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Abstract

We obtain generalizations of a theorem of Dold to G-cohomology theories
defined on some categories of G-spaces,where G is a compact Lie group.
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Introduction

An old result of Dold says that if h* is a generalized multiplicative cohomology theory
defined on the category of CW-complexes and suppose h*(X) is a projective module
over h*(point), then the product map

*(X) @7 h*(Y) = (X x V)

is an isomorphism for any Y, where h denotes h*(point).

The generalization of this theorem is not trivial. There is a well-known example of
L. Hodgkin (see [4]): although k% (X) is a free hf, (point)-module, this does not imply,
in general, that the above product map is an isomorphism.

The beginning steps towards the generalization of Dold’s Theorem come from R.
M. Seymour who considered in [7] G-cohomology theories which are ”complete” with
regard to a family S of closed subgroups of G.

In this paper, we use one of the two notions of S-completeness defined by Seymour
and we state a generalization of the Dold Theorem in terms of conditions concerning
S and the associated H-cohomology theories for H € S. Unfortunately we did not
obtain satisfactory information regarding the category C where hf; is defined.

1

Let us recall some elements which we shall need. First, we shall use the words gener-
alized cohomology theory to mean a family h* = (h?),cz of contravariant O-functors
in the sense of [2], defined on a category of pairs .
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We shall assume h* has the following properties:
(1) If f ~g, then h*(f) = h*(g)-
(1) If f is a relative homeomorphism, then h*(f) is an isomorphism.
D)
(I Xa) = T p*(Xa),

for any family of spaces (X, ), where ][] denotes the topological sum (for this definition
see also [3]).

We consider now G-cohomology theories defined on the category of G-pairs in the
sense of [5], section 5 (here G is a compact Lie group). In fact, we shall recall the
generalized Borel construction to obtain a large class of examples: for any family S
of closed subgroups of G and any G-space X, define a topological category C(X;S)
whose objects are [[ ;. q X H and whose morphisms are

[l Homa(G/H,G/K)x X*¥.
(H,K)eSxS

Next we define the space X (S) to be the geometric realization without degeneracies
of C(X;S), in the sense of [6], appendix A.

Clearly, if (X, A) is a G-pair, then A(S) is a closed subspace of X (S) and also, (., S)
preserves all the above properties. Thus, if h* is a generalized cohomology theory, we
can define a G-cohomology theory on G-pairs by the formula

he (X, 4;5) = h*(X(S), A(S))

and we shall say that h5(.;S) is the G-cohomology theory obtained from h* by
generalized Borel construction with regard to S.

Finally in this section, for a G-cohomology theory hf, and for a closed subgroup
H of G, we define the associated H-cohomology theory hj; by the formula

Wi (X, A) = hi(G xg X, G x g A)

where (X, A) is an H-pair and G x g X denotes the orbit space of G x X under the
action of H given by
h- (g,l‘) = (ghilahm)‘

Observe that,for a G-space X,then G x g X is naturally G-homeomorphic to G/ H x
X (here G acts on both factors). Thus the projection G/H x X — X induces a natural
transformation
e hE(X) = b (X).

Because the Weyl group of H in G acts as a group of automorphisms of h};
restricted to G-spaces (see [7] section 3), the transformation cg maps h}(X) into the
invariants of A} (X) under this action. Again note that cg is a ring homomorphism.

2

The following notions were introduced by R. M. Seymour (see [7]).
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Definiton 1. Let S be a family of closed subgroups of the compact group G. A G-
map f: X — Y will be called a strong (G, S)- equivalence if f is an H-equivariant
homotopy equivalence for each H € S.

In view of Lemma 2.1 in [7], for the rest of this paper, we shall assume that the
family S is closed with respect to conjugation and finite intersection.Such a family is
called a complete family of subgroups.

Remark. If G € S, then a strong (G, S)-equivalence is just a G-homotopy equivalence.
On the other hand, if S = {1}, then f is a strong (G, S)-equivalence if f is a G-map
which is a homotopy equivalence. Generally G-homotopy equivalence implies strong
(G, S)-equivalence .

Definition 2. A G-cohomology theory hf is weakly S-complete if the morphism
f* o hE(Y) = hE(X), induced by a strong (G, S)-equivalence f : X — Y is an
isomorphism.

Example. For a compact and connected Lie group G, we consider its maximal torus
T and let K% be the equivariant K (cf. [7], 5.1).

Remark. The equivariant K-theory is not weakly (1)-complete. This is proved in [1],
where an example of a G-map, homotopy equivalence f : X — Y is constructed, but
which does not induce the isomorphism K% (Y) — K& (X).

To conclude this section, if hf, is a multiplicative G-cohomology theory, we are
given a natural, associative pairing

pa hg(X) @ hig(Y) = hg(X xY),

where hg denotes the graded ring hg (point). We assume hg has an identity and ug
is graded commutative.

Again, if H is a closed subgroup of G and X, Y are H-spaces, then there are the
pairings

Here we write hy for h¥ (point).

3

Let C be some full subcategory of G-spaces. We shall recall a result of R.M.Seymour
(6.1 in [7]):

Proposition 1. For hf, a multiplicative G-cohomology theory we suppose h(X) is
a projective hg-module and that

ig : W5 (X) @, i — hig(X)

is an isomorphism for each H € S. Then the map ug from section 2 is an isomorphism
for each Y in C.

For weakly S-complete theories we obtain the following result:
Proposition 2. Let S be a complete family and suppose h§. is a weakly S-complete
multiplicative theory. Let h7(X) be a projective hg-module and suppose Tig is an
isomorphism for each H € S, X € C. Then the map

pe - hiy(X) @5 hE(Y) = hiy(X x Y)
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is also an isomorphism for each 'Y € C.
Proof. We consider the natural transformation between G- cohomology theories

B (X) @5 WE() = hE(X x ).

Because h(G/H) = hj(point) and hi(X x G/H) = b (X x point) = hi;(X),
using one of the hypotheses, we obtain that the induced morphisms

h&(X) @5, b (point) — R (X x point)

are isomorphisms for each H € S and X € C.
By a standard induction over the skeleton of the CTW-complex L we conclude that

he(X) @5, he(Ln) = h&(X X L)

is an isomorphism for each n > 0.

By the device of [7], Proposition 3.3, one can obtain that pg is an isomorphism
for any CW-complex L.

Now define a topological category as follows:

Object space is H G/H xYH"
HesS

Morphism space is H G/H x Homg(G/H,G/K) x Y¥.
(H,K)eSxS

Next observe that G acts on the objects and morphisms of this category by the
left action of G on the factors G/H and all structural maps are equivariant regarding
this action.Thus,we have an induced G-action on the geometric realization E(Y,S) of
the above category.

Because S is a complete family,then E (Y S) is strongly G-contractible with respect
to S(see [7],Proposition 2.2).It follows that the induced morphism

p*hE(X) = hE(E(Y,S) x X)

is an isomorphism,where p : E(Y,S) x X — X is projection onto the second factor.
Finally we take E(Y, S) as the previous CW-complex L and that gives the result.
Corollary 1. Let S be a complete family and h§, be a weakly S-complete multiplicative
theory. We assume that his(X) is a free hg-module on basis B and that cir maps B
bijectively onto a basis for h’;(X) as a free hg-module for each H € S.Then, if the
morphism
o+ By (X) 0, W (V) = Wy (X x V)

is an isomorphism for each H € S and X,Y € C,it follows that ug is an isomorphism
for XY objects of the category C.

Proof. We denote by [B]R the free R-module on basis B.We have the following
diagram of morphisms:

[Blhc @5, b = hg(X) @5, har 5 hjy(X)
cy ® 1) cg @1 I
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[CH(B)]EH ®EH EH E) h;I(X) ®EH EH E) h;I(X)

The two vertical maps are isomorphisms by hypothesis and the first two horizontal
isomorphisms are induced by the inclusions B C h};,(X) and

cu(B) C hj;(X).Finally the second map from the lower line of diagram is a canonical
isomorphism. It follows that u is an isomorphism and applying the previous proposi-
tion we obtain the result.

In [7] R. M. Seymour obtained some conditions under which the hypotheses of
above corollary hold (see proposition 6.3, [7]).
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