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Abstract

We study methods to obtain bounds or approximations to uT f(A)v where
A is a symmetric, positive definite matrix and f is a smooth function. These
methods are based on the use of quadrature rules and the Lanczos algorithm.
We give some theoretical results on the behavior of these methods based on
results for orthogonal polynomials as well as analytical bounds and numerical
experiments on a set of matrices for several functions f . We discuss the effect
of rounding error in the quadrature calculation.

1 Introduction

The classical theory of moments plays a vital role in numerical linear algebra. It
has long been recognized that there is a strong connection between the theory of
moments, Gauss quadrature, orthogonal polynomials and the conjugate gradient
method and Lanczos process. In this paper, we will be exploring these connections
in order to obtain bounds for various matrix functions which arise in applications.

Let A be a real symmetric positive definite matrix of order n. We want to find
upper and lower bounds (or approximations, if bounds are not available) for the
entries of a function of a matrix. We shall examine analytical expressions as well
as numerical iterative methods which produce good approximations in a few steps.
This problem leads us to consider

uTf(A)v, (1.1)

where u and v are given vectors and f is some smooth (possibly C∞) function
on a given interval of the real line. As an example, if f(x) = 1

x
and uT = eTi =

(0, . . . , 0, 1, 0, . . . , 0), the non zero element being in the i-th position and v = ej, we
will obtain bounds on the elements of the inverse A−1.

Some of the technique presented in this paper have been used (without any
mathematical justification) to solve problems in solid state physics, particularly to
compute elements of the resolvant of a Hamiltonian modeling the interaction of
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atoms in a solid, see [6], [8], [9]. In these studies the function f is the inverse of its
argument.

The outline of the paper is as follows. Section 2 considers the problem of charac-
terizing the elements of a function of a matrix. The theory is developed in Section
3 and Section 4 deals with the construction of the orthogonal polynomials that are
needed to obtain a numerical method for computing bounds. The Lanczos method
used for the computation of the polynomials is presented there. Applications are
described in Section 5 where very simple iterative algorithms are give to compute
bounds. In Section 6, we discuss some extensions and recent work.

2 Elements of a function of a matrix

Since A = AT ,we write A as

A = QΛQT ,

where Q is the orthonormal matrix whose columns are the normalized eigenvectors
of A and Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi
which we order as

λ1 ≤ λ2 ≤ . . . ≤ λn.

By definition, we have

f(A) = Qf(Λ)QT .

Therefore,

uT f(A)v = uTQf(Λ)QTv

= αT f(Λ)β,

=
n∑
i=1

f (λi)αiβi.

This last sum can be considered as a Riemann-Stieltjes integral

I [f ] = uTf(A)v =
∫ b

a
f(λ)dα(λ), (2.1)

where the measure α is piecewise constant and defined by

α(λ) =


0 if λ < a = λ1∑i
j=1 αjβj if λi ≤ λ < λi+1∑n
j=1 αjβj if b = λn ≤ λ.

In this paper, we are looking for methods to obtain upper and lower bounds L and
U for I [f ] ,

L ≤ I [f ] ≤ U.

In the next section, we review and describe some basic results from Gauss quadrature
theory as this plays a fundamental role in estimating the integrals and computing
bounds.
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3 Bounds on matrix functions as integrals

One way to obtain the bounds on the integral I [f ] is to match the moments as-
sociated with the distribution α(λ). Thus, we seek to compute quadrature rules so
that

I [λr] =
∫ b

a
λrdα(λ) =

N∑
j=1

wjt
r
j +

M∑
k=1

vkz
r
k

for r = 0, 1, . . . , 2N +M − 1.
The quantity I [λr ] is the rth moment associated with the distribution α(λ). Note
this can be easily calculated since

µr ≡ I [λr] = uTArv (r = 0, 1, . . . , 2N +M − 1).

The general form of the Gauss, Gauss-Radau and Gauss-Lobatto quadrature formu-
las, are given by

∫ b

a
f(λ)dα(λ) =

N∑
j=1

wjf (tj) +
M∑
k=1

vkf (zk) +R[f ], (3.1)

where the weights [wj]
N
j=1 , [vk]

N
k=1 and the nodes [tj]

N
j=1 are unknowns and the nodes

[zk]
M
k=1 are prescribed, see [1], [2], [3], [4].
When u = v, the measure is a positive increasing function and it is known (see

for instance [10]) that

R[f ] =
f (2N+M )(η)

(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)
 N∏
j=1

(λ− tj)
2

dα(λ), (3.2)

a < η < b.

If M = 0, this leads to the Gauss rule with no prescribed nodes. If M = 1 and
z1 = a, or z1 = b we have the Gauss-Radau formula. If M = 2 and z1 = a, z2 = b,
this is the Gauss-Lobatto formula.

Let us recall briefly how the nodes and weights are obtained in the Gauss, Gauss-
Radau and Gauss-Lobatto rules. For the measure α, it is possible to define a sequence
of polynomials p0(λ), p1(λ), . . . that are orthonormal with respect to α :

∫ b

a
pi(λ)pj(λ)dα(λ) =

{
1 if i = j
0 otherwise

and pk is of exact degree k. Moreover, the roots of pk are distinct, real and lie in the
interval [a, b]. We will see how to compute these polynomials in the next section.
This set of orthonormal polynomials satisfies a three term recurrence relationship
(see [12]):

γjpj(λ) = (λ− ωj) pj−1(λ) − γj−1pj−2(λ), j = 1, 2, . . . , N (3.3)

p1(λ) ≡ 0, p0(λ) ≡ 1, if
∫
dα = 1.
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In matrix form, this can be written as

λp(λ) = JNp(λ) + γNpN (λ)eN ,

where
p(λ)T = [p0(λ)p1(λ) . . . pN−1(λ)] , eTN = (0, 0, . . . 0, 1),

JN =



ω1 γ1

γ1 ω2 γ2

. . .
. . .

. . .

γN−2 ωN−1 γN−1

γN−1 ωN

 . (3.4)

The eigenvalues of JN (which are the zeroes of pN ) are the nodes of the Gauss
quadrature rule (i.e. M = 0 ). The weights are the squares of the first elements of
the normalized eigenvectors of JN , cf. [4]. We note that all the eigenvalues of JN are
real and simple.

For the Gauss quadrature rule (renaming the weights and nodes wGj and tGj ),
we have ∫ b

a
f(λ)dα(λ) =

N∑
j=1

wGj f
(
tGj
)

+RG[f ],

with

RG[f ] =
f (2N )(η)

(2N)!

∫ b

a

 N∏
j=1

(
λ− tGj

)2

dα(λ),

and the next theorem follows.

Theorem 1 Suppose u = v in (2.1) and f is such that f (2n)(ξ) > 0 , ∀n , ∀ξ ,
a < ξ < b , and let

LG[f ] =
N∑
j=1

wGj f
(
tGj
)
.

Then, ∀N, ∃η ∈ [a, b] such that

LG[f ] ≤ I [f ],

I [f ]− LG[f ] =
f (2N)(η)

(2N)!
.

A proof of this is given in [10]. To obtain the Gauss-Radau rule ( M = 1 in
3.1 - 3.2), we extend the matrix JN in 3.4 in such a way that it has one prescribed
eigenvalue, see [5].

For Gauss-Radau, the remainder RGR is

RGR[f ] =
f (2N+1)(η)

(2N + 1)!

∫ b

a
(λ− z1)

 N∏
j=1

(λ− tj)
2

dα(λ).

Therefore, if we know the sign of the derivatives of f , we can bound the remainder.
This is stated in the following theorem.
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Theorem 2 Suppose u = v and f is such that f (2n+1)(ξ) < 0, ∀n, ∀ξ, a < ξ < b. Let
UGR be defined as

UGR[f ] =
N∑
j=1

waj f
(
taj
)

+ va1f(a),

waj , v
a
1 , t

a
j being the weights and nodes computed with z1 = a and let LGR be defined

as

LGR[f ] =
N∑
j=1

wbjf
(
tbj
)

+ vb1f(b),

wbj, v
b
1, t

b
j being the weights and nodes computed with z1 = b. Then, ∀N we have

LGR[f ] ≤ I [f ] ≤ UGR[f ],

and

I [f ]− UGR[f ] =
f (2N+1)(η)

(2N + 1)!

∫ b

a
(λ− a)

 N∏
j=1

(
λ− taj

)2

dα(λ),

I [f ]− LGR[f ] =
f (2N+1)(η)

(2N + 1)!

∫ b

a
(λ− b)

 N∏
j=1

(
λ− tbj

)2

dα(λ).

We remark that we need not always compute the eigenvalues and eigenvectors
of the tridiagonal matrix. Let YN be the matrix of the eigenvectors of JN (or ĴN )
whose columns we denote by yi and TN be the diagonal matrix of the eigenvalues ti
which give the nodes of the Gauss quadrature rule. It is well known that the weights
wi are given by (cf. [13])

1

wi
=

N−1∑
l=0

p2
l (ti).

It can be easily shown that

wi =

(
y1
i

p0(ti)

)2

,

where y1
i is the first component of yi. But, since p0(λ) ≡ 1, we have,

wi =
(
y1
i

)2
=
(
eT1 yi

)2
.

Theorem 3
N∑
l=1

wlf(tl) = eT1 f(JN )e1.

Proof:

N∑
l=1

wlf(tl) =
N∑
l=1

eT1 ylf(tl)y
T
l e1

= eT1

(
N∑
l=1

ylf(tl)y
T
l

)
e1

= eT1 YNf(TN)Y T
N e1

= eT1 f(JN )e1.
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The same statement is true for the Gauss-Radau and Gauss-Lobatto rules. There-
fore, in some cases where f(JN ) (or the equivalent) is easily computable (for instance,
if f(λ) = 1/λ, see Section 5), we do not need to compute the eigenvalues and eigen-
vectors of JN .

4 Construction of the orthogonal polynomials

In this section we consider the problem of computing the orthonormal polynomials
or equivalently the tridiagonal matrices that we need. A very natural and elegant
way to do this is to use Lanczos algorithms. When u = v , we use the classical
Lanczos algorithm.

Let x−1 = 0 and x0 be given such that ||x0|| = 1. The Lanczos algorithm is
defined by the following relations,

γjxj = rj = (A− ωjI)xj−1 − γj−1xj−2, j = 1, . . .

ωj = xTj−1Axj−1,

γj = ||rj||.

The sequence {xj}lj=0 is an orthonormal basis of the Krylov space

span{x0, Ax0, . . . , A
lx0}.

Proposition 1 The vector xj is given by

xj = pj(A)x0,

where pj is a polynomial of degree j defined by the three term recurrence (identical
to 3.3)

γjpj(λ) = (λ− ωj) pj−1j(λ)− γj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1.

Theorem 4 If x0 = u, we have

xTk xl =
∫ b

a
pk(λ)pl(λ)dα(λ).

Proof: As the xj’s are orthonormal, we have

xTk xl = xT0 Pk(A)TPl(A)x0

= xT0QPk(Λ)QTQPl(Λ)QTx0

= xT0QPk(Λ)Pl(Λ)QTx0

=
n∑
j=1

pk(λj)pl(λj)x̂
2
j ,

where x̂ = QTx0. Therefore, the pj ’s are the orthonormal polynomials related to α
that we have referred to in 3.3.
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5 Application

The applications are explained at length in [14], [15], [16].

5.1 Error bounds for linear systems

Suppose we solve a system of equations Ax=b and obtain an approximation ξ to
the solution. We desire to estimate the vector e where x = ξ + e . Note that r =
b− Aξ = A(x− ξ) = Ae. Hence, ||e||2 = rTA−2r. Thus, u = r, and f(λ) = λ−2.

5.2 Minimizing a quadratic form with a quadratic constraint

Consider the problem of determining x such xTAx − 2bTx = min and ||x||2 =

α2. Consider the Lagrangian: ϕ(x;µ) = xTAx − 2bTx + µ
(
xTx− α2

)
. Then grad

ϕ(x;µ) = 0 when (A+µI)x = b. This implies bT (A+ µI)−2 b = α2. We can approx-
imate the quadratic form bT (A + µI)−2b by using the Lanczos algorithm with the
initial vector b/||b||2. This procedure has been extensively studied in [16].

5.3 Inverse elements of a matrix

The elements of the inverse of a matrix are given by eTj A
−1ej where ej is the j − th

unit vector. Hence, f(λ) = λ−1. Thus, using the Lanczos process with the initial
vector ej will produce upper and lower bounds on ajj providing a lower bound is
known for the smallest eigenvalue and an upper bound for the largest eigenvalue
of A. It is desirable to compute the diagonal of the inverse for the Vicsek Fractal
Hamiltonian matrix. The matrices are defined as follows.

H1 =


−4 1 1 1 1

1 −2 0 0 0
1 0 −2 0 0
1 0 0 −2 0
1 0 0 0 −2

 ,

Hn =


Hn−1 V T

1 V T
2 V T

3 V T
4

V1 Hn−1 0 0 0
V2 0 Hn−1 0 0
V3 0 0 Hn−1 0
V4 0 0 0 Hn−1

 ,

where Hn ∈ IRNn×Nn

and Nn+1 = 5Nn.

The tables show the “exact” values of aii for some chosen i, and estimated bounds
of aii by using Gauss quadrature rule and Gauss-Radau rule. The “exact” values
are computed using the Cholesky decomposition and then triangular inversion. It
is a dense matrix method, with storage, O(N2) and flops O(N3). The Gauss and
the Gauss-Radau rule are sparse matrix methods, and both storage and flop only
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Table 1: N = 125
Gauss Gauss-Radau

i “exact”
iter lower bound iter lower bound upper bound

1 9.480088e − 01 15 9.480088e − 01 12 9.479939e − 01 9.480112e − 01
10 6.669905e − 01 13 6.669846e − 01 13 6.669864e − 01 6.669969e − 01
20 1.156877e + 00 14 1.156848e + 00 14 1.156868e + 00 1.156879e + 00

Table 2: N = 625
Gauss Gauss-Radau

i “exact”
iter lower bound iter lower bound upper bound

1 9.480142e − 0 15 9.480123e − 01 13 9.480026e − 01 9.480197e − 01
100 1.100525e + 0 14 1.100512e + 00 15 1.100520e + 00 1.100527e + 00
301 9.243102e − 0 14 9.243074e − 01 12 9.242992e − 01 9.243184e − 01
625 6.440025e − 0 12 6.439994e − 01 13 6.440017e − 01 6.440054e − 01

O(N) because of the structure of the matrix Hn. From these two tables, we see that
the error between the “exact” and estimated value is at O(10−5), which is generally
satisfactorily and also is the stopping criterion used in the inner loop of the Gauss
rule and the Gauss-Radau rule.

6 Extensions

These methods, though simple, can be used in many situations involving large scale
computations. We have extended these results to bilinear forms and to the situation
where one wishes to estimate W T f(A)W where W is an N × p matrix ([14]).

It is well known that the numerical Lanczos process will produce sequences
different than that defined by the mathematical sequence. Nevertheless, it has been
shown in [15] that robust estimates of the quadratic form are obtained even in the
presence of roundoff.
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