Some Theorems on Austere Submanifolds

Bogdan Suceava

Abstract

In §1 there are described the introductory notions of the geometry of sub-
manifolds, as they are required in the paper. There are introduced the austere
submanifold and are given same examples. The shape discriminant, depending
upon the principal curvatures of the submanifold, is introduced in §2, repeat-
ing the idea from [8]. Here are proved completely all its properties necessary
to prepare the main results, which are stated in §3, where the geometry of the
austere submanifolds is presented related on some local techniques involving the
principal curvatures.

Mathematics Subject Classification: 53B25, 53B35, 53C42
Key words: real submanifold, austere submanifold, Kaehler manifold, totally geodesic
submanifold

1 Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically imersed in an almost
complex Hermitian n + m-dimensional manifold M with almost complex structure J
and almost Hermitian metric g. For any vector X tangent to M we write

(1.1) JX = PX + FX,

where PX and F'X are the tangent and the normal components of JX, respectively.
For any point p € M we have the Gauss and Weingarten formulas

(1.2) (VxY), = (VxY), + hy(X,Y), VX,Y € TM

(1.3) (Vx&)p = —(4eX), + (Dx€),, VX € TM,VE € THM,

where V and V are the Levi-Civita connections in the Riemannian manifolds M and
M, h is the second fundamental form of the submanifold M of M, A¢ the shape
operator for the normal field &, and D the normal connection in 7M.

We will denote (A¢), not only the shape operator in p, but also the matrix asso-
ciated to the linear mapping from T, M to T, M.
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Definition 1.1 The principal curvatures of the submanifold M associated to the field
€ € T+ M are the roots of the characteristic polynomial

(L4) det((Ae)y — p(p)L,) = 0.

Notation 1.1. Let &1, ..., &, be an orthonormal base for a neighbourhood U of the
point p € M, where &(i = 1,m) are sections in the normal bundle T+ M. For these
normal fields &, ...&, we have the principal curvatures, respectively:

Remark 1.1. Some properties of the principal curvatures are presented in [1], pg.67.
Definition 1.2. Let M be a submanifold of the Riemannian manifold (M, g). M is
called minimal if trace H = 0. M is called austere if for every ¢ € T+ M the family of
the eigenvalues of A¢ - repeated as many times as it is their multiplicity - is invariable
by its multiplication with (-1).
Remark 1.2. Obviously, an austere submanifold is minimal.
Example 1.1.. The trivial case of austere submanifolds are the totally geodesic sub-
manifolds. For example, for any hyperplane (H) C E" = (R", can), all the eigenvalues
are 0, and (H) is austere since (H) is totally geodesic.
Example 1.2. The Clifford torus is an austere submanifold. Let f : R* — R* given
by
f@,0) = i(cos 6,sin 6, cos p,sing), (8, p) € R?.

V2
The mapping f is an imersion of R? into the unit sphere $3(1) € R*, where image
f(R?) is the flat torus. The vectors

e; = (—sin#,cosh,0,0)

e2 = (0,0, —sinp, cos p)

form an orthonormal basis of the tangent space T’ (g, ) Imf, and the normal vectors

cos B,sin b, cos v, sin )

= \/5
= —=(— COS ‘9, —sin 49, COos @, sin "2}
2 \/5( )

form an orthonormal basis of the normal space. The matrices A,, and A,, with respect
to the basis {ej,e2} are

_% 0
A771 = 1 ’
0 -7
% 0
A772 = 1
0 -
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As we can see, Typg ) Imf & Rny = Tp,,)S?(1) and Ty, S*(1) & Ry =

T E*. The eigenvalues — and ——— show us that the Clifford torus is an austere
£(0,9) g /2 /2

submanifold of the unit sphere S®.

2 The shape discriminant

We follow now the construction from [8]. We begin with the following
Lemma 2.1. Let g € R[X] be the polynomial

g(X)=ao X" + a1 X" '+ ax X"+ . +ap
with ag #Z 0 and n > 1. If all the roots of g are real, then

2(n—1)

A(g,n) = a? — 4agaz > 0.

Proof. If g has all the roots real, then ¢’ has also all the roots real. After (n — 2)
steps, g2 has all the roots real. Actually, ("2 is a polynomial of degree 2 and
the condition z1,z2 € R means A(g,n) > 0.

Remark 2.1. The converse of this lemnma is not true.

Lemma 2.2. Let 7; € R, i =1,n. If Y x; = 0, then we have
i=1

(2.1.) ( max z; — min z;)? < —4 Z ;.

i=1,n i=1,n 1<i<j<n

Proof. If we suppose z; < x5 < ... < z,, we have:

2 2

( max z; — min x;)° = (x, —x1)".

i=1,n i=1,n

n
The condition ) z; = 0 gives
i=1

n

2 —
E x; + 2 E z;r; =0,
i=1 1<i<j<n

and to prove the claim we have to show that
n
(zn —x1)* < 225[73
i=1

or 0 < (z1 +an)? +2(x3 + 22 + ... +22_)), qe.d. .
Definition 2.1. Let M be a submanifold of the Riemannian manifold (M,g). The
mapping

(22) 65 M — R, (55(1)) = A(dEt((Aﬁ)P - p(p)In)>n)
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is called the shape discriminant of the submanifold M associated to the normal vector
field ¢ € T+ M.

Remark 2.2. Because the matrix (A¢), is symmetric and its eigenvalues are all real,
the lemma 2.1 gives

(2.3) Se(p) >0, Vpe M,VéE € THM.

Notation 2.1. Let &;,...&,, be m normal sections in the normal bundle 7M. We
denote
(51' = (5&. N Ai = Agi.

For every section ¢; we have the set of eigenvalues pi, ..., pi,. Let L; : M — R be the
mapping which measures the length of the interval where lies the eigenvalues

(2-4) Li(p) = max pi(p) — min pj(p).

i=In j=In
Remark 2.3. With the notation
AilP = (p1)? + o + (p})?
the shape discriminant is

(2.5) 8 = 2| Aq||* — %(trAi)Q.

Theorem 2.1. With the notations above, for any p € M and any basis &1, ...,&n in
T+M, we have the double inequality

(26) (5) a0 <z <Vam, vi-Ta

Proof. Let f € R[X] the polynomial corresponding to the characteristic equation of
the shape operator A; in p € M,

f(X)=a X"+, X" '+ ... +a,.

We have seen that f k)( ) =0 is an equation with all the roots real,
Vk =1,n —1, and for every k = 1,n — 1, we have

(k

min z; < min z;

(k

)S max :rj)g max ;.

i=T,n i=T,n i=in =T
For k =n — 2, we find

n-2) m;n—2>|:71( VA,
|aol/ =5

|z;

and |ag| = 1 proves the first 1nequahty To prove the second one, we use the lemma
2.2. We denote y; = x; + -2, and Z Yy = E T; + Z Tfalo = 0, from the Viete’s

nao

formula.
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For y; chosen as above, we can apply the lemma 2.2:

( max y; — min y;)* < —4 Z Yiy; =

i=1,n i=1,n 1<i<j<n
n 2
ay  ap ai n(n-1) 1
=—4 —+—(n—1)£ Z’i-f-ﬁ'i :—2Ai.
ap  nap nag 2 ag

i=1

3 Austere Submanifolds

Remark 3.1. Obviously, not any minimal submanifold is austere. An austere sub-
manifold with L; = 0, Vi = 1,m, for every base &, ..., &, in T+M is totally geodesic.
For the submanifolds of a Riemannian manifold we have the following inclusions:
totally geodesic C austere C minimal.

In [3], with the notations established as above, is presented
Theorem 3.1. If M is a proper slant submanifold of a Kaehlerian manifold (M,.J, g),
and if VF = 0, then M is austere.
Remark 3.2. For an austere submanifold we have

(3.1) Li(p) =2 max p}(p) = 2pkax (P),

i=1,n

and for every point p of an austere submanifold M C M we have

(32) (5) 500 <2hat) <VEWL Vi=Th

(see Theorem 2.1).
Theorem 3.2. Let M be a n-dimensional austere submanifold in the n+m dimensional
Riemannian manifold (M, g). If for any orthonormal basis &1, ..., &y in T-M we have

6z(p):07 \V/’Lzl,m, vpeM?

then M is totally geodesic.

Proof. The relation (2.6) means L;(p) =0, Vi =1,m and Vp € M, and from (3.2)
we have pi . (p) =0, Vp € M, q.e.d. Following the theorem 3.1 we find

Corollary 3.1. Let M be a n-dimensional proper slant submanifold of the n+m-
dimensional Kaehlerian manifold (M, J,g). If VF = 0 and for every basis &1, ..., &
in T+M we have §; =0, Vi =1, m, then M is totally geodesic in M.

Proof. The theorem 3.1 shows that M is an austere submanifold, and the theorem
3.2 yields that M is totally geodesic.

Definition 3.1. Let &, ..., &, be as above an orthonormal basis in T+ M, and the m
shape discriminants, respectively 41, ...d,,. We consider the mapping

§: M —=R"™, 5(p)=(61(p),- 0m(p))-

We call § the principal discriminant of the submanifold M, corresponding to the basis

El: 7£m
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Remark 3.3. If M is a totally geodesic submanifold, then § = Oger. The principal
discriminant measures how far from the property of being totally geodesic is the
submanifold M C M.

Theorem 3.3. Let M be a submanifold of the Riemannian manifold M. If there exist
i € {1,...,m} and p € M such that 6;(p) > 0, then M cannot be totally geodesic in M.
Remark 3.4. The condition ||§|| > 0 is an obstruction for the submanifold M to be
totally geodesic.
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