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Abstract

We denote by M, (c¢) a complex space form with the metric of constant
holomorphic sectional curvature 4c and M a real hypersurface in M, (c). We
will give characterizations of homogeneous real hypersurfaces of type A and B
by observing the shape of geodesics and circles on M as curves in My(c).
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1 Introduction

We denote by M,(c) a complete and simply connected complex n-dimensional
Kahlerian manifold of constant holomorphic sectional curvature 4¢, which is called
a complex space form. Such an M, (c) is bi-holomorphically isometric to a complex
projective space P,C, a complex Euclidean space C" or a complex hyperbolic space
H,C, according as ¢ > 0, c =0 or ¢ < 0.

In this paper, we consider a real hypersurface M in M, (c¢), ¢ # 0. Typical examples
of M in P,C are the six model spaces of type A1, A2, B,C, D and E (cf. Theorem A
in §2), and the ones of M in H,C are the four model spaces of type Ag, A1, A2 and B
(cf. Theorem B in §2), which are all given as orbits under certain Lie subgroups of the
group consisting of all isometries of P,C or H, C. Denote by (¢,£,n,g) the almost
contact metric structure of M induced from the almost complex structure of M, (c)
and A the shape operator of M. Eigenvalues and einvectors of A are called principal
curvatures and principal vectors, respectively.

Many differential geometers have studied M from various points of view. For ex-
ample, Berndt [1] and Takagi [13] investigated the homogeneity of M. Kimura [7]
proved that if all principal curvatures are constant and ¢ is principal vector, then
M in P,C is congruent to one of model spaces. Moreover, it is very interesting to
characterize homogeneous real hypersurfaces of M, (c). There are many characteri-
zations of homogeneous ones of type A since these examples have a lot of beautiful
geometric properties, where type A means type A; or Ay in P,C and type Ag, 4y
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or A, in H, C. Okumura [11] and Montiel-Romero [10] proved the fact in P,,C and
H, C, respectively that M satisfies Ap = ¢ A if and only if M is locally congruent to
type A. Also Maeda [9] gave a characterization of type A in P, C (cf. Theorem E in
§2). However, until now there are few results about characterizations of type B. Kim,
Pyo and Ki-Nakagawa [5] characterized a real hypersurface of type B in M, (c) (cf.
Theorem F in §2).

Recently, Maeda-Ogiue [8] investigated a geodesic hypersphere (i.e. type A; in
P, C) by observing the shape of geodesics on M as curves in P,C. Motivated by
this result, we are interested in characterizing M of type A in M, (c) by observing
geodesics on M, and we will investigate circles on M of type B in M,(c).

The purpose of this paper is to give characterizations of homogeneous real hyper-
surfaces of type A and B by studing geodesics and circles on M as curves in M, (c).

2 Preliminaries

We begin with recalling the basic properties of a real hypersurface M of a complex
space form M, (c). Let N be a unit normal vector field on M. The Riemannian con-
nections V in M, (c) and V in M are related by

(2.1) VxY = VxY + g(AX,Y)N
and
(2.2) VxN = —AX,

where g denotes the induced Riemannian metric on M. Let J the almost complex
structure of M, (c). For a vector field X on M, the images of X and N under the
transformation J can be represented as

JX =¢X +n(X)N , JN = —¢

where ¢ defines a skew-symmetric transformation on the tangent bundle TM of M,
while  and ¢ denote a 1-form and a vector field on M, respectively. Moreover, it is
seen that g(&, X) = n(X). By the properties of the almost complex structure J, the
set (¢,&,1,g) of tensors satisfies

¢ =-T+n®E, ¢6=0, n(¢X)=0, ¢ =1

and
9(¢X,8Y) = g(X,Y) —n(X)n(Y),

where I denotes the identity transformation. Accordingly, this set (¢, &, 1, g) defines
the almost contact metric structure on M. Furthermore, the covariant derivatives of
the structure tensors are given by

(2.3) (Vx@)Y =n(Y)AX — g(AX,Y)¢,

(2.4) Vxé=pAX.
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Since the ambient space is of constant holomorphic sectional curvature 4¢, the equa-
tion of Codazzi is given as follows

(2.5) (VxAY = (Vy A)X = c{n(X)Y —n(Y)opX —29(¢X,Y)E}

It is well-known that there exist no totally umbilical real hypersurfaces in M, (c). So,
a real hypersurface M of M, (c) is said to be totally n-umbilical if its shape operator
A satisfies

AX = aX + by(X)¢

for some smooth functions a and b on M.

In the following, we use the same terminology and notations as the above unless
otherwise stated. Now we quote the following in order to prove our results.
Theorem A ([13]). Let M be a homogeneous real hypersurface of P,C. Then M is
a tube of radius v over one of the following Kdhler submanifolds:

(A1 ) a hyperplane P, 1C, where 0 < r < g,

(A2 ) a totally geodesic P,C (1 <k <n —2), where 0 <r < g,
T
1
(C) PiC x P,_1)/2C, where 0 <7 < % and n(>5) is odd,

(B ) a complex quadratic QQ,,—1, where 0 < r <

(D ) a complex Grassmann G2 5C, where 0 <1 < % andn =9,
(E ) a Hermitian symmetric space SO(10)/U(5),
where 0 <1 < % andn =15 .

Theorem B ([1]). Let M be a real hypersurface of H,C. Then M has constant
principal curvatures and & is principal if and only if M is locally congruent to one of
the following:

(Ao) a horosphere in H,C,

(A1) a geodesic hypersphere HoC or a tube over a hyperplane H, ,1C,

(A2) a tube over a totally geodesic HyC (1 <k <n —2),

(B) a tube over a totally real hyperbolic space H,R.

Theorem C ([10], [11]). Let M be a real hypersurface of M, (c). Then M satisfies
Ap = A if and only if M is locally congruent to one of type A1 and As when ¢ > 0,
and of type Ag, A1 and As when ¢ < 0.

Theorem D ([10], [14]). Let M be a real hypersurface of M, (c). Then M is totally
n-umbilical if and only if M is locally congruent to one of type A1 when ¢ > 0, and
of type Ag and A1 when ¢ < 0.

Theorem E ([3], [9]. Let M be a real hypersurface of M, (c). Then the following are
equivalent:

(1) M is locally congruent to one of type A,

(2) (VxA)Y = —c{g(¢X. V), +n(Y)pX} for any vector fields X and Y on M.
Theorem F ([5]). Let M be a real hypersurface of M, (c). Then the following are
equivalent:

(1) M is locally congruent to type B,

(2) (VX A)Y = k{20(X)(Ag— pA)Y +n(Y)(Ap—36A)X +g((A—364) X,V )¢}
for any vector fields X andY on M and k € R.
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Proposition A ([4], [9]). Let M be a real hypersurface of M, (c), ¢ # 0. If £ is
principal, then the corresponding principal curvature « is locally constant.

Here we consider the case where the structure vector ¢ is principal, namely, A¢ =
ag. Tt follows from (2.5) that

(2.6) 24¢9A = 2ch + a(Ap + 9A)
and hence, if AX = AX for any vector field X orthogonal to &, then we get
2\ — a)ApX = (aX + 2¢)dX.

Accordingly, it turns out that in the case where a?+c¢ # 0, X is also principal vector
with principal curvature u = (@)X + 2¢)/(2X — @), that is, we obtain

(2.7) ApX = poX,
’ 2A—a#0, p=(ar+2c)/(2X — a).
Finally, we recall the definition of helices in Riemannian geometry.
A smooth curve v = v(s) in a Riemannian manifold parametrized by its arc
length s is called a heliz of proper order d if there exists an orthonormal frame {V; =
¥,...,Vq} along 7 and positive constants k1, ..., kg1 which satisfy

V5. Vi(s) = =kj1Vioi(s) + k;Via(s), j=1,....d,

where Vo = V441 = 0. The constants k; (1 < j < d—1) and the orthonormal frame
{V1,...,Vq} are called the curvatures and the Frenet frame of v, respectively. And a
smooth curve is called a heliz of order d if it is a helix of proper order r (< d).

Note that a helix of order 1 is nothing but a geodesic, and a helix of order 2 is called
a circle. That is, a smooth curve v = v(s) in a Riemannian manifold parametrized by
its arc length s is called a circle if there exists a field Y = Y (s) of unit vectors along
v which satisfies V57 = kY and V;Y = —k¥ for some positive constant & which is
called the curvature of y. Moreover, for an arbitrary point z, an arbitrary orthonormal
pair (u,v) of vectors at x and an arbitrary positive number k, there exists a unique

circle v = 7(s) with y(0) = z, 4(0) = u and Y (0) = v.

3 Real hypersurfaces of type A

We denote by M, (c) a complex space form with the metric of constant holomorphic
sectional curvature 4¢ and M a real hypersurface in M, (¢), ¢ # 0. In this section,
we are concerned with homogeneous real hypersurfaces of type A. Then, according to
Takagi’s classification theorem [13] and Berndt’s one [1], the principal curvatures and
their multiplicities of type A in M, (c) are given as follows:

In the case ¢ > 0,

(i) type A; has two distinct constant principal curvatures a = 2 cot 2r with mul-
tiplicity 1 and A = cotr with multiplicity 2n — 2,

(ii) type A, has three distinct constant principal curvatures a = 2cot2r with
multiplicity 1, A = — tanr with multiplicity 2k and g = cot r with multiplicity 2(n —
k—1), where 1 <k <n-—1.
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In the case ¢ < 0,

(i) type Ap has two distinct constant principal curvatures a = 2 with multiplicity
1 and A = 1 with multiplicity 2n — 2,

(ii) type A; has two distinct constant principal curvatures a = 2coth (2r) with
multiplicity 1 and A = tanh(r) if 0 < A < 1 or A = coth(r) if A > 1 with multiplicity
2n — 2,

(iii) type A has three distinct constant principal curvatures o = 2 coth(2r) with
multiplicity 1, A = tanh(r) with multiplicity 2k and g = coth(r) with multiplicity
2(n—k—1), where 1 <k <n-—1.

The following discussion in the case ¢ > 0 is partially indebted to Maeda and
Ogiue [8]:

First of all, we prove the following
Lemma 3.1 Let M be a real hypersurface of type A in M, (c), ¢ # 0. Take orthonormal
vectors (v1,va,...,Von o) orthogonal to & at an arbitrary point p of M in such a
way that (vy,va,. .., vak) (Tesp. (Vog+1,V2k42, - -, Van—2)) are principal vectors with
principal curvature X (resp. p). Then (vy,ve, ..., van—2) satisfy the following:

(1) All geodesics v; on M with v;(0) = p and v;(0) = v;

(1 <i < 2k) are circles of the curvature A in My(c).
(2) All geodesics v; on M with v;(0) = p and v;(0) = v;
(2k + 1 <i < 2n — 2) are circles of the curvature p in My(c).
Proof. Let v; = 7i(s) (1 < i < 2n — 2) be geodesics on M with +;(0) = p and
7i(0) = v;. Then, taking account of (2.4) and Theorem C, we have

This implies that each 7; (1 < i < 2n — 2) is perpendicular to & since g(7;(0),&) =

g(”i: f) =0.
Thus, owing to Theorem E; we get

Vi | A% = M [IP= 29((V4, A)vi, A¥i — M) = 0,

where 1 <4 < 2k. Since A7;(0) — Ay;(0) = Av; — Av; = 0, we obtain Ay, — A\y; =
0 (1 <i<2k). Here we note that k =n — 1 in type A; when ¢ > 0, and in type Ay
and A; when ¢ < 0. Therefore, we see from (2.1) and (2.2) that

Vi = g(A%,7%)N = g(Mi, i) N = AN

and _
VN =—-Ay; = — M.

This implies that v; (1 < i < 2k) are circles of the curvature A and the Frenet frame
{7, N} in M, (c).

Similarly in the case where M is of type As, we can show that v; (2k+1 < i <
2n — 2) are circles of the curvature p and the Frenet frame {7;, N} in M,(c).
Theorem 3.2. Let M be a real hypersurface of M,(c), ¢ # 0. Then M is locally
congruent to one of type Ay when ¢ > 0, and of type Ag and A; when ¢ < 0 if
and only if there exist orthonormal vectors (vi,va,. .., Vo, o) orthogonal to & at an
arbitrary point p of M such that all geodesics v; = v;(s) on M through p in the
direction v; +v; (1 <i <j <2n—2) are circles in My/(c).
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Proof. Let M be locally congruent to one of type A; when ¢ > 0, and of type Ag
and A; when ¢ < 0. Then Lemma 3.1 shows that, for an arbitrary unit vector X L&
at p € M, a geodesic v = y(s) with v(0) = p and ¥(0) = X is a circle in M,,(¢). Thus
there exist orthonormal vectors (vi,ws,...,van_2) orthogonal to £ at an arbitrary
point p of M such that all geodesics 7; = 7;(s) on M through p in the direction v;
(1 <i<2n—2) are circles in M, (c).

Conversely, let v; = vi(s) (1 <14 < 2n — 2) be geodesics on M with ~;(0) = p and
4:(0) = v;. Then by such assumption that all geodesics v; = v;(s) on M through p in
the direction v; (1 < i < 2n — 2) are circles in M, (c), they satisty

(3.1) V2 i = —k2;

for some positive constants k;.
On the other hand, from (2.1) and (2.2) it follows that

(3.2) 61%’ = 9((Vy; A)Vi, Vi) N — g(Avi, i) Avi-
Comparing the tangential components of (3.1) with (3.2), we have
9(A%i, %) Avs = ki s

so that we get
g(Av;,v;) Av; = klv;,

which implies

(3.3) Av; = tkv; (1 <i<2n—2).
Thus we obtain

(3.4) 9(Av;,v;) =0 (1<i<j<2n-2)

because vectors (vy,va,. .., van_2) are orthonormal.

Let vi; = 755(s) (1 <4 < j < 2n—2) be geodesics on M with 7;;(0) = p and
#4:;(0) = (vi +v;)/v/2. Then by the same argument as the above we have

g(A(v; +v)), (v; + v;)) A(v; + v)) = 2k3;(v; + v;)
for some positive constants k;;. Hence we get
g(A(v; +vj),(vi —v;)) =0 (1<i<j<2n-2).
Therefore, combining this with (3.4) we have
9(Avi, vi) = g(Avj,v5) (1 <4,j < 2n—2).

This, together with (3.3), implies that AX = kX for all X ortogonal to £ and for
some constant k.

Moreover, £ is also principal because g(A¢, X) = g(&, AX) = g(&,kX) = 0 for all
X 1LE&
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Thus we see that M is n-umbilic at p and hence M is totally p-umbilic in M, (c)

since p is arbitrary. Therefore, owing to Theorem D, it follows that M is locally
congruent to one of type A; when ¢ > 0, and of type Ay and A; when ¢ < 0.
Theorem 3.3. Let M be a real hypersurface of M,(c), ¢ # 0. Then M is locally
congruent to one of type Ay and type Ay with r = w/4 when ¢ > 0, and of type Ag
and A1 when ¢ < 0 if and only if there exist orthonormal vectors (vi,va,...,Von _2)
orthogonal to & at an arbitrary point p of M such that all geodesics v; = vi(s) on M
with v;(0) = p and 7;(0) = v; (1 < i < 2n —2) are circles in M, (c) with the same
curvature.
Proof Let M be locally congruent to one of type A, and type Ay with r = 7/4 when
¢ > 0, and of type Ay and A; when ¢ < 0. By Lemma 3.1, there exist orthonormal
vectors (v1,va, ..., va,—2) orthogonal to £ at an arbitrary point p of M such that all
geodesics y; = «;(s) on M with v;(0) = p and 7;(0) = v; (1 <i < 2n — 2) are circles
in M,,(c) with the same curvature A.

Conversely, let v; = vi(s) (1 <i < 2n — 2) be geodesics on M with ;(0) = p and
~:(0) = v;. Then by assumption that all geodesics v; = 7;(s) on M through p in the
direction v; (1 < i < 2n—2) are circles in M,,(c) with the same curvature k, the same
argument as one in the proof of Theorem 3.2 gives

g(Av;,v;)Av; = E*v; (1 <i<2n—2),
where k is a positive constant. Then we get
(3.5) Av; = kv; or Av; = —kv; (1<i<2n-—2).

Thus we obtain the fact that ¢ is principal because g(A&, v;) = g(§, Av;) = g(&, £kv;) =
0 for 1 < i < 2n — 2. Therefore M is a real hypersurface in M, (¢c) with at most three
distinct constant principal curvatures k, —k and «, where we have used Proposition
A. Consequently, M is locally congruent to one of homogeneous real hypersurfaces
of type A1, As and B when ¢ > 0, and of type Aqg, 41, A2 and B when ¢ < 0. But
the shape operators of homogeneous real hypersurfaces of type A, of radius r(# 7 /4)
and B when ¢ > 0, and of type A, and B when ¢ < 0 do not satisfy (3.5). That is,
M is locally congruent to one of type A; and type As with r = 7/4 when ¢ > 0, and
of type Ag and A; when ¢ < 0.
Replacing geodesics in Lemma 3.1 by circles, we have the following

Lemma 3.4. Let M be a real hypersurface of type A in My(c), ¢ # 0. Take orthonor-

mal vectors (vy,va,...,van—2) orthogonal to & at an arbitrary point p of M in such a
way that (vy,va,. .., vak) (Tesp. (Vog+1,V2k42, - -, Van—2)) are principal vectors with
principal curvature A (resp. p). Then (v1,vs, ..., V2, _2) satisfy the following:

(1) All circles 7; of an arbitrary curvature in M with ~;(0) = p,
7:i(0) = v; and the Frenet frame {v;,£} (1 <i < 2k) are circles of
the curvature X and the Frenet frame {v;, N} in M,(c).
(2) All circles 7; of an arbitrary curvature in M with ~v;(0) = p,
7i(0) = v; and the Frenet frame {7;,&} 2k +1<1i <2n —2) are
circles of the curvature p and the Frenet frame {v;, N} in M, (c).
Proof. Let v; = v;(s) (1 <14 < 2n —2) be circles on M with 7;(0) = p and 7;(0) = v;.
Then, from the assumption that all ; have the Frenet frame {¥;, £}, it follows that
each v; (1 <i < 2n — 2) is perpendicular to &.
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Thus, owing to Theorem E, we get

V’Y'i

I”

A — M 29((V5, A)vi + A(V5,7%:) — AV5,7i, Ay — Avi)
29((Vy, A)vi + A(mi&) — Am;&, Avi — Ai)

= 29((Vy; A)yi + (o = \)ym;&, Ay — Ayi) = 0,

where each m; is the curvature of ; (1 < i < 2k). Since A7;(0) — A7;(0) = Av; — Av; =
0, we obtain Ay; —Ay; =0 (1 <i < 2k). Therefore, we see from (2.1) and (2.2) that

Vi = g(A%,7%)N = g(\i, 7)) N = AN

and B
VN = —Aj; = =M.

This implies that v; (1 < i < 2k) are circles of the curvature A and the Frenet frame
{7, N} in M,,(c). Here we note that £ = n — 1 in type A; when ¢ > 0, and in type
Ay and A; when ¢ < 0.

Similarly in the case where M is of type Ao, we can show that v; 2k +1 < i <
2n — 2) are circles of the curvature g and the Frenet frame {v;, N} in M,(c).

4 Real hypersurfaces of type B

We denote by M, (c) a complex space form with the metric of constant holomorphic
sectional curvature 4¢ and M a real hypersurface in M, (c), ¢ # 0. In this section,
we are concerned with homogeneous real hypersurfaces of type B. Then, according
to Takagi’s classification theorem [13] and Berndt’s one [1], the principal curvatures
and their multiplicities of type B in M, (c) are given as follows:

(i) In the case ¢ > 0, type B has three distinct constant principal curvatures
a = 2cot 2r with multiplicity 1, A = — tan(r — 7/4) with multiplicity n — 1 and
u = cot(r — w/4) with multiplicity n — 1.
(ii) In the case ¢ < 0, type B has three distinct constant principal curvatures
a = 2tanh(2r) with multiplicity 1, A = tanh(r) with multiplicity n—1 and g = coth(r)
with multiplicity n — 1.
Then we first have the following
Lemma 4.1. Let M be a real hypersurface of type B in My(c), ¢ # 0. Take orthonor-
mal vectors (v1,v2,...,V2,_2) orthogonal to £ at an arbitrary point p of M in such
a way that (vi,v2,...,05_1) (T€8p. (Vn,Vpt1, - .., Van_2)) are principal vectors with
principal curvature X (resp. p). Then (vy,vs, ..., van—2) satisfy the following:
(1) All circles 7; of an arbitrary curvature in M with v;(0) = p,
7i(0) = v; and the Frenet frame {7;,&} (1 <14 <n —1) are circles
of the curvature \ and the Frenet frame {;, N} in M,(c).
(2) All circles v; of an arbitrary curvature in M with v;(0) = p,
~:(0) = v; and the Frenet frame {7;,£} (n <1i < 2n —2) are
circles of the curvature p and the Frenet frame {7;, N} in My(c).
Proof. Let v; = v;(s) (1 < i < 2n—2) be circles on M with v;(0) = p and 7,;(0) = v;.
Then, from the assumption that all 7; have the Frenet frame {¥;, £}, it follows that
each v; (1 <i < 2n — 2) is perpendicular to &.
Thus, owing to Theorem F, we get
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Vil A% =M [P = 29((V4, A% + A(V5,9) — AV49:, A% — M) =
= 29((Vy5,A)yi + A(ki&) — A&, Avi — Ayi) =
= 29((V5A)i + (a = Nk, Ay — M) = 0,

where each k; is the curvature of v; (1 <4 < n—1). Since Ay;(0)—A7;(0) = Av;—A\v; =
0, we obtain Ay; — Ay; =0 (1 <i < n — 1). Therefore, we see from (2.1) and (2.2)
that B
Vi = 9(A%,7)N = g(Mi,7i)N = AN
and _
Vi N = —Av; = — M.

This implies that 7; (1 < i < n — 1) are circles of the curvature A and the Frenet
frame {7;, N} in M, (c).

Similarly we can show that v; (n <14 < 2n — 2) are circles of the curvature p and
the Frenet frame {7;, N} in My,(c).

Theorem 4.2. Let M be a real hypersurface of M,(c), ¢ # 0. Then M is locally
congruent to one of type A and B if and only if there exist orthonormal vectors
(v1,v2,...,V2,_2) orthogonal to & at an arbitrary point p of M such that all circles
vi = 7i(s) in M with v;(0) = p, 7:(0) = v; and the Frenet frame {7;,&} (1 < i <
2n — 2) are circles in M, (c) of the same curvature ¢; (1 < i < 2k) or the same one
¢; 2k+1<j<2n-2).

Proof. Let M be locally congruent to one of type A and B in M,(c).

First of all, let M be of type A in M, (c) and let v; = v;(s) (1 <i < 2n —2) be
circles in M with ~;(0) = p, 7:(0) = v; and the Frenet frame {v;,£}. Then, owing
to Lemma 3.4, there exist orthonormal vectors (vy, v, ..., va,_2) orthogonal to £ at
an arbitrary point p of M such that these circles v; = 7;(s) (1 < i < 2n — 2) are
circles in My (c) of the same curvature ¢; = A (1 < i < 2k) or the same one ¢; =
(k+1<j<2n-2).

Next, let M be of type B in M,,(c). Then by Lemma 4.1, there exist orthonormal
vectors (v1,v2,...,V2, o) orthogonal to £ at an arbitrary point p of M such that
all circles v; = 7i(s) in M with v;(0) = p, 7:(0) = v; and the Frenet frame {v;,&}
(1 <4< 2n—2) are circles in M,(c) of the same curvature ¢; = A (1 <i<n-—1)or
the same one ¢; = p (n < j < 2n — 2).

Conversely, assume that there exist orthonormal vectors (vi,va, ..., vay_2) oOr-
thogonal to ¢ at an arbitrary point p of M such that all circles v; = ~;(s) in M with
7i(0) = p, 7:(0) = v; and the Frenet frame {7;,£} (1 <i < 2n—2) are circles in M, (c)
of the same curvature ¢; (1 < ¢ < 2k) or the same one ¢; (2k+1 < j < 2n —2). Then
the same argument as one in the proof of Theorem 3.2 gives

g(Av;,v;)Av; = ¢i”v; (1 <i < 2k)

and
9(Avj,v;)Av; = ¢;*v; (2k+1<j <20 - 2)

where ¢; and ¢; are positive constants. Then we get
(4.1) Av; = *cv; and Avy = +c¢jv; (1 <i<2k,2k+1<j<2n-2).

Thus, by means of (4.1), we obtain the fact that £ is principal because g(A¢&,v;) =
9(&, Av;) = 0 for (1 < i < 2n—2). Therefore M is a real hypersurface in M,,(c) with at
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most five distinct constant principal curvatures ¢;, —c;, ¢j, —¢; and a, where we have
used Proposition A. Consequently, M is locally congruent to one of homogeneous real
hypersurfaces of type Ay, Ay, B, C, D and E when ¢ > 0, and of type Ag, A1, As
and B when ¢ < 0. But the shape operators of homogeneous real hypersurfaces of
type C,D and E when ¢ > 0 do not satisfy (4.1). That is, M is locally congruent to
one of type A and B in M, (c).
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