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1 Introduction

Let F™ = (M, F) be a Finsler space with M a smooth i.e. C*° manifold and F' : TM —
R, (z,y) = F(z,y). Assume that F™ is endowed with a Finsler 1-form 3;(z,y) and
set B = Bi(x,y)y’. Here i,7,k,... will run from 1 to n = dim M and the Einstein
convention on summation is implied. Then *F = L(F, §) in some conditions on L is
so that *F™ = (M,* F) is a new Finsler space. It is said that *F™ is obtained from
F™ by a f—change [7],[10].

Typical for *F™ are the Randers and Kropina spaces which are obtained from a
Riemannian space by particular S—changes.

Let g;j(z,y) be the Finsler metric tensor of F™. If one wishes the construction
of a new Finsler metric *g;; which depends on g;;(z,y), then because of the linear
structure of the set of Finsler tensor fields of a given type, the most general choice is

(1.1) *9ij(x,y) = p(z,9)gij(z,y) + o(z,y)Bij(z,y),

for p and o two Finsler scalars and B;;(z,y) a symmetric Finsler tensor field of type
(0,2). We may say that *g;; is obtained from g¢;; by a B—change.

It is clear that *g;; is no longer a Finsler metric except if some strong conditions on
p,o and B;; are imposed. Metrics similar to (1.1) appear in [2] and [5] from physical
considerations. See also [11].

In order to relax such conditions we do not ask *g;; be a Finsler metric but a
generalized Lagrange metric in Miron’ sense, shortly a G L—metric. For the theory of
the G L-metrics we refer to [9], ch.X.

As such (*g;;) has to satisfy

a) det(*g;;) # 0 and

b) the quadratic from *g;;(z,y)£%¢7, (€') € R", to be of constant signature.
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Even this minimal requirements are not easy to be fullfiled except for some par-
ticular o, p and By;.

By our best knowledge the following two particular forms of the GL-metric (1.1)
were studied:

(1.2) *gij (z,y) = €2a(x’y)gij($, Y)-

This class of G L—metrics contains the Miron—Tavakol metrics used by them in General
Relativity and the Antonelli metrics which were introduced by P.L. Antonelli for some
studies in Biology and Ecology. For details see [9], ch.XI, and reference therein;

(1.3) *9i5(z,y) = gij (2, y) + o(2,9)yiy;, ¥i = gij(z,y)y’ .

Particular forms of the GL—metric (1.3) were used by R. Miron in Relativistic Geo-
metrical Optics. See also [9], ch.XIIL.
Some particular forms of the G L-metric

(1.4) *9ij(x,y) = 9ij(z,y) + o(z,y)Bi(z,y) B;j(z,y),

with B;(z,y) = gij(z,y)B’(z,y), for Bi(x,y) a given Finsler vector field, were intro-
duced by R.G. Beil in order to develop his interesting unified field theory ([4]). These
were called Beil metrics. As such we refer to *g;; in (1.4) as to the Beil metric, too.
The following comment of R.G.Beil is illuminating on (1.4). ”Since in my unified the-
ory the quantity k£ which correspond to your o is related to the gravitational constant,
this means that a possible physical interpretation of your theory with a y-dependent
o is that gravitation itself is velocity dependent. This possibility is mentioned , for
example, in Section 40.8 of the famous book ” Gravitation” by Misner, Thorne and
Wheeler”. See [13].
of

The particular form of (1.4) obtained for 0 = 1 and B; = ﬁ’f : M — IR was
x

considered by C. Udriste in [14]. He proved that if f is proper i.e. f (K is a compact
set whenever K is compact, then the Finsler manifold (M,* g;j(x,y)) is complete. A
Riemannian version of (1.1), that is, was used by T. Aubin in order to prove that any
compact Riemannian manifold of dimension greater then 2 admits a metric whose
scalar curvature is a negative constant. See [3] and for other connected results.

The geometry of the G L-metrics (1.4) was not investigated in a systematic way. It
is our purpose to fill this gap. After some preliminaries in Section 2, we show in Section
3 that (*g;;) from (1.4) is a G L-metric and we point out cases when it reduces to a
Lagrange or to a Finsler metric. In Section 4 we discuss possibilities for introducing
metrical connections for the G L-space (M,* g;;). In Section 5 we digress on parallel
and resp. concurrent Finsler vector fields showing that the usual definitions for these
notions are also justified from the viewpoint of the almost Hermitian model of a
G L—space. For such a model see [9], ch.X. Section 6 is devoted to the analysis of the
G L-metric (1.4) for B' a concurent Finsler vector field. For o a constant we rediscover
a modification of a Finsler function studied by M. Matsumoto and K. Eguchi in [8].
The case when o is a solution of the so—called Tavakol-Van der Berg equation is
investigated, too. In Section 7 we treat a Beil metric associated to a Finsler space
with (o, #)-metric. It is a future task to find properties of the GL-metric (1.4) when
F" is a particular Finsler space or its dimension is low (2 or 3).
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2 Preliminaries

Let M be a smooth i.e. C'*° manifold, paracompact and of dimension n, TM its
tangent manifold and 7 : TM — M its tangent bundle. If z = (2%), 4,4, k,... = 1,...,n
are local coordinates on M, then the induced coordinates on T'M will be (z,y) =

,u€ TyM, x € M. The change of

i

(2 : 2’ o7, y") with (y') provided by u, =y’

0
oxt
coordinates (z,y) — (Z,9) on TM are as follows.

T

7t =Fi(zt, ..., 2"), rank 8_:6 =n
oxk

(2.1) .

., 01 (2)"

y - amk y .

The geometrical objects on T'M whose local components change by (2.1) as on M
i.e. ignoring their dependence on y, will be called Finsler objects as in [7] or d—objects
as in [9].

0 0
¢ seb g ort’ " Oyt
VuTM = Ker (D71)y, u € TM, where DT means the differential of 7, is spanned by

and notice that the vertical subspace of T,,TM i.e.

(0;)- The d-objects can be expressed using (0;).

A function F': TM — IR which is positive, smooth on 7'M \ 0 and only continuous
in the rest, positively homogeneous of degree 1 with respect to y i.e. F(z,\y) =
AF(z,y), A > 0 and with the quadratic form g;;(z,y)£%¢’, (¢Y) € IR™ nondegenerate
and of constant signature, where

1. .
(2.2) gij(z,y) = §6i6jF2:

is called a fundamental Finsler function. The pair F™ = (M, F) is called a Finsler
space.

The function g;;(z, y) are the components of a Finsler tensor field called the Finsler
metric of F™.

A supplement H,TM of V,TM i.e. the decomposition in a direct sum T, TM =
H,TM ® V,TM holds, will be called the horizontal space and the distribution
v — H,TM will be called a horizontal distribution. A basis of it of the form
i = 8; — N¥(x,y)dy, provides the functions (N¥(z,y)) called the local coefficients.
These functions have a special rule of change by (2.1) and in turn they completely
determine the horizontal distribution called also a nonlinear connection. Then (§;, 9;)
is a basis adapted to the previous decomposition of 7,7 M. The Finsler objects may
be also expressed by using (0;). We notice that (J;) are Finsler vector fields. For more
details we refer to [7],[9].

3 The Beil metric

Let F™ = (M, F) be a Finsler space and g;;(,y) its Finsler metric. Assume that F™
is endowed with a Finsler vector field B = Bi(z,y)0; and let B;(x,y)dz’ the Finsler
1-form with B; = ¢;xB*. The lowering and rising of indices will be done with (g;;) and
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(¢’%), where g'*gp; = 5{, respectively. Let o : TM — R, (z,y) — o(z,y) a Finsler
scalar. We set

(31) *gij(m7y) = gz](xay) + U(l’,y)Bl(.’L',y)B](fE,y)

The functions (*g;;) from (3.1) define for ¢ > 0 a positive definite G L-metric
called the Beil metric.

It is clear that (*g;;) are the components of a symmetric d-tensor field. We look
for the inverse of the matrix (*g;;) in the form *g/* = *¢/* — *¢ B/ B* with *o to be

determined. From *g;;*g’* = 6% it follows that *o = with B? = B;B' =

_9
o 1+ o0B?’
9;;B'B7 (the length of B with respect to g;;). Thus we have

3.2 gih = git - 7 __pipk,
(3-2) g g 1+o0B?

Consequently, we have det(g;;) # 0.
The quadratic from ®(£) = *g;;£¢7 = g;;61¢7 + o(BEF)? is clear positive definite
in our hypothesis. q.e.d.
1 o
We notice that (3.2) holds in the weaker condition o # 5 and if g;;§'¢’ is only

of constant signature, the signature of ®(¢) will be constant for some o and (B*) at
least locally.

Remark 3.1. The GL-metric (3.1) appears in papers by R.G. Beil ([4]) for F" a
pseudo—Riemannian space or a Minkowski space. It was called Beil’s metric.

We notice that for B¢ = 3 in (3.1) one obtains a general version of the Synge
metric which was used by R. Miron for a geometrical theory of Relativistic Optics
(cf. [9], ch.XI).

In the following we shall assume B* # y’ and use the ideas and techniques from
[9], ch.XI.

One says that *g;; is reducible to a Lagrange metric, shortly an L-metric if there

1. .
exists a Lagrangian L : TM — IR such that *¢;; = 581»8]'[1. A necessary and sufficient

condition for *g;; be reducible to an L-metric is the symmetry in all indices of the

1.
Cartan tensor field *Cjji = iak*gij i.e.

(3.3) 0" gij = 0i" g;.

Using (3.1) this condition becomes

5.4) 61, B;Bj — qukBj + a(ékBi - Bj — 9;By, -.Bj)+
+0(B; - Ok Bj — By, - 0;B;) =0, &1, 1= Oyo.
Multiplying it by B’ one gets

BQ(é'kBi —0;By) + UBQ(8kBi — 8lBk)+

(3.5) . , ) ,
+U(Bt . 8kB] -BJ — BkalB] . B]) =0.



Beil Metrics Associated to a Finsler Space )

If (3.4) is an identity, then (3.5) should be an identity for any o and B;. But for
B; = B;(z) and o = F?, (3.5) reduces to y;B; — y;Br = 0 which is not an identity
for any B;. Thus in general *g;;(z,y) is not reducible to an L-metric.

We have a case when *g;;(z,y) is an L-metric as follows.

Proposition 3.1. Assume B; = B;(z). If o(x,y) = f(Bi(x)y?) for a smooth function
f:IR = IR, then *g;; is an L-metric.

Indeed, it is easy to check that in these hypothesis (3.4) identically holds. Notice
1. .
that we do not know which is L such that *g;; = iaiajL.
It is said that *g;;(z,y) is weakly regular if its absolute energy

(3.6) E(x,y) = "gij(z,y)y'y’ = F*(2,y) + o(z,y)(Biy')?
is a regular Lagrangian i.e. the matrix with the entries

1. .
(3.7) akn(2,y) = 50kOnE,

is of rank n.
A direct calculation yields

(3.8) akh = gkn + §0khﬂ2 + B(okBh + onBr) + o BkBr + 0BBkn,
(3.8) B := Bi(z,9)y", Br := 0B, Brn = OkOnB, okn 1= OrOn0, Gp := o

It is hopeless to decide if agy, is invertible or not. However we have some interesting
particular cases.

Proposition 3.2

a) If B is orthogonal to the Liouville vector field C = yiéi, then *g;; is weakly
reqular and agp(x,y) = grn(x,y).

b) If B; = Bi(z) and o(x,y) = f(B) for some smooth function f : R — R, then *g;;
is weakly reqular if and only if 1+ p(B)B? # 0, where 2p(B3) = B2 f" +48f' +2f,

f= %, = ;liﬁ]; and we have
((3.9) arn(z,y) = grn(z,y) + (x,y) Bi(z) By ().

Proof. a) The condition B orthogonal to C is equivalent to 8 = 0. Thus £(z,y) =
F?(z,y) and so agp = gkh-

b) By a direct calculation one finds ((3.9). Hence (agp) has the same form as * gy,
with o replaced by ¢. The conclusion follows.

We keep the hypothesis B; = B;(z) and o = f(8), 8 # 0. From ((3.9) we see that
we have again app = grn when ¢ = 0. The differential equation B2 f" +48f' +2f =0
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b
takes the form (B%2f' + 28f)" = 0 and so its general solution is f(3) = % + 7
a,b € IR. The metric *g;; becomes

a b
@y (Bsov)ys)?) Bi(=)B;().

Notice that although *g;; is an L-metric, we do not yet know the Lagrangian L.

The absolute energy of *g;; is now €& = F? +a(F;(z)y%) + b and the Lagrange space
L" = (M,€) is called an almost Finslerian-Lagrange space (see Section 6, ch.IX of
9)).

We may put ((3.9) into the form

((3.10) *gij = gij + <B

1
((3.9) akn(T,y) = “grn + <§52f" + 25f'> By B,.
Thus we see that ag, = *grp if and only if f is a solution of the differential equation
1 d
§f"’82 +28f =0ie. f(B)=c— 7 c,d € R.

We know that *ggp, is an L-metric (in previous hypothesis). The condition agp, = *gg
gives L in the form L(z,y) = £(z,y) + A;(z)y’ + (), where A; is a covector and
a scalar. Inserting here £ we get

d
Bi(z)y’

Therefore we found a case when *g;; is an L—metric with L of explicit form ((3.10)’.

((3.10)" L(z,y) = F*(z,y) + c(Bi(x,y)y")” — + Ai(z)y' + (), ¢c,d € R.

Remark 3.2 In the hypothesis of a) in Proposition 3.2, *g;; is not necessarily an L—
metric. If o(x,y) and B;(x,y) are positively homogeneous of degree 0, then *g;;(z, y)
is so and (M,* g;5) is a generalized Finsler space in Izumi’ sense (see [6]).

Remark 3.3. The condition B orthogonal to C is equivalent with the condition B is
tangent to the indicatrix bundle I(M) C T M.

Caution. The conditions § = 0 and B; = B;(x) are incompatible since they lead to
B =0.

Remark 3.4. If in ((3.10) we take d = 0, 4; =0, ¢ =0, ¢ > 0, then *F? := L(z,y)
is positively homogeneous of degree 2 and so *F" = (M,* F') becomes a Finsler space.
Notice that *F' is getting from F' by a f—change and in this case *g;; reduces to a
Finsler metric.

Remark 3.5. An interesting Beil metric can be associated to a Finsler space F™ with
an (a, B)—metric. Here a® = a;j(z)y'y’ and 8 = b;i(z)y’, where a;; is a Riemannian
metric an b; a covector field on M. One may consider

(3.12) *9ij(z,y) = aij(x) + o(z,y)bi(z)b;(z),

where o is a Finsler scalar such that 1 + ob® # 0 for b = a*b;b;. This GL-metric
is not reducible to an L—metric or a Finsler metric. The previous discussion applies,
too.
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4 Metrical connections for GL= (M g;j(z,y))

In Finsler geometry as well as in their generalizations, the nonlinear connections play
an important role. For instance these connections allow us to work with d— or Finsler
objects and so to keep and check easily the geometrical meaning of calculation in local
coordinates.

A nonlinear connection always exists if M is paracompact. But the nonlinear
connections derived from or associated in a way to a GL-metric are much more
useful. There are no possibilities to find nonlinear connections for any G L—metric. But
there are some classes of G L—metrics for which such possibilities exist. One is that of
weakly regular GL-metrics and as it is well known there exist nonlinear connections
canonically derived from a Lagrangian, a Finslerian or a Riemannian metric. See [9]
for details.

We recall here the Cartan nonlinear connection for F™. Set

. 1 . . .
(4.1) Yik(T,y) = 59”(@'9% + Okgnj — Ongjr), Yoo == Viry'y*.

o . 1. .
Then Nj = 56]-730 are the local coefficients of the Cartan nonlinear connection.

For any Finsler connection FT'(N) we denote by |k and | ; 1ts h—and v—covariant
derivatives. Then FT'(N) is called h—metrical if g;;;, = 0 and v—metrical if g;; |k =0.
We consider

) 1 .
Fi, = §g’h(5jghk + 0kgin — Ongjt),
(4.2)
ih(

1 . .
ik =739 0jgnk + Okgin — Ongijk),

o .
where 6; = 9;— N¥0.. For F™ we have four remarkable Finsler connections based on
(NV5)-
We mention here only the Cartan connection CT'(N) = (N;-, ka, C;k). This is v—
and h-metrical and two torsions of it vanishes.
Let us come back to the G L-metric (3.1). We cannot derive a nonlinear connection
from it. But since it is constructed with g;;(z,y), we may take into consideration the

;) and then all possible nonlinear connections have

the form N7 =N’ — A% with A%(z,y) an arbitrary Finsler tensor field of type (1,1).

Now we replace in the right side of (4.2) the metric g;; by *¢;; and the operator J;
by *6; = 0;— N %0, + Akd; and denote the results in the left side by *F}, and *C,
respectively. Thus we get a Finsler connection *CT(N) = (N},* F};,* C%) which we
call standard metrical connection of G L.

o
Cartan nonlinear connection (N

S

This connection is metrical i.e. *g"Tk =0, *g;j |k = 0 and its h(hh)- torsion and
1] . .

v(vv)—torsion vanish. It is clear that it depends on Aj but if A} is given apriori it is

the unique Finsler connection with the above properties. For A;- =0weset "F:=°F

and *C :=°C. Thus we have
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wy SFi, =" Fi, ; G (430, gk + ALD,gn; — A3, g5k
O =*Cly.
The first equation in (4.3) takes also the form
*Fjir =* Fjir +* Cris A5 +* Cjis Ay —* g™ A} *Cina.
Remark 4.1. If (*g;;) reduces to an L-metric or to a Finsler metric, (4.3) becomes

SF;’k = *Fjik + O}, A3

s

(4.3) . i
ik — Cjk‘

We notice the following possible choices of A;- : )\(a:,y)é;:, y'y;, B'y;, y'B;, B'B,.
By (3.1) we find

*Fj, =BiFj + 2 9™"(6;(BrBr) + 61 (ByB;) — 61,(B;By)]+

1.,
t5 g’h(UthBk + oy BrBj — 01, B;By),

(4.4)

*Cl, =BiC + 2 9"10;(BwBy) + 0;(BiB;) — 0;(B;By) ]+

1. .
+§*glh(d'thBk + 6y BpBj — 6, BjBy), with

(4.4) Bl = 9! —*0B'B,, o0y, := 010, 6} := Oko, *0 =0 /(1 +0B?).

Now, °F}; and *C%, are easily deduced from (4.3).

Remark 4.2. The matrix B! is invertible. Its inverse is (B~1)f = 6§ + cB*By. As
such from (4.4) we can find F' and C as depending on *F and *C.

In order to evaluate the torsions and curvatures of *CT'(°N) it is more convenient
to put (4.4) into the form

“Fi = Fj + Al

(4.5) ,
“Cy, = Clhi+ Agk’ or
: 1
A;‘k = 2* Zh[(sk(O'B Bh) +(5 (UBth) —(5h(0B Bk)]
(4.5)' B

o 1 .
Aje = 579" 0k(oB; Br) + 0;(0BuBy) — On(0B; Br)l+
—*O'BZB Cz]k

The torsions of *CT'(°N) are as follows.
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(4.6) T =0, "Ry = Ry, "Sj =0
*Pj, = P}, — A}; and "C}; from (4.5).
As for the curvatures we have
. . o o . 0 .
(4.7) *Si'kn = Si'knt Aj'en + (Cf) A+ A5,C5p, — (K/R))
(4.7)' Ajikn = 0n Ayt A3 AL, — (K/D),
where —(k/h) means the substraction of the preceeding terms with k replaced by h.

o]

(4.8) “Pi'kn = Pj'kn 4 00— My — Ol At

ol

. X . . o . o .
+8kC]l'h ~+ Ok Ajh —C;SA‘Z,C—{— A;spifk_ A;sAzh,

where |k denotes a covariant derivative constructed with A;k

(4.9) “Rj'rn = Rj'wn + Aj'kn + (F AL, + A5 Fl, — (k/Rh)+ A5, Ry,
where

(4.9) Ajlgn = 6hA§'k + A;‘kAih = (k/h).

5 Parallel and concurrent Finsler vector fields

Let Bi(x,y) be a Finsler vector field and FT'(N) be a Finsler connection. Then it is
said that (B?) is parallel if

(5.1) B}, =0, B'|, =0
and (B?) is concurrent if
(5.2) v = =0k, B[, =0.

It is our purpose to confirm the correctness of these definitions from the viewpoint
of the almost Kéahlerian model of a Finsler space (see [9], ch.VII for details on this
model). A different confirmation of these definitions is given in [8] using the principal
Finsler bundle model due to M. Matsumoto. The giving of IV is equivalent to the
decomposition

(5.3) T.TM = H,TM &V, TM, u € TM (Whitney’ sum).

Accordingly we have two projectors h and v and an almost product structure P such
that if we put X = hX + vX for a vector field X on T'M, then

(5.5) P(hX) = hX, P(vX) = —vX.

The set of Finsler connections is in a one—to—one correspondence with the set of linear
connections on T'M which verify
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(5.6) DxP =0, DxF =0 for any vector field X on T'M.

By the very definition, a vector field B on T'M is parallel with respect to D if
(5.7) DxB =0,

and is concurrent if

(5.8) DxB = —X, for any vector field X on TM.

Let (d;,9;) be the usual adapted basis for the decomposition (5.3). The above men-
tioned one—to—one correspondence is established by

Dak(sj' = Lj-kéi, Dakéj = V]’,cél,
ngaj = L;kai, Dékaj = VJ’,ﬁZ,
for D ¢ FT(N) = (N}, Ly, V).

It is obvious that (5 7) is equivalent to

(5.7)! D5, B =0, D; B =0,

(5.9)

and (5.8) is equivalent to
(5.8)’ Ds, B = —6;, Dy B = —0.

Let now be B = B'(x,y)d; + Bi(z,y)d;. Then (5.7)" is equivalent by virtue of (5.9)
with
(5.7)" Bj, =0, B'|,=0, B}, =0, BY|, =
One may associate to Bi(z,y) at least the following three vector fields on TM : Bi6;,
B'0;, Bi§; + B'0; and it is obvious by (5.7)" that Bi(x,y) is parallel in the sense of
(5.1) if and only if at least one from these vector fields on T'M is parallel with respect
to D. Thus (5.1) is in agreement with the usual definition of parallelism.

Let us make a similar analysis for concurrent Finsler vector fields. By (5.8), B is

concurrent on 7'M if and only if
(5.10) B, = -6, B|i =0, B}, =0, B’
k

| = =0k

Now we assume that D or FT'(N) is of Cartan type, that is,

The tensors y‘ik and yi| . are called h—deflection and v-deflection tensors, respectively.
The equations (5.11) hold for all four remarkable connections in Finsler spaces.

If moreover we assume that B is positively homogeneous of degree 1, a natural
assumption in Finslerian setting, writing Bi |k = —0;, in the form B +V’ Bi = —4

and contracting it by yk it results using (5.11) that ykasz = —y'. Thus by the Euler
theorem, B¢ = —y* and then B‘k = 0 reduces to ylk = 0 i.e. the first equation in

(5.11). Concluding, if we associate to the Finsler vector field B*(z,y) the vector field
B = Bi(x,y)6; —y'0; on TM, we find that (B(z,y)) is concurrent in the sense of (5.2)
if and only if B is concurrent by the new definition of concurrence on any manifold.
In other words, the condition (5.2) is in agreement with the notion of concurrence for
vector fields.
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6 The metric *g;; with B'(z,y) a concurrent Finsler
vector field

In this section we are dealing with the G L-metric *g;; given by (3.1) for Bi(z,y) a
concurrent Finsler vector field with respect to the Cartan connection CT of F™ i.e.

i 5 il _
(6.1) =6, B',=0.
First we notice some results on concurrent Finsler vector fields due to M. Matsumoto

and K. Eguchi [8].
If Bi(x,y) is concurrent we have with respect to CT :

Bij; = —gij, Bilj =0,

B"Ryiik =0, B"Ppiji, + Ciji = 0, B"Sp5, =0,

In these circumstancies a direct calculation yields

) * . 1 .
A;k = 2—Z_Bl(0'kBj + O’jBk + U(BSUS)BjBk — 2Ugjk) — §UszBk

(6.7) , . 1.,
Al = %B’(dkBj +06;Bi + 0(B%6:) B; By, — 56" B; By, where
(6.7)' o) = 0o, O := 5ka, ol = g% oy, ot = g™ oy

Looking at (6.7) we see that the simplest case is given by

(6.8) or =0, o =0.

From (6.8) it results that o is a constant c. And *F? := *gijyiyj takes the form
(6.9) *F? = F? 4+ ¢f%, B = Bi(x)y'.

Thus, for ¢ > 0, *F is a new Finsler function which is obtained from F' by a particular
fB—change.

The case ¢ = 1 is studied in [8].

Further on we have
(6.10) : jik = jik - *UBigjk: *C;:k = ]Zk
Remark 6.1. The Cartan nonlinear connection of *F™ = (M,* F) is given by N} =N
3-— e Biy; i.e. the difference tensor is A;- =0 Biy;. Inserting it in (4.3)" we find

, , c . )
SF]?k = *F]?k. Therefore, in the geometry of *F™ we may equally use N or Nj.
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By (6.10) we immediately get
(6.11) *Sijkn = Sijkn-
Again by (6.10) but after a long calculation one finds
(6.12) *Rijkn = Rijen + “0(gicgjn — Gingjk)-

This suggests us to take into consideration the case when F™ is h—isotropic i.e. there
exists a constant K such that R;jr, = K(gikgjn — gingjk)- A contraction of this last
equation by B gives for K # 0, By,gjn—Bngjr = 0in virtue of (6.3). A new contraction
by B* yields B?g;, = B;By, which contradicts the condition rank (¢;;) = n > 1. Thus
we have

Theorem 6.1. If F™ is h—isotropic, then it does not admit any concurrent Finsler
vector field.

The proof of the following two theorems are the same as for ¢ = 1 (see Theorems
14 and 15 in [8]).

Theorem 6.2. If F™ admits a concurrent Finsler vector field, then there is no a
Finsler vector field which to be concurrent with respect to *F given by (6.9).
Theorem 6.3. If F* admits a concurrent Finsler vector field and is R3-like, then
*F'" = (M,* F) with *F from (6.5) is also R3-like.

Now we consider a more complicated case

(6.13) o, =0, o #0.
. 0o ¢, 0o .
Remark 6.2. The equation oy, := 9oh N E g = 0 is known as Tavakol-Van der
v s
Berg equation. A solution of it is for instance o = aF? for a € IR. For more details

see [12].
Now (6.10) is replaced by
*F]?k = F]Zk - **UBigjk

; ; g _ ;. . . s - 1 . g
*C]Zk = C]lk + %Bl(UkBj + UjBk + O'(B O'S)BjBk) — 50’ B]Bk

(6.14)

The Remark 6.1 is still valid for this case. Precisely, if we ask for the vanishing of
c . c . " . *
the h—deflection of *FI'(N), then *N} =N~ ¢ B'y; and so *FT'(N) coincides with
C
*FT(N).
Now we notice

. *O,BQ ) .
(6.15) C; =C; + “og 70 Cj = C;,
1. . )
(6.16) * jik = Cjik + §(O'kBiBj + O'jBin - O'iBjBk).

A long calculation yields
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**stkh = Rjskn + *0(gjxgsh — gjngsk)+

6.17 o 1 ;
( ) +?Bs(6k0' “gjh — Ono - gjk) + §BJ'BSRZ:hUlI'

Let us assume that F™™ is a locally Minkowski space. Then R;%;;, = 0 and C]’fk‘h =0.In

c . c
alocal chart in which g;; do not depend on z we have N'% = 0 and so 9o =N%d), =0
i.e. o does not depend on x.

The equation (6.17) reduces to

(6.18) "Rjskh = "0(gjkgsh — Gjngsk)-
It takes also the form

*Rjskn = *0(*gjx*gsh — *gjn"9gsk) + 0*0(B;jBhsi, + BsByjn) for

6.18)’
(6.18) Bhsk := Brgsk — Brgsh.-

We notice that By, is never vanishing since otherwise a contraction by B” gives a
contradiction with rank (g;;) =n > 1.

7 A Beil metric for a Finsler space
with (o, 5)—metric

Here we consider again the Beil metric described in Remark 3.5. Let F'™ be a Finsler
space with an («, f)-metric. A natural Beil metric is then

(7.1) *9ij(z,y) = aij(z) + o (2, y)bi(z)b;(v).

Let v;k be the Christoffel symbols for a;;(z). Then N;'. = fyjikyk = 7]120 and the triple
T = (v}, Vjx,0) may be thought of as a Finsler connection.
We have

Theorem 7.1. If b;(x) is parallel and o is covariant constant with respect to T, then
T is like Chern—Rund connection for (*gi;).

Proof. Let ., denote the h—covariant derivative with respect to I'. Notice that v—
covariant derivative is just the derivative with respect to y. Our hypothesis read

(72) bi;k = 0, 6k0 = 0, 514: = 6k — 7,@035.
Then we easily get

* ik — Oro bzb =0
(73) Gisjk ( .k ) j
*gmk = (6k0)bib]’ = Q*Cikj.

Thus I' is h—metrical and no metrical for *g;;. Hence it is similar to the Chern—-Rund
connection from Finsler geometry. q.e.d.

The Chern-Rund connection is a remarkable one in Finsler geometry ([1]). Notice
that its h—deflection vanishes.
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From now on we assume b;;;, = 0 and o = 0.
A direct calculation yields

(7.4) o 1
O = 5 b'(0nb; +5bx +o(b"64)bjbr) — 59" jbe.

The first equation in (7.4) is important in many respects. For instance using it we
C

find the h—curvature of *FT'(N) in the form
(7.5) “Ri'jn = ' jn+ A s RSy,

where 73, is the curvature tensor of a;;(x) and R;k = vo';i. Here, as before, the
index 0 indicates the contraction by y. Consequently, (7.5) takes the form

(7.6) “Ru i = (0154 Ansy") 1.
From Ricci identities we find v;° j1bs = 0 and from (7.5) we deduce
(7.7) *Rhijk = Yhijk + %bhbi’yosjkds-
As for Ricci curvatures one finds
(7.8) *Rij = rij,
where r;; is the Ricci curvature for (a;;(x)). From here it results
(7.9) *R=r,
where *R and r are the scalar curvatures for (*g;;) and (a;;(x)), respectively.
So, the h—Einstein tensor field of *g;; i.e. *E;; =" R;; — %*R*gij is related to the

Einstein tensor E;; of a;;(z) by

ar

Consequently, the h-Einstein equation for GL i.e. *E;; = k*1;; with £ € IR reduces
to

r
(7.11) rij — 501';' = KTij,
where

% ar
(712) Tij = Tij — %bzb]

The equation (7.11) is the Einstein equation for (M, a;;(z)) but with the energy—
momentum tensor influenced by a field described by b;. In the the unified theory of
R.G. Beil the term b;b; in (7.12) is a ”matter term” which could be the energy density
of the self-field of a charged object.
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