Geodesic Algorithms in Riemannian Geometry

J. X. da Cruz Neto, L. L. de Lima and P. R. Oliveira

Abstract

We introduce some variants of Luenberger’s geodesic method in the frame-
work of Riemannian Geometry. Global convergence and convergence rate esti-
mates are obtained under additional assumptions on the underlying geometry,
namely, by assuming that the Riemannian manifold has non-negative curvature
and that the objective function is convex.
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1 Introduction

Steepest descent methods, in which the concept of gradient is associated to a given
metric, constitute a generalization of a wide variety of primal algorithms spanning
from Cauchy and Newton in unconstrained Nonlinear Programming to the classical
projective and the Dikin and Karmarkar algorithms as well (see [1]). At a first level,
i.e., when dealing with unconstrained problems, the conceptual transparence of the
method quickly leads to neat proofs for the global convergence and sharp bounds for
the rate of convergence. If one restrict ourselves, however, to constrained problems,
namely, problems like

(1) min g(z) s.t. h(z) =0,

where g : R® — R is the objective function and h : R™ — R™, m < n, specifies
the manifold of constraints M = {x € R™; h(z) = 0}, the situation is not so simple.
First of all, the unconstrained descent direction — grad g(z), € M, is not in general
tangent to M (we assume throughout this paper that the rank of dh is everywhere
maximal so that M is a regular submanifold of R™). This can be promptly fixed by
assigning a new descent direction p(x) given by orthogonal projection of — grad g(z)
over T, M, the tangent space to M at x. But then a new problem arises since moving
x in the direction of p(x) soon leaves M, thus violating the constraint. A way of
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overcoming this difficulty is to use some ad hoc procedure to project the segment
determined by p(z) back to M so that constraint is restored.

The asymptotic analysis of this methodology was carried out by Luenberger in
the pioneering paper [2]. His idea was to move feasible points z along the unique
geodesic z(t), t > 0, of M such that z(0) = z and z'(0) = p(x). Luenberger remarked
that all the ad hoc methods referred to above have the same asymptotic behaviour
as his method and then went on to provide, under suitable convexity assumptions,
the necessary theoretical analysis by following essentially the same steps as in the
unconstrained case.

The purpose of this paper is to introduce some variants of Luenberger’s geodesic
method in a totally intrinsic framework, namely, by following the direction deter-
mined by the gradient of the objective function f relative to some Riemannian metric
defined over some smooth manifold M and then to discuss global convergence and
asymptotic rate behavior under additional assumptions on the underlying geometry.
The motivation for carrying this program out is basically twofold:

e From our viewpoint, Luenberger’s direction p(z) is given by — grad f(x), where
f is the restriction of g to M and the gradient now is computed relative to
the induced metric on M viewed as a Riemannian submanifold of R™, so that
Luenberger’s results are at least partially recovered from ours. There are, how-
ever, some important differences between the approaches that deserve some
comments. First, Luenberger proves global convergence and convergence rate
estimates under the assumption that the Lagrangian L naturally associated
to the problem (see section 6 below) is strongly convex in the sense that its
Hessian H”, when restricted to M, satisfies a < H” < b for some constants
0 < a < b. In our intrinsic approach, we are able to prove global convergence
(Theorem 4 below) under the much weaker convexity assumption H/ > 0 on
f but assuming that M has nonnegative Riemannian curvature as well. The
main ingredient in our convergence proof is the law of cosines (see Theorem 1
below), a geometric inequality about geodesics which is characteristic to such
a class of manifolds. Once we have this convergence result, we can easily re-
cover Luenberger’s convergence rate estimates by assuming in addition that f
is strongly convex, i.e., a < Hf < b for constants a and b as above (H7 is now
computed intrinsically) and then reducing everything to Luenberger’s argument
after isometrically imbedding in R™ a small piece of our Riemannian manifold
M containing the minimum of f (Theorem 6 below.) We remark that neither
the constraints manifold {x € R™;h(z) = 0)} has in general nonnegative cur-
vature nor an abstract Riemannian manifold M can in general be isometrically
embedded in R™ in such a way that M = {z € R™; h(z) = 0} unless we restrict
ourselves to small neighborhoods of a point in M. In other words, Luenberger’s
and our approach complement each other in a sense.

e It has been realized in recent years that certain interior points algorithms in
Linear Programming [1], [3] and in Convex Programming [12]-[15] can be in-
vestigated via this intrinsic approach in the sense that it is possible to define
a Riemannian metric on the interior of the feasible region in such a way that
the gradient of the objective function relative to this metric coincides, up to a
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sign, with the descent vector field associated to the algorithm. Moreover, these
geometries in general are so well behaved that the otherwise difficult problem of
explicitly integrating the geodesic equations can be easily solved. This implies
in particular that our convergence results regarding geodesic algorithms are well
suited to handle this important class of interior points algorithms. As a matter
of fact, our approach suggests that, these ideal conditions granted, these prob-
lems can be solved with just one iteration. We shall not address these questions
here, however, since a more complete investigation regarding the use of geodesic
methods in Linear Programming will appear in a forthcoming paper [1].

We notice that an extensive treatment of geodesic algorithms in Riemannian ge-
ometry appears in [4], [5], [10] - [15].

This paper is organized as follows. In Section 2, we review some basic facts on
Riemannian Geometry. We give no proofs since the exposition is meant basically for
fixing notation. Section 3 is also informative and contains basic results on convex
functions defined on Riemannian manifolds; for completeness, sketches of proofs are
included. In Section 4, we introduce two intrinsic variants of Luenberger’s geodesic
method, whose convergence analysis is discussed in Section 5.

2 Preliminaries on Riemannian geometry

Throughout this paper, unless otherwise stated, all manifolds are smooth and con-
nected. All functions and vector fields are also asssumed to be smooth. As general
references for this section, see [5] and [6].

Given a manifold M, denote by X' (M) the space of vector fields over M and by
F (M) the ring of functions over M. Let M be endowed with a Riemannian metric (, ),
with corresponding norm denoted by | |, so that M is now a Riemannian manifold.
Recall that the metric can be used to define the length of piecewise smooth curves
v : [a,b] = M joining points p and ¢ in M, i.e., such that vy(a) = p and v(b) = ¢, by

b
i(y) = / ! (8)]dt.

and, moreover, by minimizing this length functional over the set of all such curves we
obtain a distance d(p,q) which induces the original topology on M. Also, the metric
induces a map f € F(M) — grad f € X(M) which associates to each f its gradient
via the rule (grad f,X) = df(X), X € X(M). The chain rule generalizes to this
setting in the usual way: (fov)'(t) = (grad f(y(¢)),~'(t)) . In particular, if f assumes
either a maximum or a minimum value at a point p € M then grad f(p) = 0. More
generally, points where grad f vanishes are called critical points of f.

Let V be the Levi-Civita connection associated to (M, (,)). If v is a curve joining
points p and ¢ in M , then, for each ¢ € [a,b], V induces an isometry (relative to (,))
P, (t) : T,M — T, )M, the so-called parallel transport along «y. A vector field V along
~ is said to be parallel if V.,V = 0. If o' itself is parallel we say that v is a geodesic.
The geodesic equation V v = 0 is a second order nonlinear ordinary differential
equation, hence v is determined by its position and velocity at one point as far as
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it is defined. It is easy to check that |y/| is constant. We say that v is normalized if
|7'| = 1. The restriction of a geodesic to a closed bounded interval is called a goedesic
segment. A geodesic segment joining p and ¢ in M is said to be minimal if its length
equals d(p, q)-

A Riemannian manifold is complete if geodesics are defined for any values of t.
Hopf-Rinow’s theorem asserts that if this is the case then any pair of points, say p
and ¢, in M can be joined by a (not necessarily unique) minimal geodesic segment.
Moreover, (M, d) is a complete metric space and bounded and closed subsets are
compact. In this paper, all manifolds are assumed to be complete.

The fundamental local invariant of Riemannian manifolds is the curvature tensor
R defined for X,Y,Z € X(M) by

R(X, Y)Z - VXVYZ - VYVXZ - V[X’y]Z,

where [, ] is the Lie bracket. Clearly, R is a tensor of type (1,3). Given p € M and a
plane o C T,M, the quantity

(R(z,y)y,z)
|z 2ly|? — (z,y )?

K(z,y) =

does not depend on the basis {z,y} C 0. Hence, K(z,y) = K( o) depends only on
o and is called the sectional curvature of o at p. In this paper, we will be mainly
interested in Riemannian manifolds for which K (o) > 0 for any o. Such manifolds
are referred to as manifolds with nonnegative curvature . A fundamental geometric
property of this class of manifolds is that the distance between geodesics issuing
from one point is, at least locally, bounded from above by the distance between the
corresponding rays in the tangent space. A global formulation of this general principle
is the law of cosines that we now pass to describe.

A geodesic hinge in M is a pair of normalized geodesics <y, and 7» such that
71(0) = 72(0) and at least one of them, say 1, is minimal. Set

L=ln), L=Uy), l=dnl)10))
and a = /(v;(0),74(0)). We then have the following

Theorem 2.1 (Law of cosines) In a complete Riemannian manifold with nonnegative
curvature, with the notation introduced above, we have

17 <12 +1F — 2115 cosa.

For the sake of completeness, we include a proof here. Given a geodesic hinge
(71,72, @) as above, consider a corresponding geodesic hinge in the plane (7,,7,, @)
such that, with self-explanatory notation, I; = I;,i = 1,2, and @ = a. Since geodesics
in the plane are straight lines, the usual law of cosines applied to this plane hinge
gives

Z; =12 4+17 —2ll5cosa.

Now, Toponogov’s theorem ((6)) implies I3 < I3 and the result follows.
Given f: M — R, its Hessian is the bilinear symmetric form on X'(M) given by
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H/(X,Y) = (Vxgrad f,Y).

A straightforward computation shows that H/(X,Y) = (XY — VxY)f. At critical
points of f, we have (VxY)f = 0 so that H¥(X,Y) = XY (f). As usual, givena € R
we use H/ > a as a shorthand for the condition that H/ (X, X) > a|X|? for any X.

Similarly,
Hf <b if —H' =H > —b.

3 Convexity in Riemannian manifolds

For further information regarding convex functions on Riemannian manifolds, we refer
to [5].

We say that f: M — R is convez if, for each geodesicy: R - M, foy: R—- M
is convex as a real function, namely,

FO (T =Na+ b)) < (1 =A)f(v(a) + Af(v(b)),

for any A € [0, 1]. We now state some well- known necessary and suficient conditions
for convexity.

Theorem 3.1 (First order condition for convezity) A function f : M — R is convex
if and only if, for any p € M and any geodesic v : [0,+00) = R such that v(0) = p,
we have

(2) f(y(#) = £(p) > t{grad f(p),7'(0) )-

Proof. If f is convex, define h : [0, +00) — R by h(t) = f(y(t)). Hence, h is convex

and hence satisfies h(t) — h(0) > th/(t). But A"(t) > 0 hence h'(t) > h'(0). By the

chain rule, A'(0) = (grad f(p),~'(0)), as desired. The converse is obvious. B
Perharps the most important consequence of this theorem is the following

Corollary 3.1 If f : M — R is convex, then all of its critical points are global min-
imum points. In particular, if M is compact, then f is constant.

Proof. Let p be a critical point. Thus, grad f(p) = 0. Given ¢ € M, ¢ # p, there
exists, by Hopf-Rinow’s theorem, a geodesic segment v : [a,b] — M joining p and q.
It follows from (2) that f(y(b)) — f(v(a)) > 0, hence f(q) > f(q), as desired. ®

Theorem 3.2 (Second order condition for convexity) A function f : M — R is con-
vex if and only its Hessian H' is positive semi- definite.

Proof. Assume f convex and consider p € M and v € T,M. Let v be the unique
geodesic such that v(0) = p and +'(0) = v. Set, as usual, h = f o. Clearly, b (¢) > 0
for any t. Now, the chain rule implies h'(t) = (grad f(y(t)),7'(t)) and hence (ommit-

ing t)
0 < h" = (Vygrad f(7),7) + (grad f(7), V') = (Vygrad f(7),7") = HI(+',7"),

since V9" = 0. Set t = 0 and the result follows. The converse statement is proved
analogously. B
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4 Geodesic descent algorithms

The concept of geodesic descent was introduced in the literature by Luenberger ([2])
in order to analyse the rate of convergence of the method of gradient projection as
applied to the nonlinear programming problem

min g(z) s.t. h(z) =0.

Here, g : R™ — R is the objective function and h : R — R™, m < n, defines the (in
general non-linear) constraints. Luenberger’s method works as follows:

1. Given zy, k > 1, feasible, compute the projection p of —grad g(z)) over the
tangent plane to the manifold of constraints M = {z € R™; h(z) = 0)};

2. Determine the unique geodesic z(t),t > 0, of M such that z(0) = z; and
2'(0) = pa;

3. Minimize g(x(t)), t > 0, obtaining t;, and set 11 = x(t).

The idea underlying the use of the geodesic descent method as an approximation
to the gradient projection method is the well-known fact that geodesics behave locally
like the segments obtained by gradient projection if M were flat. Furthermore, as the
process converges, Luenberger argues that the distance between points obtained by the
two methods goes to zero faster than the respective stepsize t;. Thus, the asymptotic
rate of convergence of both methods is the same. From this viewpoint, interest in
the geodesic method would be merely theoretical in the sense that the analysis of
the rate of convergence is best accomplished if one works intrinsically, i.e., following
the geodesics in M, rather than with the projected gradient direction. Furthermore,
from a practical viewpoint, the geodesic method has the serious drawback that, due
to its nonlinear character, solutions to the geodesic equations are rarely available in
closed form. Hence, step 2 above involves a considerable additional numerical effort.
However, in recent years, it has been shown that descent vector fields associated
to certain interior points algorithms in Linear Programming [3], [1], and in Convex
Programming [12] - [15] are gradient fields relative to suitable Riemannian metrics
defined on the interior of the feasible set. Moreover, it so happens that, due to the
high degree of symmetry of these metrics, the geodesic equations are often explicitly
solved. This suggests that geodesic algorithms can be effectively used as computational
schemes in Interior Points Approach. This has been our main motivation for working
toward a convergence analysis of geodesic algorithms in Riemannian manifolds. As
remarked in the Introduction, some of these issues will be treated also in a forthcoming
paper ([4]).

We now present two intrinsic variants of Luenberger’s basic algorithm. Given a
geodesic v denote by I(t) the length of the segment between ~(0) and (t). Observe
that I(t) = ut for some p > 0.

Definition 4.1. If I' > 0, f : M — R is said to have ' -Lipschitzian gradient if for
any p, ¢ € M and any geodesic segment v : [0, a] — R joining p and ¢ we have

lgrad f(y(t)) — Pygrad f(p)| < Ti(2),

for any t € [0, a).
The first two steps of our algorithms are as follows:
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1. Given i, k > 1 feasible, compute p, = — grad f(zy).

2. Determine the unique geodesic z(t), t > 0, of M such that xz(0) = z; and
z'(0) = py.

The third step in Luenberger’s algorithm described above is replaced generating
the following intrinsic algorithms:

ALGORITHM A (fixed step)
Given 6; > 0 and d> > 0 such that §;I" + d2 < 1, where I is the Lipschitz constant
associated to grad f, choose

th € (B, 2(1 - 62))

ALGORITHM B (Armijo search)
Choose t;, = 27%*%, where > 0 is given and iy, is the least positive natural number
such that

(3) fla(tr)) < fze) — Btilgrad f(z)),

with 8 € (0,1).

5 Convergence analysis
The following result will be useful later.

Lemma 5.1 If v : [a,b] = M is a geodesic joining p and ¢ in M and f : M — R is
given, then

fl@) = f(p)+algrad f(p),~'(0))
+ / (grad [(1(t)) — Pygsy (t)grad £(p), P,(t)7'(0)) dt.

Proof. If h = f o then the chain rule implies

h!(t) = (grad f(v(1)), P (t)7'(0)),

since ' is parallel along . On the other hand,

(grad f(p),7'(0)) = (P, (t)grad f(p), P, (t)y'(0)),

since P, (t) is an isometry. Now, just apply the fundamental theorem of calculus to h.
|

We start our analysis by proving a quasi-convergence result for a not necessarily
convex function f under some additional compactness assumption on its sub-level sets
M? = {z € M; f(z) < a}, a € R. In the sequel, we shall remove this latter assumption
by assuming convexity of f and non-negative curvature for M. We remark that quasi-
convergence for (1) under Armijo search has been first proved in [7].
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Theorem 5.1 Let {z} be a sequence of points generated either by algorithm A or
by algorithm B. Then:
i) there exists a constant 8 such that

(4) flargr) < flak) — Btilgrad f(ze)|.

In particular, {f(z)} is non-increasing;
i) if M/(@) s bounded, then {x}} is quasi-convergent to the set of critical points of
f in the sense that:

1. {zy} is bounded;
2. xgg-loo d(xpr1, ) =0;

3. any accumulation point of {x} is a critical point of f.

Proof. Let us consider first the case of algorithm A. Choose v such that 4'(0) =
—grad f(z). From lemma 5 above, we have

feesr) = flae) — telgrad f(z))?

+ / " (erad £(1(t)) — Py (t)grad f(zy), —Pygrad f(zy)) dt.

Using the Cauchy-Schwartz inequality, the I'-Lipschitz condition and the isometry
character of P,, we get

2
flaein) < o)~ tulerad f@)? +larad f(og)PT%

f@) = G = lerad f(@n)PE.

IN

2
Since §; < t, < =

F(1 — d2), we have

r 1 r &0 1
2 )_5_2(1—62)_6<tk 2’

and 7) follows.
Since {f(x)} is non-increasing and M7 (*1) is compact, ii1) follows readily. More-
over, there exists \ lirJlrn flzg) =1* < f(xr), Vk. Thus, from (4) we obtain
—-+00

(5) Zt|gradfmk 12 Fzre)) < = (o) — ).

T B¢

S

Hence, lim tg|grad f(zg)| = 0 and, since §; < 1, we get
k—+o0

(6) lim |grad f(zx)| = 0.

k—+o00
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Now, d(zk+1,7k) < tilgrad f(ze)| implies

. n V< Lim b N
kgffoo d(Tpt1,2r) < AETOO telgrad f(zx)| =0

and this proves i2). To prove ii3), let £* be an accumulation point of {z}, i.e., there

exists a subsequence {xy,} such that ,liril {xy,;} = «*. Since grad f is continuous,
J—+0o0

we infer
lim |grad f(z)| = |grad f(z¥)|.
k—+o00

But (6) implies |grad f(z*)| = 0, hence z* is a critical point. This concludes the proof
for algorithm A. As for algorithm B, note that (4) is satisfied by construction of {z},
so the proof is the same as above. B

The following theorem is the heart of this section. It will allows us to give proofs
of the global convergence of algorithms A and B.

Theorem 5.2 Let f: M — R convex, where M has nonnegative curvature. Then,
for any y € M the following inequality holds

(7) & (zr11,y) < & (2x,y) + tilgrad f (o)) + 266 (f(y) — f (@),
where {x1} is the sequence generated either by algorithm A or B and t, is the stepsize.

Proof. Consider the geodesic hinge (1,72, @), where 7, is a minimal geodesic seg-
ment joining zp to y, 72 is a minimal geodesic segment joining xj to zp41 and
a = /(v1(0), —grad f(z1)). By the law of cosines (Theorem 1) we have

& (wpt1,y) < & (zr,y) + tilgrad f(zr)|® — 2t,d(zk, y)|grad f(zy)|cosb.

But
cos(m — 0) = —cosb

and
(grad f(z1),7'(0)) = |grad f(zx)| cos(m —6).

Putting this into (7) and using the first order convexity condition (Theorem 2), the
result follows. B

Remark. Inequality (7) has recently been applied in the setting of subgradient algo-
rithms in Riemannian geometry ([8]).

We have seen above that, even assuming a Lipschitz condition on grad f, we have
been able to prove global convergence in a weak sense only under some additional
compactness assumption on f. As noticed above, in the following two theorems, we
shall prove global convergence for algorithms A and B under suitable conditions on
M and f.

Theorem 5.3 Let f: M — R be convex with M a manifold of nonnegative curva-
ture. Then the sequence generated either by algorithm A or B converges globally to a
minimum point, should it exist.
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Proof. If a = min f(z) > —oo then M? # . Let y € M®. Inequality (7) gives
(8) & (zr41,y) < & (zr,y) + tilgrad f(z)]*.

Now, (5) implies

9) > tilgrad f(zx)]” < +oo,
k=1

thus {z} is bounded by (8). From Hopf-Rinow’s theorem, this sequence has some
accumulation point z*. Since {f(z)} in non-increasing (Theorem 6, 7)) and f is
continuous, we get

(10) lim f(ae) = f(2*), f(a*) < f(ws), Vk.

k—o00

From (8) and (9) above we conclude that {z} is such that the assumptions of the
elementary lemma below holds with &, = ¢ |grad f(zx)|>. Hence, klir+n T = T*.
—+o0

On the other hand, we know that 0 < 4; < ¢;, and klim trlgrad f(z)| = 0. Thus,
—00

i lirf lgrad f(zx)| = 0. Since grad f is continuous, we conclude grad f(z*) = 0. From

—+00

Corollary 3, z* is a minimum. B

Lemma 5.2 Let M be a complete metric space. If the sequence {x} C M has an
accumulation point x* satisfying

d2(1’k+1,1’*) S d2(l'k,1’*) + 6167

o]
where 0, > 0 and ) 0 < +o0, then lim gz = z*.

k=1 k—4o00

As remarked in the Introduction, it is proved in [2] that the convergence rate of the

constrained geometric descent method which solves (1) is given by the Kantorovitch
ratio (b — a)?/(b + a)?, if the associated Lagrangian L (see definition below), when
restricted to M, is strongly convex, i.e., a < HY < b for 0 < a < b. We use his
argument in order to prove a similar result for our algorithms.

Theorem 5.4 Let f : M — R be strongly convez, i.e., a < Hf < b for constants a
and b as above. Then the convergence rate of algorithms A and B is also given by the
Kantorovitch ratio.

Proof. Using Nash Theorem ([9]), we can isometrically imbed in some R™ a small
piece U of M containing a minimum point for f. If € > 0 is small enough then the set of
normal segments of radius e centered at points of U/ determine a tubular neighborhood
V of U. Clearly, V has a natural coordinate system given by y = (x,t) € U x B(0),
where B.(0) C R™ is an e-ball (here, n — m, m < n, is the dimension of M). We
identify (z,0) with x. Define g : V — R and h : V — R™ by g(z,t) = f(z) and
h(z,t) = t. It is obvious that & = {y € V;h(y) = 0} is a regular submanifold of V
and f is the restriction of g to U/. Introduce also the Lagrangian L : V x R™ — R
by L(y,\) = g(y) + (A, h(y)). Since g is constant and h is linear along the z-fibers
{(z,t);t € (—e¢,€)}, a straightforward computation implies HLm 0 = H. Thus, our
convexity assumption translates into Luenberger’s and everytijfng follows now from
Luenberger’s result referred to above. B
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6 Conclusions

Luenberger proposed a steepest descent method as an elegant device for analysing
the convergence rate estimates for the classical projected gradient algorithm. In this
article, we extend this methodology to the the more general framework of Riemannian
manifolds with nonnegative curvature. The obvious inclusion of the null curvature
case has applications to the metrics associated to affine directions such as Dikin’s
affine-scale and Karmarkar’s projective direction.
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