Geodesics and Circles on Real Hypersurfaces of Type A and B in a Complex Space Form

Hyang Sook Kim, Gil Sang Lee and Yong-Soo Pyo

Abstract

We denote by $M_n(c)$ a complex space form with the metric of constant holomorphic sectional curvature 4c and M a real hypersurface in $M_n(c)$. We will give characterizations of homogeneous real hypersurfaces of type A and B by observing the shape of geodesics and circles on M as curves in $M_n(c)$.

Mathematics Subject Classification: 53C40

Key words: complex spee form, homogeneous real hypersurface of type A and B, shape operator, geodesics, cirle.

1 Introduction

We denote by $M_n(c)$ a complete and simply connected complex *n*-dimensional Kählerian manifold of constant holomorphic sectional curvature 4c, which is called a *complex space form*. Such an $M_n(c)$ is bi-holomorphically isometric to a complex projective space $P_n\mathbf{C}$, a complex Euclidean space \mathbf{C}^n or a complex hyperbolic space $H_n\mathbf{C}$, according as c > 0, c = 0 or c < 0.

In this paper, we consider a real hypersurface M in $M_n(c)$, $c \neq 0$. Typical examples of M in $P_n\mathbf{C}$ are the six model spaces of type A_1, A_2, B, C, D and E (cf. Theorem A in §2), and the ones of M in $H_n\mathbf{C}$ are the four model spaces of type A_0, A_1, A_2 and B (cf. Theorem B in §2), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of $P_n\mathbf{C}$ or $H_n\mathbf{C}$. Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_n(c)$ and A the shape operator of M. Eigenvalues and einvectors of A are called principal curvatures and principal vectors, respectively.

Many differential geometers have studied M from various points of view. For example, Berndt [1] and Takagi [13] investigated the homogeneity of M. Kimura [7] proved that if all principal curvatures are constant and ξ is principal vector, then M in $P_n\mathbf{C}$ is congruent to one of model spaces. Moreover, it is very interesting to characterize homogeneous real hypersurfaces of $M_n(c)$. There are many characterizations of homogeneous ones of type A since these examples have a lot of beautiful geometric properties, where $type\ A$ means type A_1 or A_2 in $P_n\mathbf{C}$ and type A_0 , A_1

Balkan Journal of Geometry and Its Applications, Vol.2, No.2, 1997, pp. 79-89 \odot Balkan Society of Geometers, Geometry Balkan Press

or A_2 in $H_n\mathbf{C}$. Okumura [11] and Montiel-Romero [10] proved the fact in $P_n\mathbf{C}$ and $H_n\mathbf{C}$, respectively that M satisfies $A\phi = \phi A$ if and only if M is locally congruent to type A. Also Maeda [9] gave a characterization of type A in $P_n\mathbf{C}$ (cf. Theorem E in §2). However, until now there are few results about characterizations of type B. Kim, Pyo and Ki-Nakagawa [5] characterized a real hypersurface of type B in $M_n(c)$ (cf. Theorem F in §2).

Recently, Maeda-Ogiue [8] investigated a geodesic hypersphere (i.e. type A_1 in P_n **C**) by observing the shape of geodesics on M as curves in P_n **C**. Motivated by this result, we are interested in characterizing M of type A in $M_n(c)$ by observing geodesics on M, and we will investigate circles on M of type B in $M_n(c)$.

The purpose of this paper is to give characterizations of homogeneous real hypersurfaces of type A and B by studing geodesics and circles on M as curves in $M_n(c)$.

2 Preliminaries

We begin with recalling the basic properties of a real hypersurface M of a complex space form $M_n(c)$. Let N be a unit normal vector field on M. The Riemannian connections $\widetilde{\nabla}$ in $M_n(c)$ and ∇ in M are related by

(2.1)
$$\widetilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N$$

and

$$(2.2) \widetilde{\nabla}_X N = -AX,$$

where g denotes the induced Riemannian metric on M. Let J the almost complex structure of $M_n(c)$. For a vector field X on M, the images of X and N under the transformation J can be represented as

$$JX = \phi X + \eta(X)N$$
, $JN = -\xi$,

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on M, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$. By the properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$\phi^2 = -I + \eta \otimes \xi$$
 , $\phi \xi = 0$, $\eta(\phi X) = 0$, $\eta(\xi) = 1$

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

where I denotes the identity transformation. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore, the covariant derivatives of the structure tensors are given by

$$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi,$$

$$\nabla_X \xi = \phi A X.$$

Since the ambient space is of constant holomorphic sectional curvature 4c, the equation of Codazzi is given as follows

$$(2.5) \qquad (\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}.$$

It is well-known that there exist no totally umbilical real hypersurfaces in $M_n(c)$. So, a real hypersurface M of $M_n(c)$ is said to be totally η -umbilical if its shape operator A satisfies

$$AX = aX + b\eta(X)\xi$$

for some smooth functions a and b on M.

In the following, we use the same terminology and notations as the above unless otherwise stated. Now we quote the following in order to prove our results.

Theorem A ([13]). Let M be a homogeneous real hypersurface of $P_n\mathbb{C}$. Then M is a tube of radius r over one of the following Kähler submanifolds:

- (A_1) a hyperplane $P_{n-1}\mathbf{C}$, where $0 < r < \frac{\pi}{2}$,
- (A_2) a totally geodesic $P_k \mathbb{C}$ $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$,
- (B) a complex quadratic Q_{n-1} , where $0 < r < \frac{\pi}{4}$,
- (C) $P_1 \mathbf{C} \times P_{(n-1)/2} \mathbf{C}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 5$ is odd,
- (D) a complex Grassmann $G_{2,5}\mathbf{C}$, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) a Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n=15 .

Theorem B ([1]). Let M be a real hypersurface of $H_n\mathbf{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:

- (A_0) a horosphere in $H_n\mathbf{C}$,
- (A_1) a geodesic hypersphere $H_0\mathbf{C}$ or a tube over a hyperplane $H_{n-1}\mathbf{C}$,
- (A_2) a tube over a totally geodesic $H_k \mathbf{C}$ $(1 \le k \le n-2)$,
- (B) a tube over a totally real hyperbolic space $H_n\mathbf{R}$.

Theorem C ([10], [11]). Let M be a real hypersurface of $M_n(c)$. Then M satisfies $A\phi = \phi A$ if and only if M is locally congruent to one of type A_1 and A_2 when c > 0, and of type A_0 , A_1 and A_2 when c < 0.

Theorem D ([10], [14]). Let M be a real hypersurface of $M_n(c)$. Then M is totally η -umbilical if and only if M is locally congruent to one of type A_1 when c > 0, and of type A_0 and A_1 when c < 0.

Theorem E ([3], [9]. Let M be a real hypersurface of $M_n(c)$. Then the following are equivalent:

- (1) M is locally congruent to one of type A,
- (2) $(\nabla_X A)Y = -c\{g(\phi X, Y)\xi + \eta(Y)\phi X\}$ for any vector fields X and Y on M. **Theorem F** ([5]). Let M be a real hypersurface of $M_n(c)$. Then the following are equivalent:
 - (1) M is locally congruent to type B,
- (2) $(\nabla_X A)Y = k\{2\eta(X)(A\phi \phi A)Y + \eta(Y)(A\phi 3\phi A)X + g((A\phi 3\phi A)X, Y)\xi\}$ for any vector fields X and Y on M and $k \in \mathbf{R}$.

Proposition A ([4], [9]). Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. If ξ is principal, then the corresponding principal curvature α is locally constant.

Here we consider the case where the structure vector ξ is *principal*, namely, $A\xi = \alpha \xi$. It follows from (2.5) that

$$(2.6) 2A\phi A = 2c\phi + \alpha(A\phi + \phi A)$$

and hence, if $AX = \lambda X$ for any vector field X orthogonal to ξ , then we get

$$(2\lambda - \alpha)A\phi X = (\alpha\lambda + 2c)\phi X.$$

Accordingly, it turns out that in the case where $\alpha^2 + c \neq 0$, ϕX is also principal vector with principal curvature $\mu = (\alpha \lambda + 2c)/(2\lambda - \alpha)$, that is, we obtain

(2.7)
$$A\phi X = \mu\phi X, \\ 2\lambda - \alpha \neq 0, \quad \mu = (\alpha\lambda + 2c)/(2\lambda - \alpha).$$

Finally, we recall the definition of helices in Riemannian geometry.

A smooth curve $\gamma = \gamma(s)$ in a Riemannian manifold parametrized by its arc length s is called a *helix of proper order* d if there exists an orthonormal frame $\{V_1 = \dot{\gamma}, \ldots, V_d\}$ along γ and positive constants k_1, \ldots, k_{d-1} which satisfy

$$\nabla_{\dot{\gamma}_i} V_j(s) = -k_{j-1} V_{j-1}(s) + k_j V_{j+1}(s), \quad j = 1, \dots, d,$$

where $V_0 = V_{d+1} = 0$. The constants k_j $(1 \le j \le d-1)$ and the orthonormal frame $\{V_1, \ldots, V_d\}$ are called the *curvatures* and the *Frenet frame* of γ , respectively. And a smooth curve is called a *helix of order d* if it is a helix of proper order $r \in \{d\}$.

Note that a helix of order 1 is nothing but a geodesic, and a helix of order 2 is called a *circle*. That is, a smooth curve $\gamma = \gamma(s)$ in a Riemannian manifold parametrized by its arc length s is called a *circle* if there exists a field Y = Y(s) of unit vectors along γ which satisfies $\nabla_{\dot{\gamma}}\dot{\gamma} = kY$ and $\nabla_{\dot{\gamma}}Y = -k\dot{\gamma}$ for some positive constant k which is called the *curvature* of γ . Moreover, for an arbitrary point x, an arbitrary orthonormal pair (u,v) of vectors at x and an arbitrary positive number k, there exists a unique circle $\gamma = \gamma(s)$ with $\gamma(0) = x$, $\dot{\gamma}(0) = u$ and Y(0) = v.

3 Real hypersurfaces of type A

We denote by $M_n(c)$ a complex space form with the metric of constant holomorphic sectional curvature 4c and M a real hypersurface in $M_n(c)$, $c \neq 0$. In this section, we are concerned with homogeneous real hypersurfaces of type A. Then, according to Takagi's classification theorem [13] and Berndt's one [1], the principal curvatures and their multiplicities of type A in $M_n(c)$ are given as follows:

In the case c > 0,

- (i) type A_1 has two distinct constant principal curvatures $\alpha = 2 \cot 2r$ with multiplicity 1 and $\lambda = \cot r$ with multiplicity 2n 2,
- (ii) type A_2 has three distinct constant principal curvatures $\alpha = 2 \cot 2r$ with multiplicity 1, $\lambda = -\tan r$ with multiplicity 2k and $\mu = \cot r$ with multiplicity 2(n-k-1), where $1 \le k \le n-1$.

In the case c < 0,

- (i) type A_0 has two distinct constant principal curvatures $\alpha = 2$ with multiplicity 1 and $\lambda = 1$ with multiplicity 2n 2,
- (ii) type A_1 has two distinct constant principal curvatures $\alpha = 2 \coth{(2r)}$ with multiplicity 1 and $\lambda = \tanh(r)$ if $0 < \lambda < 1$ or $\lambda = \coth(r)$ if $\lambda > 1$ with multiplicity 2n 2,
- (iii) type A_2 has three distinct constant principal curvatures $\alpha = 2 \coth(2r)$ with multiplicity 1, $\lambda = \tanh(r)$ with multiplicity 2k and $\mu = \coth(r)$ with multiplicity 2(n-k-1), where $1 \le k \le n-1$.

The following discussion in the case c > 0 is partially indebted to Maeda and Ogiue [8]:

First of all, we prove the following

Lemma 3.1 Let M be a real hypersurface of type A in $M_n(c)$, $c \neq 0$. Take orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M in such a way that $(v_1, v_2, \ldots, v_{2k})$ (resp. $(v_{2k+1}, v_{2k+2}, \ldots, v_{2n-2})$) are principal vectors with principal curvature λ (resp. μ). Then $(v_1, v_2, \ldots, v_{2n-2})$ satisfy the following:

- (1) All geodesics γ_i on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$ $(1 \le i \le 2k)$ are circles of the curvature λ in $M_n(c)$.
- (2) All geodesics γ_i on M with $\gamma_i(0) = p$ and $\dot{\gamma_i}(0) = v_i$ $(2k+1 \le i \le 2n-2)$ are circles of the curvature μ in $M_n(c)$.

Proof. Let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n - 2)$ be geodesics on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$. Then, taking account of (2.4) and Theorem C, we have

$$\nabla_{\dot{\gamma_i}}(g(\dot{\gamma_i},\xi)) = g(\dot{\gamma_i},\nabla_{\dot{\gamma_i}}\xi) = g(\dot{\gamma_i},\phi A\dot{\gamma_i}) = g(\dot{\gamma_i},A\phi\dot{\gamma_i}) = -g(\phi A\dot{\gamma_i},\dot{\gamma_i}) = 0.$$

This implies that each $\dot{\gamma}_i$ $(1 \leq i \leq 2n-2)$ is perpendicular to ξ since $g(\dot{\gamma}_i(0), \xi) = g(v_i, \xi) = 0$.

Thus, owing to Theorem E, we get

$$\nabla_{\dot{\gamma_i}} \parallel A\dot{\gamma_i} - \lambda\dot{\gamma_i} \parallel^2 = 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i}, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) = 0,$$

where $1 \le i \le 2k$. Since $A\dot{\gamma}_i(0) - \lambda\dot{\gamma}_i(0) = Av_i - \lambda v_i = 0$, we obtain $A\dot{\gamma}_i - \lambda\dot{\gamma}_i = 0$ $(1 \le i \le 2k)$. Here we note that k = n - 1 in type A_1 when c > 0, and in type A_0 and A_1 when c < 0. Therefore, we see from (2.1) and (2.2) that

$$\widetilde{\nabla}_{\dot{\gamma_i}}\dot{\gamma_i} = g(A\dot{\gamma_i},\dot{\gamma_i})N = g(\lambda\dot{\gamma_i},\dot{\gamma_i})N = \lambda N$$

and

$$\widetilde{\nabla}_{\dot{\gamma}_i} N = -A\dot{\gamma}_i = -\lambda\dot{\gamma}_i.$$

This implies that γ_i $(1 \leq i \leq 2k)$ are circles of the curvature λ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.

Similarly in the case where M is of type A_2 , we can show that γ_i $(2k+1 \le i \le 2n-2)$ are circles of the curvature μ and the Frenet frame $\{\dot{\gamma_i}, N\}$ in $M_n(c)$.

Theorem 3.2. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. Then M is locally congruent to one of type A_1 when c > 0, and of type A_0 and A_1 when c < 0 if and only if there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_i = \gamma_i(s)$ on M through p in the direction $v_i + v_j$ $(1 \leq i \leq j \leq 2n - 2)$ are circles in $M_n(c)$.

Proof. Let M be locally congruent to one of type A_1 when c > 0, and of type A_0 and A_1 when c < 0. Then Lemma 3.1 shows that, for an arbitrary unit vector $X \perp \xi$ at $p \in M$, a geodesic $\gamma = \gamma(s)$ with $\gamma(0) = p$ and $\dot{\gamma}(0) = X$ is a circle in $M_n(c)$. Thus there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_i = \gamma_i(s)$ on M through p in the direction v_i $(1 \le i \le 2n-2)$ are circles in $M_n(c)$.

Conversely, let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n - 2)$ be geodesics on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$. Then by such assumption that all geodesics $\gamma_i = \gamma_i(s)$ on M through p in the direction v_i $(1 \le i \le 2n - 2)$ are circles in $M_n(c)$, they satisfy

$$\widetilde{\nabla}_{\dot{\gamma}_i}^2 \dot{\gamma}_i = -k_i^2 \dot{\gamma}_i$$

for some positive constants k_i .

On the other hand, from (2.1) and (2.2) it follows that

(3.2)
$$\widetilde{\nabla}_{\dot{\gamma}_i}^2 \dot{\gamma}_i = g((\nabla_{\dot{\gamma}_i} A) \dot{\gamma}_i, \dot{\gamma}_i) N - g(A \dot{\gamma}_i, \dot{\gamma}_i) A \dot{\gamma}_i.$$

Comparing the tangential components of (3.1) with (3.2), we have

$$g(A\dot{\gamma_i},\dot{\gamma_i})A\dot{\gamma_i} = k_i^2\dot{\gamma_i}$$

so that we get

$$g(Av_i, v_i)Av_i = k_i^2 v_i,$$

which implies

$$(3.3) Av_i = \pm k_i v_i (1 \le i \le 2n - 2).$$

Thus we obtain

$$(3.4) g(Av_i, v_i) = 0 (1 < i < j < 2n - 2)$$

because vectors $(v_1, v_2, \ldots, v_{2n-2})$ are orthonormal.

Let $\gamma_{ij} = \gamma_{ij}(s)$ $(1 \le i < j \le 2n - 2)$ be geodesics on M with $\gamma_{ij}(0) = p$ and $\dot{\gamma}_{ij}(0) = (v_i + v_j)/\sqrt{2}$. Then by the same argument as the above we have

$$g(A(v_i + v_j), (v_i + v_j))A(v_i + v_j) = 2k_{ij}^2(v_i + v_j)$$

for some positive constants k_{ij} . Hence we get

$$g(A(v_i + v_j), (v_i - v_j)) = 0 \quad (1 \le i < j \le 2n - 2).$$

Therefore, combining this with (3.4) we have

$$q(Av_i, v_i) = q(Av_i, v_i)$$
 (1 < i, j < 2n - 2).

This, together with (3.3), implies that AX = kX for all X ortogonal to ξ and for some constant k.

Moreover, ξ is also principal because $g(A\xi, X) = g(\xi, AX) = g(\xi, kX) = 0$ for all $X \perp \xi$.

Thus we see that M is η -umbilic at p and hence M is totally η -umbilic in $M_n(c)$ since p is arbitrary. Therefore, owing to Theorem D, it follows that M is locally congruent to one of type A_1 when c > 0, and of type A_0 and A_1 when c < 0.

Theorem 3.3. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. Then M is locally congruent to one of type A_1 and type A_2 with $r = \pi/4$ when c > 0, and of type A_0 and A_1 when c < 0 if and only if there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_i = \gamma_i(s)$ on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$ $(1 \leq i \leq 2n-2)$ are circles in $M_n(c)$ with the same curvature.

Proof Let M be locally congruent to one of type A_1 and type A_2 with $r = \pi/4$ when c > 0, and of type A_0 and A_1 when c < 0. By Lemma 3.1, there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_i = \gamma_i(s)$ on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$ $(1 \le i \le 2n - 2)$ are circles in $M_n(c)$ with the same curvature λ .

Conversely, let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n - 2)$ be geodesics on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$. Then by assumption that all geodesics $\gamma_i = \gamma_i(s)$ on M through p in the direction v_i $(1 \le i \le 2n - 2)$ are circles in $M_n(c)$ with the same curvature k, the same argument as one in the proof of Theorem 3.2 gives

$$g(Av_i, v_i)Av_i = k^2 v_i \quad (1 \le i \le 2n - 2),$$

where k is a positive constant. Then we get

(3.5)
$$Av_i = kv_i \text{ or } Av_i = -kv_i \ (1 \le i \le 2n - 2).$$

Thus we obtain the fact that ξ is principal because $g(A\xi, v_i) = g(\xi, Av_i) = g(\xi, \pm kv_i) = 0$ for $1 \le i \le 2n-2$. Therefore M is a real hypersurface in $M_n(c)$ with at most three distinct constant principal curvatures k, -k and α , where we have used Proposition A. Consequently, M is locally congruent to one of homogeneous real hypersurfaces of type A_1 , A_2 and B when c > 0, and of type A_0 , A_1 , A_2 and B when c < 0. But the shape operators of homogeneous real hypersurfaces of type A_2 of radius $r(\ne \pi/4)$ and B when c > 0, and of type A_2 and B when c < 0 do not satisfy (3.5). That is, M is locally congruent to one of type A_1 and type A_2 with $r = \pi/4$ when c > 0, and of type A_0 and A_1 when c < 0.

Replacing geodesics in Lemma 3.1 by circles, we have the following

Lemma 3.4. Let M be a real hypersurface of type A in $M_n(c)$, $c \neq 0$. Take orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M in such a way that $(v_1, v_2, \ldots, v_{2k})$ (resp. $(v_{2k+1}, v_{2k+2}, \ldots, v_{2n-2})$) are principal vectors with principal curvature λ (resp. μ). Then $(v_1, v_2, \ldots, v_{2n-2})$ satisfy the following:

- (1) All circles γ_i of an arbitrary curvature in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$ $(1 \le i \le 2k)$ are circles of the curvature λ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.
- (2) All circles γ_i of an arbitrary curvature in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$ $(2k+1 \le i \le 2n-2)$ are circles of the curvature μ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.

Proof. Let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n - 2)$ be circles on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$. Then, from the assumption that all γ_i have the Frenet frame $\{\dot{\gamma}_i, \xi\}$, it follows that each $\dot{\gamma}_i$ $(1 \le i \le 2n - 2)$ is perpendicular to ξ .

Thus, owing to Theorem E, we get

$$\begin{array}{lcl} \nabla_{\dot{\gamma_i}} \parallel A\dot{\gamma_i} - \lambda\dot{\gamma_i} \parallel^2 & = & 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i} + A(\nabla_{\dot{\gamma_i}}\dot{\gamma_i}) - \lambda\nabla_{\dot{\gamma_i}}\dot{\gamma_i}, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) \\ & = & 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i} + A(m_i\xi) - \lambda m_i\xi, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) \\ & = & 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i} + (\alpha - \lambda)m_i\xi, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) = 0, \end{array}$$

where each m_i is the curvature of $\dot{\gamma}_i$ $(1 \le i \le 2k)$. Since $A\dot{\gamma}_i(0) - \lambda\dot{\gamma}_i(0) = Av_i - \lambda v_i = 0$, we obtain $A\dot{\gamma}_i - \lambda\dot{\gamma}_i = 0$ $(1 \le i \le 2k)$. Therefore, we see from (2.1) and (2.2) that

$$\widetilde{\nabla}_{\dot{\gamma_i}}\dot{\gamma_i} = g(A\dot{\gamma_i},\dot{\gamma_i})N = g(\lambda\dot{\gamma_i},\dot{\gamma_i})N = \lambda N$$

and

$$\widetilde{\nabla}_{\dot{\gamma_i}} N = -A\dot{\gamma_i} = -\lambda\dot{\gamma_i}.$$

This implies that γ_i $(1 \le i \le 2k)$ are circles of the curvature λ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$. Here we note that k = n - 1 in type A_1 when c > 0, and in type A_0 and A_1 when c < 0.

Similarly in the case where M is of type A_2 , we can show that γ_i $(2k+1 \le i \le 2n-2)$ are circles of the curvature μ and the Frenet frame $\{\dot{\gamma_i}, N\}$ in $M_n(c)$.

4 Real hypersurfaces of type B

We denote by $M_n(c)$ a complex space form with the metric of constant holomorphic sectional curvature 4c and M a real hypersurface in $M_n(c)$, $c \neq 0$. In this section, we are concerned with homogeneous real hypersurfaces of type B. Then, according to Takagi's classification theorem [13] and Berndt's one [1], the principal curvatures and their multiplicities of type B in $M_n(c)$ are given as follows:

- (i) In the case c > 0, type B has three distinct constant principal curvatures $\alpha = 2 \cot 2r$ with multiplicity 1, $\lambda = -\tan(r \pi/4)$ with multiplicity n 1 and $\mu = \cot(r \pi/4)$ with multiplicity n 1.
- (ii) In the case c < 0, type B has three distinct constant principal curvatures $\alpha = 2 \tanh(2r)$ with multiplicity $1, \lambda = \tanh(r)$ with multiplicity n-1 and $\mu = \coth(r)$ with multiplicity n-1.

Then we first have the following

Lemma 4.1. Let M be a real hypersurface of type B in $M_n(c)$, $c \neq 0$. Take orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M in such a way that $(v_1, v_2, \ldots, v_{n-1})$ (resp. $(v_n, v_{n+1}, \ldots, v_{2n-2})$) are principal vectors with principal curvature λ (resp. μ). Then $(v_1, v_2, \ldots, v_{2n-2})$ satisfy the following:

- (1) All circles γ_i of an arbitrary curvature in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$ $(1 \le i \le n-1)$ are circles of the curvature λ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.
- (2) All circles γ_i of an arbitrary curvature in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$ $(n \le i \le 2n 2)$ are circles of the curvature μ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.

Proof. Let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n-2)$ be circles on M with $\gamma_i(0) = p$ and $\dot{\gamma}_i(0) = v_i$. Then, from the assumption that all γ_i have the Frenet frame $\{\dot{\gamma}_i, \xi\}$, it follows that each $\dot{\gamma}_i$ $(1 \le i \le 2n-2)$ is perpendicular to ξ .

Thus, owing to Theorem F, we get

$$\begin{array}{lcl} \nabla_{\dot{\gamma_i}} \parallel A\dot{\gamma_i} - \lambda\dot{\gamma_i} \parallel^2 &=& 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i} + A(\nabla_{\dot{\gamma_i}}\dot{\gamma_i}) - \lambda\nabla_{\dot{\gamma_i}}\dot{\gamma_i}, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) = \\ &=& 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i} + A(k_i\xi) - \lambda k_i\xi, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) = \\ &=& 2g((\nabla_{\dot{\gamma_i}}A)\dot{\gamma_i} + (\alpha - \lambda)k_i\xi, A\dot{\gamma_i} - \lambda\dot{\gamma_i}) = 0, \end{array}$$

where each k_i is the curvature of γ_i $(1 \le i \le n-1)$. Since $A\dot{\gamma}_i(0) - \lambda\dot{\gamma}_i(0) = Av_i - \lambda v_i = 0$, we obtain $A\dot{\gamma}_i - \lambda\dot{\gamma}_i = 0$ $(1 \le i \le n-1)$. Therefore, we see from (2.1) and (2.2) that

$$\widetilde{\nabla}_{\dot{\gamma_i}}\dot{\gamma_i} = g(A\dot{\gamma_i},\dot{\gamma_i})N = g(\lambda\dot{\gamma_i},\dot{\gamma_i})N = \lambda N$$

and

$$\widetilde{\nabla}_{\dot{\gamma}_i} N = -A\dot{\gamma}_i = -\lambda\dot{\gamma}_i.$$

This implies that γ_i $(1 \leq i \leq n-1)$ are circles of the curvature λ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.

Similarly we can show that γ_i $(n \le i \le 2n - 2)$ are circles of the curvature μ and the Frenet frame $\{\dot{\gamma}_i, N\}$ in $M_n(c)$.

Theorem 4.2. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. Then M is locally congruent to one of type A and B if and only if there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all circles $\gamma_i = \gamma_i(s)$ in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$ $(1 \leq i \leq 2n-2)$ are circles in $M_n(c)$ of the same curvature c_i $(1 \leq i \leq 2k)$ or the same one c_j $(2k+1 \leq j \leq 2n-2)$.

Proof. Let M be locally congruent to one of type A and B in $M_n(c)$.

First of all, let M be of type A in $M_n(c)$ and let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n-2)$ be circles in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$. Then, owing to Lemma 3.4, there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that these circles $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n-2)$ are circles in $M_n(c)$ of the same curvature $c_i = \lambda$ $(1 \le i \le 2k)$ or the same one $c_j = \mu$ $(2k+1 \le j \le 2n-2)$.

Next, let M be of type B in $M_n(c)$. Then by Lemma 4.1, there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all circles $\gamma_i = \gamma_i(s)$ in M with $\gamma_i(0) = p$, $\dot{\gamma_i}(0) = v_i$ and the Frenet frame $\{\dot{\gamma_i}, \xi\}$ $(1 \le i \le 2n-2)$ are circles in $M_n(c)$ of the same curvature $c_i = \lambda$ $(1 \le i \le n-1)$ or the same one $c_j = \mu$ $(n \le j \le 2n-2)$.

Conversely, assume that there exist orthonormal vectors $(v_1, v_2, \ldots, v_{2n-2})$ orthogonal to ξ at an arbitrary point p of M such that all circles $\gamma_i = \gamma_i(s)$ in M with $\gamma_i(0) = p$, $\dot{\gamma}_i(0) = v_i$ and the Frenet frame $\{\dot{\gamma}_i, \xi\}$ $(1 \le i \le 2n-2)$ are circles in $M_n(c)$ of the same curvature c_i $(1 \le i \le 2k)$ or the same one c_j $(2k+1 \le j \le 2n-2)$. Then the same argument as one in the proof of Theorem 3.2 gives

$$g(Av_i, v_i)Av_i = c_i^2 v_i \quad (1 \le i \le 2k)$$

and

$$g(Av_j, v_j)Av_j = c_j^2 v_j \quad (2k+1 \le j \le 2n-2),$$

where c_i and c_j are positive constants. Then we get

$$(4.1) Av_i = \pm c_i v_i \text{ and } Av_j = \pm c_j v_j \ (1 \le i \le 2k, 2k + 1 \le j \le 2n - 2).$$

Thus, by means of (4.1), we obtain the fact that ξ is principal because $g(A\xi, v_i) = g(\xi, Av_i) = 0$ for $(1 \le i \le 2n-2)$. Therefore M is a real hypersurface in $M_n(c)$ with at

most five distinct constant principal curvatures $c_i, -c_i, c_j, -c_j$ and α , where we have used Proposition A. Consequently, M is locally congruent to one of homogeneous real hypersurfaces of type A_1 , A_2 , B, C, D and E when c > 0, and of type A_0 , A_1 , A_2 and B when c < 0. But the shape operators of homogeneous real hypersurfaces of type C, D and E when c > 0 do not satisfy (4.1). That is, M is locally congruent to one of type A and B in $M_n(c)$.

Acknowledgements. This paper was supported by YAKSOO research Foundation and TGRC-KOSEF.

References

- [1] J.Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. reine angew. Math., vol 395, 132–141, 1989.
- [2] T.E.Cecil and P.J.Ryan, Focal sets and real hypersurfaces in complex projetive space, Trans. Amer. Math. Soc., vol 269, 481–499, 1982.
- [3] Y.W.Choe, Characterization of certain real hypersurfaces of a complex space form, Nihonkai Math. J., vol 6, 97–114, 1995.
- [4] U-H.Ki and Y.J.Suh, On real hypersurfaces of complex space form, Math. J. Okayama Univ., vol 32, 207–221, 1990.
- [5] U-H.Ki, H.S.Kim and H.Nakagawa, A characterization of a real hypersurface of type B, Tsukuba J. Math., vol 14, 9–26, 1990.
- [6] H.S.Kim and R.Takagi, Certain real hypersurfaces in a complex space form, Kyungpook Math. J., vol 35, 591–606, 1996.
- [7] M.Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., vol 296, 137–149, 1986.
- [8] M.Kon, Pseudo-Einstein real hypersurfaces in complex space form, J. Diff. Geom., vol 14, 339–354, 1979.
- [9] S.Maeda and K.Ogiue, Characterizations of geodesic hypersurfaces in a complex projective space by observing the extrinsic shape of geodesics, Math.Z., vol 225, 537–542, 1997.
- [10] Y.Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, vol 28, 529–540, 1976.
- [11] S.Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, vol 20, 245–261, 1986.
- [12] M.Okumura, On some real hypersurfaces of a complex projective space Trans. Amer. Math. Soc., vol 212, 355–364, 1975.
- [13] M.Okumura, Compact real hypersurfaces of a complex projective space J. Diff. Geom., vol 12, 595–598, 1977.

- [14] R.Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., vol 10, 495–506, 1973.
- [15] R.Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, vol 27, 43–53, 507–516, 1975
- [16] C.Udrişte, Almost coquaternion hypersurfaces, Rev. Roum. Math. Pures Appl. 15, 9 (1970), 1545-1551.

Department of Mathematics Inje University Kimhae 621-749, Korea E-mail:mathkim@ijnc.inje.ac.kr

Department of Applied Mathematics Pukyong National University Pusan 608-737, Korea