Complex Lagrange Spaces

Gheorghe Munteanu

Abstract

The geometry of Lagrange spaces is a field of large interest that knows a
permanent development [6].

In the present paper our desire is to extend the results from the geomety
of complex Finsler manifolds, recently obtained by T. Aikou [1], to the case of
manifolds endowed with a complex Lagrangian. We shall make a study of holo-
morphic bundle of (1,0) vector fields using a nonlinear connection determined
by the complex Lagrange metric. Finally, the discovered results will be applied
to the case of complex Lagrangian of electromagnetic field.
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1 The geometry of 7°M holomorphic bundle

We consider M be a complex manifold, dim ¢ M = n, (U, (2')) complex coordinates
in a local map. The complexification T¢ M of tangent bundle T'M is decomposed at
each point z € U after the (1, 0) vector fields and their conjugate of (0,1) type ([3],
[5]), TeM = T'M & T" M.

The bundle 7'M is a holomorphic bundle and the projection 7y : T'M — M is a
holomorphic map, dim ¢7'M = 2n, and T" M is the conjugate of T' M.

We denote by (7' (U), 2%,7°) the induced complex coordinates on 7M. The tran-
sition functions of the holomorphic tangent bundle T"(T' M), of the complex manifold
T'M, are given by

(1.1) 02" )9z 0
' (022" )02°02F)nk  92'7)020 |-

According to [1], a vector bundle E over T'M is said to be a Finsler complex
bundle if E = n"(E), i. e. E is the pull-back of a complex bundle E over M. If E is
holomorphic, then E is called a holomorphic Finsler vector bundle.

The vertical subbundle

V(I'M) ={£ € T'"(T'M) | m7.(§) = 0}
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is a vector bundle of rank n over T'M; a base of local fields is {9/9n'} and from (1.1)
it follows that V(T'M) is a holomorphic bundle of Finsler type.

Let H(T'M) be a supplementary subundle of V(T'M) in T"(T'M) i. e. T'(T'M)
H(T'M) @& V(T'M). This spliting determines a distribution N : u = (z,n?)
H,(T'M) which will be called a complex nonlinear connection. Let us consider

o

0 0

9 _ ;0
0zt Ozl

(1.2)

alocal base on H,,(T'M). The complex functions N7 (z,7) are called the coefficients of
the complex nonlinear connection. After (1.1) the functions N; satisfy the following

transformation law
(1 21) Nli 92k _ o' - 522" nk
‘ K 0zi — 09zk 0 92392k

From the spliting of T'(T'M) it results that H(T'M) is a Finsler complex vector
bundle of rank n therefore the adapted base {3/62'} changes by the rule

) 9z §
(1.3) 0z? 0zt 6z

The dual base of (§/82%,0/0n") will be denoted by (dz?, dn?).

Counsider the conjugates H(T'M) and V (T'M). These are subbundles of T"(T"M).
It results the following decomposition of the complexified tangent bundle

(14) To(T'M) =T (T'M)@T"(T'M) = H(T'M) @ V(T'M) ® H(T'M) & V(T'M)

The corresponding projectors on the distributions are denoted by h, v, h and .

. . 8 _ 97 8
Taking into account that BT = BT BT

Proposition 1.1. A local base on the conjugate T"(T'M) is

(-2 w2 2)
07 oz o’ o

and it is changed by the rules

by conjugation it results

W) 6P 0 o
' 078 0z oz ot oz ofd’

where WZ (z,m) are the conjugates of coefficients of the nonlinear connection Nij and
are transformed by the rule obtained from (1.2') by conjugation.

If E = T'M then T'M is a holomorphic bundle of Finsler type that can be
identified with H(T'M) & V(T'M).

Since T'M is a holomorphic manifold, on the complexification T(T'M) there
exists a natural complex strucure J defined by

J(0)9z%) =id)az* ;  J(8/on*) =id)ont ;

J(0/7") = —i0joz* ; J(0/on*) = —id/om" |, (i = -1),
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which is globaly defined.
For simplicity, in the following we shall use for the adapted bases the abreviations

o =0/02% ; 0, =0/0n* and 55272'5/52]“ ; 8526/8#“.

Hence, in adapted bases the complex structure are written

(1.6) J(0) = idg 5 J(Ok) =0k ; J(0f) = —idy ; J(O) = —i0y.
Moreover, let us consider the adjoint almost tangent structures F' and F™*
. F(0k) =0k F(Ok) =0; F(op) =05 F(0;) =0
F*(0k) = 0;  F*(0r) = 0k;  F*(0p) =0;  F*(0f) = o7

globaly defined as it results from (1.3) and (1.5).
The following relations hold

F-F*=v+% ; F*.F=h+h; J-F=F-J; J-F*=F*.]

and
F2=0 F*=0 J?’=-1,

i.e., the structures (J, F,J - F) and (J, F*,J - F*) are commutative almost semiqater-
nionic structures ([8]) , adjoint one to the other.

Let us consider D a derivative law on the complexification T (T'M).

Through analogy to the real case ([6]), we say that D is a N-linear complex connec-
tion (shortly N-l.c.c.) if it preserves the four distributions determined by the complex
nonlinear connection N.

In adapted base (Jy, Oy, 03, O;) the N-lL.c.c. D has the local expression

1? 1! 3! 31

D(;k(Sj :ij di; Dakéj :Cjk 0i; D%(Sj :LjE 0i; Dazéj :OjE 0;

yi yi 4i 4
Ds,0; =Lj 0i; Dy, 0; =Cjy 05 Ds 05 =Ljz 0i; Do 0; =C 7 i
(1.8) 7 7 7 7
3 3 1 1
Ds, (5; =Ljy 5;; Dy, (5; =Cjy, 5;; D%&]—, =L3% (5;; Dazts; =C7% 5;
7 A )7 )7
D05 =L 05 D005 =Cj 05 D05 =Lz 05 D05 =C7z 05

Because DxY = DY it results that some of the coefficients in (1.8) are the
13 13
conjugate of the others, for instance iﬁ: ijk, etc.

Let us note that a N-l.c.c. is decomposed in D = D' + D", with D" = D’ and in
order D' = D'" + D' ;D" = D"" + D"V, where D'* = Ds,, D"V = D,,, D'""=
Ds_, D' = Ds_.

Proposition 1.2. D is a N-l.c.c. if and only if DJ =0 and Dv = 0.

Proof. DJ = 0 implies that D’ is a derivative law of (1,0)-type, and D" of (0,1)-
type. Dv = 0 is the condition to preserve the H(T'M) and V(T'M) on T'(T'M). By
conjugation it results Dv = 0.
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The N-l.c.c. D is said to be normal if in addition the connection coefficients satisfy
the following conditions

1i 9i g1 4i 1 N

37 40
Lix=Ljx 5 Ljx=Ljx i Cju=Cjr 5 Cj=Cj

(and their conjugates). In the case of a normal N-l.c.c. we shall use a simple written
form for the coefficients

1% ) 3t - 18 i

- . 3 —
Lj=LYy 5 Lj= L%k ; Cju=0Cj, ; and Cj= C';l.k.

Theorem 1.3. D is a normal N-l.c.c. if and only if it is a commutative semiquater-
nionic connection with respect to both structures, i.e.,

DJ =0, DF =0, DF* = 0.

The proof results from the fact F- F* = v and Dx(FY) = FDxY for any X and
Y vector fields of the adapted base. The general family of such connections is given
in [8] for the anticommutative case.

For a normal N-l.c.c. we can write without any difficuly the components of torsions
and curvatures. The nonvanishing torsions are

Thoy = hT(0;,6;)  ©Ld, =vT(55,0,) TEO, = WT(55,0)
R0, = vT(6;,0)  O50p =oT(67,6)  rhor = AT (65,6)
(1.9) Qij0k = hT(9;,8)  plzdk = vT(95,0:) Yok = hT(85,60)
Phoy = oT(0;,6) TEop =oT(55,0) XLk = vT(5;,0)
Skoy = vT(9;,6) Sy = oT(67,0) x50 = 7T(85,0)

and their conjugates.
The local expresions of torsions are obtained by direct calculation

Tf =L~ Lji  O5= L TE =L

Rszagjz; *%, f_;:*ag;, TE—,Z*L%
a0 A

Ph= G -th SE=-TE x5=ch

Sk=cCk-Ch,  shb=-Lb L= CF

and their conjugates.
The nonvanishing curvatures are
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R, 0i = R(0n, 01)3; ngh(s; = R(0n.04)0 R 6= R(dn,07)0

Sixn0i = R(On,0)0; SI 0;=R(On,04)0; Si_ 8; = R(Dh,0r)05

jkh

e

(1.11) PO = R(On,01)9; Pl 0; = R(0n,0:)0; Pi, 05 = R(0h, 07)05

Q' 0; = R(0y,07)0; Q

o 8; = R(64,0)0= QL 8 = R(6n, 61)0;

i
Jkh i

<

H;Ehai = R(6n, 0;)0; X%Ja{ = R(07, 0k)05
and conjugates.
The local expressions of curvatures are easily obtained from (1.11).

Wkl...k,,fl...fk(
hi..hghi..h,
transformations are changed by the rule

A system of functions z,m) is a complex d-tensor field if at (1,1)

- 9z'" 9z  HzM Ozl
(112) szl----tz;a_'ll-----_'zr (2177)’) — - e : . e "
J1eeeJadr--ds Ozk1 Ozko  Hzlin Ozlir
oz g g gzt kl___kpzl...ﬁ( )
B P - TR =7 M P S PR A P
Examples of complex d-tensor fields are: o, 07 0 ,0¢ 7C;k ,C’% ,C’]zk the

components of torsions and curvatures, etc.

A Hermitean metric structure on Te(T'M) is a nondegenerate 2-field G(X,Y) =
G (Y, X) and with respect to the commutative almost semiquaternion structure (J , F')
it satisfies the conditions

G(JX,JY)=G(X,Y)

(1.13) G(FX,FY)=G((h+h)X(h+h)Y).

Expressing G in adapted base and taking into account the required conditions
(1.13), we obtain
Proposition 1.3. G defines a Hermitian metric structure on To(T'M) if and only if

(1.14) G = gz.;dzi ®dz’ + gﬁéni ® o7,

11

From F' - F* = v + 7 it results that G(F*X, F*Y) = G((v + 1) X, (v + 0)Y).

A complex N-linear conection D is said to be metric with respect to the Hermitian
metric structure G if DG = 0.

Let’s denote by ” +” and by ” | "the h- and respectively v-covariant derivatives of
one complex d- tensor field with respect to D', and by ” 1+ 1 and ” || 7, the h- and
respectively T-derivatives with respect to D". It follows that D is a complex metric
N-linear conection if and only if:

where gz.;(z, n) is a complex d-tensor field of ( 00 ) type and nondegenerate.

(1.15) 97 =0 . 97+=0 . 97E=0 . g75=0

Analogous reasons as in [7] show that if D is a complex metric d-linear connec-
tion then its distributions are ortogonal, and if D is compatible with respect to one
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metric semiquaternionic structure (G, J, F'), then D is also, with respect to the other
(G, J, F*) structure. Therefore, D is also a normal d-l.c.c.

In [7] is given the general set of metric almost semiquaternionic connections for
the anticommutative case. In the present commutative case similar calculus gives:

Theorem 1.4. If V is the Levi-Civita connection of the metric G, then a metric
connection with respect to the structure (G, J, F') is:

(116) 2DxY = (v+6)%x (v+ﬁ)Y—(v+ﬁ)J%x (v+7)JY +

o o
+ F*Vx FY —JF*VvVx JF*Y.
C o
It is easly to find that D is a normal d-l.c.c. and is metric because V is metric.
It’s local expression will be given in the next section.

2 Complex Lagrange spaces

The notion of complex Finsler space is already well-known from the papers of S.
Kobayashi [4], H. Rund [10], H. Royden [9], M. Fukui [2], and T. Aikou [1]. Giving up
to the homogeneity condition with respect to 77, we shall define the notion of complex
Lagrange metric.

Definition 2.1. A complex Lagrangian on T'M is a smooth real function L : T'M —
R, with the property that

2
1) 9= 33y
7' on

is a nondegenerate complex d-tensor field.

The pair (T'M, L) is called a complex Lagrange space. In the particular case when
L : (z,nm) = L(z,n) is absolutely homogeneous of degree 1 in rp we obtain the notion
of complex Finsler space.

As it is known, the existence of a Lagrange function involves the study of the
variational problem on curves. Let L(z,7) be a complex Lagrangian on 7'M and
¢:[0,1] = M be a holomorphic curve. The Euler-Lagrange equation for a geodesic is

([1], [9):

0L d (0L . d2t
2.2 — - —=|=1]=0 ith n'=—.
(22) 0zt dt (61}1) W K dt

Developing the calculus in (2.2), we obtain
d*z’ 0’L _, d*z o’L . ol

2.3 29—+ —— ) + (241 —— = - Ty 2o,
(2:3) (293 aw t 8218772” )+ (2ai aw T dzion | Bz’)
where a;; = %afi,fnj is a symmetric d-tensor field.

In [1], [9] is defined the notion of complex geodesic in a complex Finsler space as
being a curve (t) = (e - t) independent of 6, and ¢ is a holmorphic map on the
small disk A(r) to M satisfying ¢(0) = z and dp(0) = 1, where (z,n) is a fixed point.
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Taking into account the independence on 6 of v, we shall define a geodesic complex
Lagrange space as being a curve that satisfies the system of equations

d’zi O0°L _.
2.4 29 - 5=
(2.4) 95 ar * affaﬂin
d*z7 0’L . OL
2.5 20— —n) — — =0.
(25) Y g + azlan’n 0zt

Theorem 2.1. Let’s consider the functions H7 given by

1 -, 8%L
2.6 Hi = —g¥ k.
(26) 17 azkaﬁ”’

j i ) ) )
Then N} = %ZI,- are the coefficients of one complex nonlinear connection.

The proof consists in verifying by direct calculus that Nij satisfies the law (1.2),
and hence these are the coefficients of a complex nonlinear connection on 1"(1"M).

i 8L
5=k o’

The conjugate N = , where H = 4g -7j* are the coefficients of a complex

8—2
nonlinear connection on 7" (T'M).

. . . j i
Let’s note that if (a;;) is a nondegenerate complex matrix, then N; = %Cn‘;i,
. . .. 2 . . .
with G7 = 1a¥ (2L pk — 2L) determine another complex nonlinear connection
4 dzkon 0z

on T"(T'M).

In the real case it is known that a geodesic determines a spray and conversely
([6]). We shall extend this topic to the complex case.

Let be ' =n' ——l—n 8_1 the complex Liouville d-field and T the natural almost tan-

gent structure on 7'M | T(le) = 9?7" , T(ani) =0 ,T(Bgi) = B%i , T(a—’) =0
(globally defined because T'M is a holomorphic manifold). A complex spray is avector
field S € x(T'M) with the property T'(S) = I'. It follows that a complex spray is

locally given in the form

) B o 0
2.7 S=n -G — + 7t —2H —
27) T oz o T oz o7

where G¢ and H' are the coefficients of the spray and have the following rules of
transformation:
az/z' . 822,”' X

. : -1
(2.8) 2G" = 2azj G7 — 55957 n’ and 2H =

(1) . (2)
Proposition 2.2. The functions N;: ]-Z and N’ 8H define complex nonlinear
connections.
Remark. From (2.7) and (2.8) it results in particular that ' can be taken the
conjugate of G°.
Proposition 2.3. A complex spray S determines a complex differential system

02" i 0°2" Tk
0z 0z* oz '

d?z o d*z —i o
(2.9) Tl +2G(2,1,2,7) + 7ol +2H (z,n,Z,7) =0
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and coversely.
Proof. Let’s consider the complex spray S and the real curves ¢ : t — (z + Z) with

the tangent vectors d(zldj?) = n' + 77'. By derivation is obtained: dtzg + d;f; =
4(n' +7') = =2z, where z' is a real number that can be of the form z' = G' + H

(with ImG? = —ImH'). Conversely, G and H' from (2.9) determines the complex
spray given by (2.7).

Proposition 2.4. A complex spray S determines a complex geodesic of the complex
Lagrange space (M, L) if and only if there exist such local maps on T'M , in wich the
coordinates i’ are real.

Proof. The equation (2.3) is a complex spray iff 9,7 = aij, and therefore 8‘?71- (g—:j -
g—ﬁLj):O:a%—@_] =1/ € R.

In the next we shall make some references to the particular case of complex Finsler
spaces.

From the homogeneity condition L(z, An) :\ \ L(z,n), it results the complex

' S=7]' = 2L. Deriving, it results that
09,7 Bg 394— . 0g.-

2.10 ! Uy = and il = Il =
(2.10) o 7’ = o =95 o7 T o T =95

Let us consider I‘;k = 5913( gkl) the first Christoffel symbols of the

Hermitean metric g7 ([3], [5]) and let s denote by £ = gz.;niﬁj the complex energy of
complex Finsler space (M, L).
Theorem 2.5. The functions
¢ J
(2.11) N/= larﬂ.‘),
2 Ont

are the coefficients of a complex nonlinear connection on T'M, called the Cartan
nonlinear connection of the Finsler space (M, L).
Proof. Using (2. 10) by direct calculus it is found out that H7 from (2.6) is: HI =
Lrdy = 19" it

From (2. 4) and (2.5) it results that:
Proposition 2.6. The autoparallel curves of the Cartan nonlinear connection of the
complex Finsler space (M, L) are just the extremal curves of the energy action &.

Now, let’s return to the general case of the complex Lagrangian space (M, L),
endowed with a fixed nonlinear connection, for example given by (2.6). From Prop.
1.3 it results that G defined by (1.14) with the Lagrange metric gz given by (2.1), is a
Hermitean metric structure on T (T'M). Then the set (M, G, J, F) defined by (1.6),
(1.7) and (1.13) is called the metric commutative almost semiquater nionic model
of the complex Lagrange space (M, L).

We are interested to determine a metric d-l.c.c. of the complex Lagrange space
(M, L).

Theorem 2.7. The following normal N-linear complex connection lC) 15 metric

where T, = Filnknl,

i 89, - . 7: - g -
i 1.1 29,1 i 1 1 il Ik
ij =39 (52k + 535 ) C]’k =39 (Bnk + L)

(2.12)

= 09,~ 0g,= - 0g9,~ 0g, -
i 1.l 1j kj i 1 il l] ¥
Lyk - Eg (Jz’“ L ) C;k - Eg ( - )
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Moreover, ZC) has the following vanishing torsions: T]?k =0 and S;k =0.

Proof. Let V be the Levi-Civita connection of the metric G given by (1.14) with the
complex Lagrange metric g,-. Since G is Hermitean with respect to J, the coefficients

T ’F;E and I‘%k and their conjugates are known from complex manifolds ([3], [5]).

Replacing this in (1.16) it results the coefficients (2.12) of D connection in the adapted
base. The connection (2.12) is metric and normal. From the symmetry of F;k it results
that Tfk = S;ik =0.

The connection (2.12) will be called the Miron canonic N-linear complex connec-
tion of the complex Lagrange space (M, L).

3 The complex Lagrangian of electrodynamics

In [6] it is given a Lagrangian model for real electrodinamycs. In the present section
we shall consider a similar model for the complex case. The complex Lagrangians
frequently appear in quantum mechanics and gauge theories ([11]). Inspired from
these models, let’s consider the complex Lagrangian

(3.1) Lo(z,m) = meyz (' + — Ai(2) (o +77).

where Vi is a Hermitian metric on the complex manifold M ; m, ¢, e are real constants
and A; is a real covector.

The metric 7,7 can be taken as the extension through linearity of Lorentz metric
to the complexification To M.

From (2.1), it results that Lo determine the following Hermitian metric on 7" M:

(3.1 95 = mey5(2).

oH’

The metric 9i7 determines a nonlinear connection Ny = Tt where H7 is given

by (2.6). So, we have:
191, e ;04

3.2 NI = 0O i
(3:2) 2 Ot am2c) Bz

where T, are the first Christoffel coefficients of v metric and T, = T, 777", Ac-
cordingly, the Miron canonic connection (2.12) has the components:

. . 7.,07.7 O, - .
i o1 o 11 [ Vil i
Ly, =1% =357 (7F + 3558

jk
(3.3) ’
T i 1 a9 g T
Lo =T =57 (g + &) G5 =0
From (1.10) we obtain the following vanishing torsions: T}; = Sfj = fj = Tfj —

X% = Xf_j = 0 and their conjugates. Because C;k = Cf_k = 0, it results that the Miron
canonic connection has the next nonvanishing components of curvatures:

il RE gl RE i
Rjen = ikns By =5 gy = T
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(and the conjugates) where r;kh , ..., are the curvatures of the linear connection F;.k.
For the real Lagrangian space from [6] we know the Einstein equations with respect
to the canonic connection. They result from the Einstein equations
Ras — 2RGas = xTas  ( Rap=Ricci tensor, R=Ricci curvature, Gos=the metric
structure, y=universal constant, T3 = the energy-momentum tensor), written in the
adapted base of the canonic nonlinear connection. Acting in a similar manner for the
complex Lagrangian, it results the following set of Einstein equations

X hh hh hy
(3.4) Rz — 3095 =xT;5 Rij=xTy, Py=xTjy

1 VU VU hv
Sg—3r95=xT5 Sij=xTy, 75=xT5

— = = hh
_ TP _ _pk _ _ iip. _ ija _ _
where Rz.j = Rz.j = Rmc7 etc,p=r+seR,r=g Rz.j, s=g Sz.j, T etc=
the components of energy-momentum tensor, y € R.
The conservation law with respect to the one X, field of adapted base is

c 1
Dx, (Rj — §R6§) =0, where R} =G""R.p.

In the particular case of the complex Lagrangian L for electrodynamics given by
(3.1), taking into account the nonvanishing curvatures, the first (3.4) Einstein equation
is just that for the Levi-Civita connection of 7;7 metric, in the secound equation

Sz =0, and the last three equations reduce to 32:}113:%}: 0. The conservation law
is identically satisfied.
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