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Abstract

We define the generalized Tanaka connection for real hypersurfaces in
Kahlerian manifolds, and further classify a real hypersurface of a complex pro-
jective space whose shape operator or Ricci tensor is parallel with respect to the
generalized Tanaka connection, respectively.
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Introduction

Let P,(C) be an n-dimensional complex projective space with Fubini-Study metric
of constant holomorphic sectional curvature 4, and let M be an orientable real hyper-
surface of P,(C). Then M has an almost contact metric structure (n, ¢, g) induced
from the Kéhlerian structure of P, (C) (see section 2). We denote by & the structure
vector field dual to 77. One of the typical examples of M is a geodesic hypersphere. We
denote by V, A, R and S, the Levi-Civita connection with respect to g, the shape op-
erator, the curvature tensor and the Ricci tensor on M, respectively. It is well-known
that there does not exist a real hypersurface M in P,(C) with the parallel second
fundamental tensor(VA = 0). Also the second author ([4]) proved that there does
not exist a real hypersurface M with the parallel Ricci tensor(VS = 0) in P,(C),
n > 3. As an immediate consequence of this result, P,(C)(n > 3) does not admit a
locally symmetric(VR = 0) real hypersurface M. For real hypersurfaces in Kéhlerian
manifolds, the CR structure associated with the almost contact metric structure is
integrable, but is not in general non-degenerate. On the other hand, N.Tanaka ([13])
defined tha canonical affine connection on a non-degenerate integrable CR manifold.
And S.Tanno ([14]) defined the generalized Tanaka connection for contact metric man-
ifolds by relaxing the integrability condition of their associated CR structures. In the
present paper, for a non-zero real number k we define the generalized Tanaka con-
nection V*) for real hypersurfaces in Kihlerian manifolds by the naturally extended
one of S.Tanno’s generalized Tanaka connection (k = 1) for contact metric manifolds.
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The generalized Tanaka connection V(*) coincides with the Tanaka connection if real
hypersurfaces satisfy ¢ A + Ap = 2k¢ (see section 2). In section 3 we show that there
are real hypersurfaces M of P, (C) such that its almost contact metric structures is
not contact metric structure but, V*) defined on M for some k # 0 coincides with
the Tanaka connection (see Remark 1).

R. Takagi ([11]) classified homogeneous real hypersurfaces of P,(C) by means
of six model spaces of type Ay, As, B, C, D, and E, further he explicitely write
down their principal curvatures and multiplicities in a table in [12]. T.E.Cecil and
P.J.Ryan([3]) extensively investigated a real hypersurface which is realized as a tube
of constant radius r over a complex submanifold of P,(C) on which £ is a principal
curvature vector field with principal curvature @ = 2cot2r and the corresponding
focal map o, has constant rank. By making use of these two works, M. Kimura ([5])
proved the following
Theorem 0. Let M be a connected real hypersurface of P, (C). Then M has constant
principal curvatures and the structure vector field & is principal if and only if M is
locally congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyperplane P,,_1(C)),
where 0 <1 < Z;

(A2) a tube of radius r over a totally geodesic Pp(C)(1 < k < n—2), where
0<r<3;

(B) a tube of radius r over a complex quadric Q,—1, where 0 <1 < T;

(C) a tube of radius r over P;(C) x Puy (C), where 0 <7 < T;

(D) a tube of radius r over a complex Grassmann Go5(C), where 0 < r < I and
n=29;

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where
0<r<% and n = 15.

In these circumstaces, we will investigate real hypersurfaces of P,,(C) whose shape
operator is parallel with respect to the generalized Tanaka connection, and further
the Ricci tensor is parallel with respect to the generalized Tanaka connection. More
specifically, in section 4, we prove:

Theorem 1. Let M be a real hypersurface of P,(C). If the shape operator A is vk .
parallel N(k)A = 0), then & is a principal curvature vector field and further M is
locally congruent to one of the homogeneous real hypersurfaces of type Ay, Ay or B,
and vice versa.

Proposition 1. Let M be a real hypersurface of P,(C) whose structure vector £ is a
principal curvature vector field. If the Ricci tensor S of M is V*) -parallel (VK S =
0), then M is locally congruent to one of homogeneous real hypersurfaces of type A,
As, or B, and vice versa.

Recently, a ruled real hypersurface is defined by a foliated one by complex hy-
perplanes P,,_1(C) and investigated in [6]. We see that the ruled real hypersurface
satisfies that ¢A + A¢ = 0 resticted on the distribution D which is determined by the
kernel of  (or that D is integrable). In section 5, we prove that there does not exist
the ruled real hypersurface with the V(*¥)-parallel Ricci tensor.

In this paper, all manifolds are assumed to be connected and of class C*° and the
real hypersurfaces are supposed to be oriented.
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1 Almost contact metric structures and the associ-
ated CR structures

First, we give a brief review of several fundamental notions and formulas which we
will need later on. An odd—dimensional Riemannian manifold M with metric tensor
g is said to have an almost contact metric structure if it admits a (1,1)-tensor field ¢,
a vector field ¢ and a 1-form 7 satisfying

(1.1) ¢*°X = —X +n(X)¢, n(€) =1, g(¢X,¢Y) = g(X,Y) — n(X)n(Y).
From (1.1) we get
(1.2) ¢ =0, nogp=0, n(X)=g(X,¢).

We call (n,¢,9) an almost contact metric structure of M and M = (M;n,$,g) an
almost contact metric manifold. The tangent space T, M of M at each point p € M
is decomposed as T,M = D, & {{}, (direct sum), where we denote D, = {v €
T,M|n(v) = 0}. Then D : p — D, defines a distribution orthogonal to {. For an
almost contact metric manifold M = (M;n, ¢, g), one may define naturally an almost
complex structure on the product manifold M x R, where R denotes real line. If
the almost complex structure is integrable, M is said to be normal. The integrablity
condition for the almost complex structure is the vanishing of the tensor [¢, ¢]+2dn®¢E,
where [, ¢] denotes the Nijenhuis torsion of ¢. Also, for an almost contact metric
manifold M we define its fundamental 2-form ® by ®(X,Y) = g(¢X,Y). If

(1.3) ® = dn,

M is called a contact metric manifold. A normal contact metric manifold is called
a Sasakian manifold. For more details about the general theory of almost contact
metric manifolds, we refer to [1], [9].

On the other hand, for an almost contact metric manifold M = (M;n, ¢, g), the
restriction ¢ = @|D of ¢ to D defines an almost complex structure to D. If

[0X,¢Y] - [X,Y] € D

and

[¢, #](X,Y) =0
for all X,Y € D, where [¢, ] is the Nijenhuis torsion of ¢, then the pair (1, ) is
called the integrable CR structure associated with the almost contact metric structure
(n, 6, 9), and the associated Levi form defined by L(X,Y) = dn(X,¢Y), X,Y € D.
If the associated Levi form is nondegenerate (positive or negative definite, resp.)
and hermitian, then (1, ¢) is called a non-degenerate (strongly pseudo-convez, resp.)

pseudo-hermitian CR structure. For further details about CR structures, we refer to
[2], [14].

2 The generalized Tanaka connection on real hyper-
surfaces

Let M be a real hypersurface of a Kahlerian manifold M = (M;J,j) and N (or
N’ = —N) a unit normal vector on M. By V we denote the Levi-Civita connection
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in M. Then the Gauss and Weingarten formulas are given respectively by
VxY =VxY +g(4X,Y)N, VxN = —AX,

for any vector fields X and Y on M, where g denotes the Riemannian metric of M
induced from §. An eigenvector(resp. eigenvalue) of the shape operator A is called a
principal curvature vector (resp. principal curvature). We denote by V) the eigenspace
associated with an eigenvalue A. For any vector field X tangent to M, we put

(2.1) JX = ¢X +n(X)N, JN = —¢.

Then we easily see that the structure (1, ¢, ¢g) is an almost contact metric structure
on M, and further it is known that the associated CR structure is integrable (cf. [2]).
From V.J =0 and (2.1), making use of the Gauss and Weingarten formulas, we have

(2.2) (Vx@)Y =n(Y)AX — g(AX,Y)¢,

(2.3) Vxé = ¢AX.

In general, the notion of contact metric structure is equivalent to the notion of
strongly pseudo-convex CR structure, not necessarily integrable (see Proposition 2.1
in [14]). From (1.3) and (2.3) we have
Proposition 2. Let M = (M;n, ¢,g) be a real hypersurface of a Kihlerian manifold.
The almost contact metric structure of M is contact metric if and only if A+ Agp =
+2¢, where + is determined by the orientation.

The Tanaka connection ([13]) is the canonical affine connection defined on non-
degenerate integrable CR manifold. S.Tanno ([14]) defined the generalized Tanaka
connection for contact metric manifolds by the unique linear connection which co-
incides with the Tanaka connection if the associated CR structure is integrable. We
define the generalized Tanaka connection for real hypersurfaces of K&hlerian mani-
folds by the naturally extended one of S.Tanno’s generalized Tanaka connection for
contact metric manifolds.

Now we recall the generalized Tanaka connection V for contact metric manifolds,

VxY = VxY + (Vxn)(Y)E = n(Y)Vxé —n(X)gY,

for all vector fields X and Y. )
Thus, taking account of (2.3) the generalized Tanaka connection V(¥) for real
hypersurfaces of Kahlerian manifolds is naturally defined by

(24) VY = V¥ + g(pAX, YV)E = n(Y)$AX — kn(X)aY,

where k is a non-zero real number. We put FyY = g(pAX, V)¢ — n(Y)pAX —
kn(X)¢Y. Then the torsion tensor is TF)(X,Y) = FxY — FyX. Also, by using
(1.2), (1.3), (2.2), (2.3) and (2.4) we can see that

(2.5) vy =0, VIWe =0, V¥ g=0, VIV¢ = 0.

and
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TW(X,Y) = 2dp(X,Y)¢, VX, Y € D.

We note that the associated Levi form L(X,Y) = 1g((¢A + Ad)X,¢Y), where
we denote by A the restriction A to D. We denote the extended one of L to T'M by
the same letter L. If M satisfies ¢ A + Ap = 2k¢, then we see that the associated CR.
structure is strongly pseudo-convex and further satisfy T (¢, pY) = —¢T' ¥ (€£,Y),
and hence the generalized Tanaka connection V coincides with the Tanaka connection
(see [14]). That is, we have
Proposition 3.Let M = (M;n,$,g) be a real hypersurface of a Kdhlerian manifold.
If M satisfies pA+ Ap = 2k, then the generalized Tanaka connection V¥ coincides
with the Tanaka connection.

3 Real hypersurfaces of P,(C)

Let M be a complex projective space P, (C) of constant holomorphic sectional cur-
vature 4. Then we have the following Gauss and Codazzi equations

(3.1) R(X,Y)Z =g(Y,2)X — g(X, 2)Y + g(¢Y, 2)pX — g(¢X, Z)9Y —

—29(p X, Y)pZ + g(AY, Z)AX — g(AX, Z)AY,

(3.2) (VxAY = (Vy A)X =n(X)oY —n(Y)pX - 29(6X,Y)E,
for any tangent vector fields X,Y, Z on M. Using (1.2), (1,3), (2.2) and (2.3) we get

(3.3) SX = (2n+1)X —3n(X)¢ + hAX — A%X,

(3.4) (VxS)Y = —3{g(¢AX, V)¢ + n(Y)pAX} + (Xh)AY + h(Vx A)Y

—A(VxA)Y — (VxA)AY,

for any tangent vector fields X,Y on M, where h = traceA.

We recall the the following :
Proposition 4 ([7]). If £ is a principal curvature vector, then the corresponding
principal curvature o is constant.
Proposition 5 ([7]). Assume that £ is a principal curvature vector field with cor-
responding principal curvature o If AX = AX for X orthogonal to &, then we have
ApX = ‘21; +2¢X

Under the same hypothesis as in Proposition 5, by Proposition 4 and the table in
[12] we see that a real hypersurface M is locally congruent to one of type B if and
only if M satisfies aA? + 4\ — a = 0, where AX = AX for X orthogonal to &. If M
satisfies pA + A¢p = c¢¢ for some non-zero constant ¢, then by using (1.1) we easily see
that ¢ is a principal curvature vector field, and thus taking account of Proposition 5
we have (see also [15])
Theorem 2. Let M be a real hypersurface of P,(C). Then M satisfies pA + Ap =

co for some mon-zero constant c if and only if M is locally congruent to one of
2

4
homogeneous real hypersurfaces of type A1 with o = or B with a = ——.
c

c
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Here we prove
Proposition 6. Let M be a real hypersurface of P,(C). The almost contact metric
structure of M is contact metric if and only if M is locally congruent to a geodesic

hypersphere of radius T or a tube of radius T over a complex quadric Q™ 1.

Proof. If the almost contact metric structure is contact metric, then from Proposition
2 we get

(3.5) PAX + ApX = £2¢X,

for all tangent vector field X on M, where + is determined by the orientation in such
a way that the almost contact metric structure is a contact metric structure. We put
X = £ in (3.5), then together with (1.2) we get ¢ AL = 0, from which we see that
¢ is a principal curvature vector field. Assume that X € V). Then from (3.5) and
Proposition 5, we have A — 2\ + 1 + o = 0. Taking account of the table given in [12],

we can see that M is locally congruent to a geodesic hypersphere of radius 1 or a

tube of radius — over a complex quadric @Q,—1. (Q.E.D.)
Remark 1. From Theorem 2, Propositions 3 and 6 we see that the almost contact

. . . T
metric structure on geodesic hyperspheres of radius r # 1 and tubes over complex

™
quadric @, of radius r # 3 are not contact metric, but for a constant ¢ # £2

appeared in theorem 2 the generalized Tanaka connection V(¢/2) defined on them
coincides with the Tanaka connection.
Theorem 3 ([8]). Let M be a real hypersurface of P,(C). Then M is locally congruent
to one of the homogeneous real hypersurfaces of type A1, As if and only if M satisfies
pA = Ag.

The following Theorems 4 and 5 are very useful for the proof of Theorem 1 and
Proposition 1 in section 4.
Theorem 4 ([6]). Let M be a real hypersurface of P,(C). Then the shape operator
satisfies g(VxA)Y,Z) = 0 for any X, Y and Z which are orthogonal to & and &
is a principal curvature vector field if and only if M is locally congruent to one of
homogeneous real hypersurfaces of type A1, A or B.
Theorem 5 ([10]). Let M be a real hypersurface of P,(C). Then the Ricci tensor
of M satisfies g((VxS)Y,Z) =0 for any X, Y and Z which are orthogonal to £ and
& is a principal curvature vector field if and only if M is locally congruent to one of
homogeneous real hypersurfaces of type Ay, As or B.

4 Proof of Theorem 1 and Proposition 1

We define a vector field U on M by U = V¢£. Then from (1.2) and (2.3) we easily
observe that

(4.1) 9(U,€) =0, g(U, A8 =0, || U |P=g(U,U) = B - o?,

where 3 = g(A%¢,€). From (1.2),(2.3) and (4.1) we have at once:
Lemma 1. A¢ = af if and only if B — o? = 0.
Taking account of (2.4), we have
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(4.2) (VP 4y = VP AY - AVEY = (Vx A)Y + FxAY — AFxY

= (VxA)Y + g(¢pAX, AY )¢ —n(AY)pAX — kn(X)pAY
—9(pAX, V)AL +n(Y)APAX + kn(X)AgY,

for any vector fields X and Y on M. First, we prove that £ is a principal curvature
vector, i.e., A = af. From (4.2) we see that ?ék)A = 0 implies

(4.3) (VeA)X = k(¢pAX — ApX) + n(AX)U — g(AX,U)¢ + g(X,U)AE — n(X)AU,

for any vector field X on M. From (4.1) and (4.3) we easily see that da(§) = 0, where
d denotes the exterior derivative. The above equation (4.3), together with (3.2), yields

(4.4) (Vx A)§ = k(¢AX — ApX) — ¢X — g(U, AX)E + n(AX)U

—n(X)AU + g(U, X ) AE.
With U = ¢A¢ and from (2.2),(2.3) and (4.4) we have

(4.5) VxU =X+ (o — k)AX — kpAdX + pAPAX — n(A2X)E + (o + k)n(AX)E
—n(X)§ —n(AX) AL + g(U, X)U — n(X)pAU.

Also, it follows from (4.2) and (V' 4)¢ = 0 that

(4.6) (Vx A)E = g(AX,U)E + apAX + kn(X)U — ApAX

for any vector field X on M. From (4.4) and (4.6) we get

(4.7)  kg(¢AX,Y) — kg(A9X,Y) — g(¢X,Y) — g(U, AX)n(Y) + n(AX)g(U,Y)

-n(X)g(AU,Y) + g(U, X)n(AY)
= g(AX,Un(Y) + ag(pAX,Y) + kn(X)g(U,Y) — g(ApAX,Y)

for any vector fields X and Y on M. We put Y = £ in (4.7) and taking account of
(1.2) and (2.1), we have

(4.8) (a + k)g(X,U) =39(AX,U)

for any vector field X on M. The equation (4.8) yields that

(4.9) 3AU = (a + k)U.

Further, from (3.2) and (4.6) we get

(4.10) (VeA)X = ¢X + g(AX, U)¢ + adpAX + kn(X)U — ApAX

for any vector field X on M. From (4.10) it follows that

(4.11)  29(0X,Y) + g(AX,Un(Y) — g(AY, U)n(X) + ag(¢pAX,Y) — ag(¢AY, X)

+Ekn(X)g(U,Y) = kn(Y)g(U, X) — g(ApAX,Y) + g(ApAY, X) =0
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for all vector fields X and Y on M. Putting X = A and Y = U in (4.11) and taking
account of (2.1) and (4.9), we obtain

(4.12) (o — 2k)g(A%€, ¢U) = 3(2 + ka)(B — o).

Now, let W be the subset of M such that 8 —a? # 0. Then W is an open subset
of M. Suppose that W is non-empty, and from now on we discuss our arguments on
W. If there exists a point p € W such that a(p) = 2k, then from (4.12) we see that
B(p) — a(p)? = 0, which is impossible. Thus we see that o # 2k on W, and we get
from (4.12)

2+ ka

2 —
(413) 9(A42,0U) =370

(B —a?).

From (4.13), taking account of oU = — A€ + a&, we get

(1.14) o(Agu, 1) = - IR (5 o)
Further from (4.9) we have
(4.15) 36AU = (a + k)oU.

Differentiating covariantly (4.15) with respect to & and taking the component of U,
then yields with (2.2), (4.5), (4.10), (4.13) and (4.14) :

(e + k)g(ApU, pU) + 3g(A%¢, ¢U) = (38 — 20* — 3a + 2)g(U, U).
Thus from (4.14) and (4.15), we obtain
(0 —2K)(36 —a® —ka+9—k*) =0.
Since a # 2k on W, we have
(4.16) 38 =a’+ka—9+k.

Then 3||U||? = 3(8 — a?) = k* + ak — 2a®> — 9 > 0 independent with k. Thus for any
(fixed) point we have a? < —4, which is impossible. After all, we conclude that W is
empty, and hence A{ = af on M.

Now the equation (4.2), together with A¢ = af, shows that

(4.17) 9(VxA)Y,2) =0

for any vector fields X, Y and Z orthogonal to ¢£. Thus by Theorem 4, we see that M
is locally congruent to one of homogeneous real hypersurfaces of type Ay, 4> or B.
By using (2.3) and Proposition 4 we can see that a homogeneous real hypersurface
M of type A;, Ay or B satisfies (V¥ A)¢ = 0. Further M satisfies (Vék)A)X =0
for any vector field X orthogonal to £. In fact, from (4.2) taking account of (3.2) and
A€ = a, we get

(VP A)X = apAX — APAX + ¢X — k($AX — ApX),
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for any vector field X orthogonal to £. Assume X € V). Then from Proposition 5 we
have

(4.18) (VP A)X = (a - 2k) (A% — aX - 1)oX.

From Theorem 3, we see that a real hypersurface of type A; or A, satisfies A2 —aA—1 =
0. Also, from Theorem 0 we see that for a real hypersurface of type B a(= 2 cot 2r)
is non-zero constant. So, from (4.18) we see that M of type Ay, As or B satisfies

(Vék)A)X = 0 for any vector field X orthogonal to . Therefore we have proved
Theorem 1. (Q.E.D.)
Next, we prove Proposition 1. Taking account of (2.4), we have

(4.19) (VPG = v sy — sYPY = (VxS)Y + FxSY — SFxY
= (VxS)Y + g(pAX, SY)§ — g(¢AX,Y)SE — n(SY)pAX +n(Y)SpAX
—kn(X)pSY + kn(X)SeY
for any vector fields X and Y on M. From (4.19), the hypotheses V(¥)S = 0 and
A& = af yield
(4.20) 9((VxS)Y,Z)=0

for any vector fields X, Y and Z orthogonal to £. From (4.20) and Theorem 5 we see
that M is locally congruent to one of the real hypersurfaces of type Ay, A5 or B.

For a real hypersurface M of type A;, As or B, since A¢ = a&, by making use of
(2.3), (3.3) and Proposition 4 we easily see that M satisfies (V(¥)S)¢ = 0. Now from
(5.1), (3,3) and (3.4) we get

(4.21) (V)X = hapAX — APAX + 6X) — (aAPAX — A*pAX + ApX)

—(pA’X — APA’X 4+ pAX) + kh(pA — AP)X + k(pA® — A%9)X

for any vector field X orthogonal to . Assume that X € V). Then from (4.21) and
Proposition 5 we have

(VPS)X = (a—26){2X" = 2(a + h)A® + 3ah)® — (2a — 2h + a®h)A —
— 2—ah} = (a—2k)(A\ —aX = 1){2)% —2h\ + (2 + ah)}.

Thus, by the similar arguments in the last part in the proof of Theorem 1 we see that
a real hypersurface M of type A;, As or B also satisfies (Vék)S)X = 0 for any vector

field X orthogonal to £. Therefore we have proved Proposition 1. (Q.E.D.)
5 Ruled real hypersurfaces

A ruled real hypersurface M of P, (C) is defined by a foliated one by complex hyper-
planes P,,_;C and the shape operator A of M is given by (cf.[6])

(5.1) A =al+vV (v#0), AV =v¢, AX =0forany X LV,
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where V' is a unit vector orthogonal to &, and where a, v are differentiable functions
on M. From (5.1) we immediately see that ¢A + A¢ = 0, which is equivalent to the
condition that the distribution D is integrable (cf. Proposition 5 in [6]).

From (3.3) and (5.1), we have

(5.2) SE = af + bV, SV = cV + be,

SX =2n+1)X forany X 1L¢,V,

where a =2(n — 1) + ah —a? —v?, b=v(h —a) and ¢ = 2n + 1 — v2. We have
Proposition 7. There does not exist a ruled real hypersurface with V*) -parallel Ricci
tensor in P,(C).

Proof. Suppose that a ruled real hypersurface M satisfy V(*)S = 0. Then (5.2),
V#) S = 0 and straightforward calculations yield the following:

(53) J(V')Y,V) = g(V'Y, V) =0,
(5.4) g(VP 8y, v) =2g(vPy,v) =0,
(5.5) g(VF)Y,V) = vg(V{Y, V) =0,
(5.6) g(VE SV, V) = Xu? =0,
(5.7) gd(VP SV, v) =e? =0,
(5.8) g(VFS YV, V) =Ve? =0.

From (5.6)-(5.8) we see that v is a non-vanishing constant on M. From (2.5) and
g(V,V) =1, we see that ng)V, Vgg)V and Vék)V are all orthogonal to V' and &, and

from (5.3)-(5.5) we see that V¥V = 0.
Thus from (2.4) we have

(5.9) VeV =koV, VyV =0, VxV =0

forany X L &, V. Then from (2.2), (5.1) and (5.9), we get R(V, ¢V )V = Vi (Vv oV )—
Vv (VvoV) = Viyev)¢V = 0. But, from (3.1) and (5.1) we see that R(V, ¢V)oV =
4V . Thus we obtain V = 0, which is impossible. Therefore we have our conclusion.
(Q.E.D.)

From the above Proposition 7, we see also that there does not exist a ruled real
hypersurface with V(*)-parallel curvature tensor.
Remark 2. We will discuss on real hypersurfaces of a complex hyperbolic space
H,(C) of constant holomorphic sectional curvature -4 by using the extended gener-
alized Tanaka connection in a forthcoming paper.
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