . . ∈ m′ + 1,m, m′ = dim M ′, α, β, γ, . . . = 1, n, n is the dimension of fibers of
E, a, b, . . . = 1, n′, ā, b̄, . . . ∈ n′ + 1, n, n′ is the dimension of fibers of E′)

We consider also local coordinates (xu, pa) on E′ and (xi, pα) = (xu, xū, pa, pā)
on Ẽ∗, which are adapted to the vector bundle structures and to the submanifolds

structures. The local form of the sections s′ and s are (xu) s′→ (xu, sa(xu, 0)) and

(xu, xū, ya, yā) s′→ (xu, xū, sa(xu, xū), sā(xu, xū)), where sā(xu, 0) = 0.

The local form of the Legendre∗ transformation H is (xi, pα) → (xi,
∂H
∂pα

(xk, pβ)+

sα(xi)), and we denote
∂H
∂pα

(xk, pβ) = Hα(xk, pβ). The local forms of the inclusions

i : M ′ → M , I : E′ → E and of the canonical projection I∗ : Ē∗ → Ē′∗ are
(xu) i→ (xu, 0), (xu, yα) → (xu, 0, yα, 0) and (xu, xū, pa, pā) → (xu, pa) respectively.



A General Background of Higher Order Geometry 87

Let H : Ẽ∗ → R be a regular hamiltonian, thus the Legendre∗ transformation
H : Ẽ∗ → E is a diffeomorphism. We denote by (xi, yα) → (xi, Lβ(xi, yα)) the local
form of L = H−1 : E → Ẽ∗, the inverse of the Legendre∗ transformation.

We have that WE′ = L ◦ I(E′) is a submanifold of Ē∗.

Proposition 4.1 The restriction of I∗ to WM ′, I∗|WM ′ : WM ′ → Ē′∗ is a diffeo-
morphism.

Proof. We have: L is a diffeomorphism, I∗ is a surjective submersion and I is an
injective immersion. The local form of I∗ ◦ L ◦ I is (xu, ya) → (xu,Kb(xu, 0, ya, 0)),
thus it is a local diffeomorphism. In fact I∗ ◦ L ◦ I is a diffeomorphism, since it sends
the fibre Ē′

x in the fibre E′
x for every x ∈ M ′ and L is a diffeomorphism when it is

restricted to the fiber, thus I∗|WE′ is also a diffeomorphism. 2
Taking into account of the local form of the Legendre∗ transformation and of

the local coordinates, it follows that the points of the submanifold WE′ have as
coordinates (xu, 0, pa, Qā(xu, pa)) in Ē∗, where

∂H
∂pā

(xu, 0, pa, Qb̄(x
u, pa)) = 0.(7)

Differentiating this equation with respect to pa, we get:

∂2H
∂pa∂pā

+
∂2H

∂pb̄∂pā
· ∂Qb̄

∂pa
= 0.

Denoting by hαβ =
∂2H

∂pα∂pβ
, we suppose that the matrix h̃ = (hāb̄)ā,b̄=n′+1,n is non-

degenerate; if this condition holds, we say that the Hamiltonian is non-degenerate
along the affine subbundle E′ (notice that this condition automatically holds when
the vertical hessian of the Hamiltonian defines a positive quadratic form). Considering
the inverse h̃−1 = (h̃āb̄)ā,b̄=n′+1,n, it follows that

∂Qb̄

∂pa
= −haāh̃āb̄.(8)

Denote by Ī = I∗−1
|WE′ : Ē′∗ → WE′ ⊂ Ē∗. Using the above constructions, we

obtain the following result.

Theorem 4.1 The map Ī is a section of I∗ which depends only on H.

We define H ′ = H ◦ Ī : Ē′∗ → R and we consider the vertical Hessian of H ′:
(

∂2H ′

∂pa∂pb
(xt, pc)

)

a,b=1,n′

in every point of Ē′∗.

Proposition 4.2 a) If the Hamiltonian H is non-degenerate along the affine sub-
bundle E′, then the vertical Hessian of H ′ is also non-degenerate at every point of
Ē′∗.

b) If the Hamiltonian has a positive definite metric, then the vertical Hessian of
H ′ is also positive definite.
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Proof. We use local coordinates. We have H ′(xu, pa) = H(xu, 0, pa, Qā(xu, pa)).
Using formula (7) it follows that:

∂H ′

∂pa
(xu, pb) =

∂H
∂pa

(xu, 0, pb, Qb̄(x
u, pb)).

Differentiating this formula with respect to pb, then using formula (8), we get:

∂2H ′

∂pa∂pb
=

∂2H
∂pa∂pb

+
∂Qā

∂pb

∂2H
∂pā∂pa

= hab − hbb̄h̃āb̄h
āa.

We use now the following Lemma of linear algebra.

Lemma 4.1 Let A be a symmetric matrix of dimension p, B a symmetric and non-
degenerated matrix of dimension q and C a p × q matrix such that the symmetric

matrix
(

A C
Ct B

)

of dimension p + q is non-degenerate. Denote
(

A C
Ct B

)−1

=
(

X Z
Zt Y

)

, where X, Y and Z have the same dimensions as the matrices A, B and

C respectively.
Then the matrix A− C ·B−1Ct is invertible and its inverse is X.

Proof. We have
(

A C
Ct B

)

·
(

X Z
Zt Y

)

=
(

Ip 0
0 Iq

)

. Thus A ·X + C ·Zt = Ip

and Ct ·X+B ·Zt = 0. The second equality implies Zt = B−1 ·Ct ·X, then introducing
in the first equality we get (A−C ·B−1 ·Ct) ·X = Ip, thus the conclusion follows. 2

Turning back to the proof of the Proposition 4.2, consider the matrix h = (hij) =
(

huv hūv

huv̄ hūv̄

)

. Using the Lemma 4.1, it follows that the matrix

(

huv − huūh̃ūv̄hv̄u
)

u,v=1,m′

is invertible and its inverse is (huv), where
(

huv hūv

huv̄ hūv̄

)

=
(

huv hūv

huv̄ hūv̄

)−1

. 2

We consider now the case of an admissible hamiltonian. Let Ē′∗ → M ′
0 be a fibered

submanifold of the fibered manifold Ē∗ → M0 and a section M0
s0→ Ē∗ which extends

a section M ′
0

s0→ Ē′∗. If H is an admissible hamiltonian then H ′ is also admissible.
We remark that in the case of E = TM and E′ = TM”, where M ′ is a submanifold

of M and H is a hamiltonian on M , then H ′ can be obtained as in [7], in the following
way. Consider the Lagrangian L : TM → R defined by the Hamiltonian H and the
induced Lagrangian L′ : TM ′ → R on M ′. Let H′ : T ∗M ′∗ → TM ′∗ be the inverse
of the Legendre transformation determined by L′ and L : TM∗ → T ∗M∗ be the
Legendre transformation determined by L. It can be shown that ı̃ = L ◦ i∗ ◦ H′, thus
H ′ = H ◦ ı̃ is the same as the induced Hamiltonian obtained in [7]. The condition
on H to be non-degenerate along the submanifold M ′ reads to the condition that H′
exists.
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Univ. Al. I. Cuza Iaşi, s.I a, XXX, 4(1984), 56-60.

[20] Miron R., Bejancu A., A non-standard theory of Finsler subspaces, Topics in Diff.
Geom., Debrecen, (1984), 815-851.

[21] Oproiu V., Papaghiuc N., Submanifolds in Lagrange geometry, An. St. Univ. Al.
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