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Abstract

Fitting circles and ellipses to given points in the plane is a problem that
arises in many application areas, e.g. computer graphics [1], coordinate metrol-
ogy [2], petroleum engineering [11], statistics [7]. In the past, algorithms have
been given which fit circles and ellipses in some least squares sense without
minimizing the geometric distance to the given points [1], [6].

In this paper we present several algorithms which compute the ellipse for
which the sum of the squares of the distances to the given points is minimal.
These algorithms are compared with classical simple and iterative methods.

Circles and ellipses may be represented algebraically i.e. by an equation
of the form F (x) = 0. If a point is on the curve then its coordinates x
are a zero of the function F . Alternatively, curves may be represented in
parametric form, which is well suited for minimizing the sum of the squares
of the distances.

1 Preliminaries and Introduction

Ellipses, for which the sum of the squares of the distances to the given points is
minimal will be referred to as “best fit” or “geometric fit”, and the algorithms will
be called “geometric”.

Determining the parameters of the algebraic equation F (x) = 0 in the least
squares sense will be denoted by “algebraic fit” and the algorithms will be called
“algebraic”.

We will use the well known Gauss-Newton method to solve the nonlinear least
squares problem (cf. [15]). Let u = (u1, . . . , un)

T
be a vector of unknowns and

consider the nonlinear system of m equations f(u) = 0.
If m > n, then we want to minimize

m∑
i=1

fi(u)2 = min .

∗This paper appeared in similar form in BIT 34(1994), 558–578.
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This is a nonlinear least squares problem, which we will solve iteratively by a sequence
of linear least squares problems.

We approximate the solution û by ũ + h. Developing

f(u) = (f1(u), f2(u), . . . , fm(u))T

around ũ in a Taylor series, we obtain

(1.1) f(ũ + h) ' f(ũ) + J(ũ)h ≈ 0,

where J is the Jacobian. We solve equation (1.1) as a linear least squares problem
for the correction vector h:

(1.2) J(ũ)h ≈ −f(ũ).

An iteration then with the Gauss-Newton method consists of the two steps:

1. Solving equation (1.2) for h.

2. Update the approximation ũ := ũ + h.

We define the following notation: a given point Pi will have the coordinate
vector xi = (xi1, xi2)

T. The m× 2 matrix X = [x1, . . . ,xm]T will therefore contain
the coordinates of a set of m points. The 2-norm · 2 of vectors and matrices will
simply be denoted by · .

We are very pleased to dedicate this paper to professor Åke Björck who has
contributed so much to our understanding of the numerical solution of least squares
problems. Not only is he a scholar of great distinction, but he has always been
generous in spirit and gentlemanly in behavior.

2 Circle: Minimizing the algebraic distance

Let us first consider an algebraic representation of the circle in the plane:

(2.1) F (x) = axTx + bTx + c = 0,

where a 6= 0 and x,b ∈ IR2. To fit a circle, we need to compute the coefficients a, b
and c from the given data points.

If we insert the coordinates of the points into equation (2.1), we obtain a linear
system of equations Bu = 0 for the coefficients u = (a, b1, b2, c)

T, where

B =


x2

11 + x2
12 x11 x12 1

...
...

...
...

x2
m1 + x2

m2 xm1 xm2 1

 .
To obtain a non-trivial solution, we impose some constraint on u, e.g. u1 = 1
(commonly used) or u = 1.

For m > 3, in general, we cannot expect the system to have a solution, unless all
the points happen to be on a circle. Therefore, we solve the overdetermined system
Bu = r where u is chosen to minimize r . We obtain a standard problem (c.f. [3]):

Bu = min subject to u = 1.
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This problem is equivalent to finding the right singular vector associated with the
smallest singular value of B. If a 6= 0, we can transform equation (2.1) to

(2.2)

(
x1 +

b1

2a

)2

+

(
x2 +

b2

2a

)2

=
b 2

4a2
− c

a
,

from which we obtain the center and the radius, if the right hand side of (2.2) is
positive:

z = (z1, z2) =

(
− b1

2a
,− b2

2a

)
r =

√
b 2

4a2
− c

a
.

This approach has the advantage of being simple. The disadvantage is that we
are uncertain what we are minimizing in a geometrical sense. For applications in
coordinate metrology this kind of fit is often unsatisfactory. In such applications,
one wishes to minimize the sum of the squares of the distances. Figure 2.1 shows
two circles fitted to the set of points

(2.3)
x 1 2 5 7 9 3
y 7 6 8 7 5 7

.

Minimizing the algebraic distance, we obtain the dashed circle with radius r = 3.0370
and center z = (5.3794, 7.2532).
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Figure 2.1: algebraic vs. best fit

−−−−−−−− Best fit
− − − − Algebraic fit

The algebraic solution is often useful as a starting vector for methods minimizing
the geometric distance.
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3 Circle: Minimizing the geometric distance

To minimize the sum of the squares of the distances d2
i = ( z− xi − r)2 we need to

solve a nonlinear least squares problem. Let u = (z1, z2, r)
T
, we want to determine

ũ so that
m∑
i=1

di(u)2 = min .

The Jacobian defined by the partial derivatives ∂di(u)/∂uj is given by:

J(u) =



u1 − x11√
(u1 − x11)2 + (u2 − x12)2

u2 − x12√
(u1 − x11)2 + (u2 − x12)2

−1

...
...

...
u1 − xm1√

(u1 − xm1)2 + (u2 − xm2)2

u2 − x2m√
(u1 − xm1)2 + (u2 − xm2)2

−1


.

A good starting vector for the Gauss-Newton method may often be obtained by
solving the linear problem as given in the previous paragraph. The algorithm then
iteratively computes the “best” circle.

If we use the set of points (2.3) and start the iteration with the values obtained
from the linear model (minimizing the algebraic distance), then after 11 Gauss-
Newton steps the norm of the correction vector is 2.05E−6. We obtain the best
fit circle with center z = (4.7398, 2.9835) and radius r = 4.7142 (the solid circle in
figure 2.1).

4 Circle: Geometric fit in parametric form

The parametric form commonly used for the circle is given by

x = z1 + r cosϕ(4.1)

y = z2 + r sinϕ .(4.2)

The distance di of a point Pi = (xi1, xi2) may be expressed by

d2
i = min

ϕi

[
(xi1 − x(ϕi))

2 + (xi2 − y(ϕi))
2
]
.

Now since we want to determine z1, z2 and r by minimizing

m∑
i=1

d2
i = min,

we can simultaneously minimize for z1, z2, r and {ϕi}i=1...m; i.e. find the minimum
of the quadratic function

Q(ϕ1, ϕ2, . . . , ϕm, z1, z2, r) =
m∑
i=1

[
(xi1 − x(ϕi))

2 + (xi2 − y(ϕi))
2
]
.

This is equivalent to solving the nonlinear least squares problem

z1 + r cosϕi − xi1 ≈ 0
z2 + r sinϕi − xi2 ≈ 0 for i = 1, 2, . . . , m .
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Let u = (ϕ1, . . . , ϕm, z1, z2, r). The Jacobian associated with Q is

J =

(
rS A
−rC B

)
,

where S = diag(sinϕi) and C = diag(cosϕi) are m ×m diagonal matrices. A and
B are m× 3 matrices defined by:

ai1 = −1 ai2 = 0 ai3 = − cosϕi
bi1 = 0 bi2 = −1 bi3 = − sinϕi .

For large m, J is very sparse. We note that the first part
(
rS
−rC

)
is orthogonal. To

compute the QR decomposition of J we use the orthonormal matrix

Q =

(
S C
−C S

)
.

Multiplying from the left we get

QTJ =

(
rI SA− CB
O CA+ SB

)
.

So to obtain the QR decomposition of the Jacobian, we only have to compute a QR
decomposition of the m× 3 sub-matrix CA+ SB = UP . Then(

I 0
O UT

)
QTJ =

(
rI SA− CB
O P

)
,

and the solution is obtained by backsubstitution. In general we may obtain good
starting values for z1, z2 and r for the Gauss-Newton iteration, if we first solve the
linear problem by minimizing the algebraic distance. If the center is known, initial
approximations for {ϕk}k=1...m can be computed by

ϕk = arg ((xk1 − z1) + i (xk2 − z2)) .

We use again the points (2.3) and start the iteration with the values obtained from
the linear model (minimizing the algebraic distance). After 21 Gauss-Newton steps
the norm of the correction is 3.43E−06 and we obtain the same results as before:
center z = (4.7398, 2.9835) and radius r = 4.7142 (the solid circle in figure 2.1).

5 Ellipse: Minimizing the algebraic distance

Given the quadratic equation

(5.1) xTAx + bTx + c = 0

with A symmetric and positive definite, we can compute the geometric quantities of
the conic as follows.

We introduce new coordinates x̄ with x = Qx̄ + t, thus rotating and shifting the
conic. Then equation (5.1) becomes

x̄T(QTAQ)x̄ + (2tTA + bT)Qx̄ + tTAt + bTt + c = 0.
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Defining Ā = QTAQ, and similarly b̄ and c̄, this equation may be written

x̄TĀx̄ + b̄Tx̄ + c̄ = 0.

We may choose Q so that Ā = diag(λ1, λ2); if the conic is an ellipse or a hyperbola,
we may further choose t so that b̄ = 0. Hence, the equation may be written

(5.2) λ1x̄
2
1 + λ2x̄

2
2 + c̄ = 0,

and this defines an ellipse if λ1 > 0, λ2 > 0 and c̄ < 0. The center and the axes of
the ellipse in the non-transformed system are given by

z = t

a =
√
−c̄/λ1

b =
√
−c̄/λ2 .

Since QTQ = I , the matrices A and Ā have the same (real) eigenvalues λ1, λ2. It
follows that each function of λ1 and λ2 is invariant under rotation and shifts. Note

detA = a11a22 − a21a12 = λ1λ2

traceA = a11 + a22 = λ1 + λ2 ,

which serve as a basis for all polynomials symmetric in λ1, λ2. As a possible ap-
plication of above observations, let us express the quotient κ = a/b for the ellipse’s
axes a and b. With a2 = −c̄/λ1 and b2 = −c̄/λ2 we get

κ2 + 1/κ2 =
λ2

λ1
+
λ1

λ2
=
λ2

1 + λ2
2

λ1λ2
=

(traceA)2 − 2 detA

detA
=
a2

11 + a2
22 + 2a2

12

a11a22 − a2
12

and therefore

κ2 = µ ±
√
µ2 − 1

where

µ =
(traceA)2

2 detA
− 1 .

To compute the coefficients u from given points, we insert the coordinates into
equation (5.1) and obtain a linear system of equations Bu = 0, which we may solve
again as constrained least squares problem: Bu = min subject to u = 1.

The disadvantage of the constraint u = 1 is its non-invariance for Euclidean
coordinate transformations

x = Qx̄ + t, where QTQ = I.

For this reason Bookstein [9] recommended solving the constrained least squares
problem

xTAx + bTx + c ≈ 0(5.3)

λ2
1 + λ2

2 = a2
11 + 2a2

12 + a2
22 = 1 .(5.4)

While [9] describes a solution based on eigenvalue decomposition, we may solve the
same problem more efficiently and accurately with a singular value decomposition
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as described in [12]. In the simple algebraic solution by SVD, we solve the system
for the parameter vector

u = (a11, 2a12, a22, b1, b2, c)
T

(5.5)

with the constraint u = 1, which is not invariant under Euclidean transformations.
If we define vectors

v = (b1, b2, c)
T

w = (a11,
√

2 a12, a22)
T

and the coefficient matrix

S =


x11 x12 1 x2

11

√
2 x11x12 x2

12
...

...
...

...
...

...

xm1 xm2 1 x2
m1

√
2xm1xm2 x2

m2

 ,
then the Bookstein constraint (5.4) may be written w = 1, and we have the
reordered system

S

(
v
w

)
≈ 0.

The QR decomposition of S leads to the equivalent system(
R11 R12

0 R22

)(
v
w

)
≈ 0,

which may be solved in following steps:

R22w ≈ 0

w = 1 .

Using the singular value decomposition of R22 = UΣV T, finding w = v3, and then

v = −R11
−1R12w.

Note that the problem

(S1 S2)

(
v

w

)
≈ 0 where w = 1

is equivalent to the generalized total least squares problem finding a matrix Ŝ2 such
that

rank (S1 Ŝ2) ≤ 5

(S1 Ŝ2)− (S1 S2) = inf
rank(S1 S̄2)≤5

(S1 S̄2)− (S1 S2) .

In other words, find a best rank 5 approximation to S that leaves S1 fixed. A
description of this problem may be found in [16].
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Figure 5.1: Euclidean-invariant algorithms

−−−−−−−− Constraint λ2
1 + λ2

2 = 1
− − − − Constraint λ1 + λ2 = 1

To demonstrate the influence of different coordinate systems, we have computed
the ellipse fit for this set of points:

(5.6)
x 1 2 5 7 9 6 3 8
y 7 6 8 7 5 7 2 4

,

which are first shifted by (−6,−6), and then by (−4, 4) and rotated by π/4. See
figures 5.1–5.2 for the fitted ellipses.

Since λ2
1+λ2

2 6= 0 for ellipses, hyperbolas and parabolas, the Bookstein constraint
is appropriate to fit any of these. But all we need is an invariant I 6= 0 for ellipses—
and one of them is λ1 +λ2. Thus we may invariantly fit an ellipse with the constraint

λ1 + λ2 = a11 + a22 = 1,

which results in the linear least squares problem


2x11x12 x2

22 − x2
11 x11 x12 1

...
...

...
2xm1xm2 x2

m2 − x2
m1 xm1 xm2 1

v ≈


−x2

11
...

−x2
m1

 .

See the dashed ellipses in figure 5.1.
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Figure 5.2: Non-invariant algebraic algorithm

−−−−−−−− Fitted ellipses
− − − − Originally fitted ellipse after transformation

6 Ellipse: Geometric fit in parametric form

In order to fit an ellipse in parametric form, we consider the equations

x = z +Q(α)x′, x′ =

(
a cosϕ
b sinϕ

)
, Q(α) =

(
cosα − sinα
sinα cosα

)
.

Minimizing the sum of squares of the distances of the given points to the “best”
ellipse is equivalent to solving the nonlinear least squares problem:

gi =

(
xi1
xi2

)
−
(
z1

z2

)
−Q(α)

(
a cosϕi
b sinϕi

)
≈ 0, i = 1, . . . , m.

Thus we have 2m nonlinear equations for m + 5 unknowns: ϕ1, . . . , ϕm, α, a, b, z1,
z2. To compute the Jacobian we need the partial derivatives:

∂gi
∂ϕj

= −δijQ(α)

(
−a sinϕi
b cosϕi

)
∂gi
∂α

= −Q̇(α)

(
a cosϕi
b sinϕi

)
∂gi
∂a

= −Q(α)

(
cosϕi

0

)
∂gi
∂b

= −Q(α)

(
0

sinϕi

)
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∂gi
∂z1

=

(
−1

0

)
∂gi
∂z2

=

(
0

−1

)
where we have used the notation

δij =

{
1, i = j
0, i 6= j

.

Thus the Jacobian becomes:

J =


−Q

(
−as1
bc1

)
−Q̇

(
ac1
bs1

)
−Q

(
c1
0

)
−Q

(
0
s1

) (
−1
0

) (
0
−1

)
. . .

...
...

...
...

...

−Q
(
−asm
bcm

)
−Q̇

(
acm
bsm

)
−Q

(
cm
0

)
−Q

(
0
sm

) (
−1
0

) (
0
−1

)
 ,

where we have used as abbreviation si = sinϕi and ci = cosϕi. Note that

Q̇(α) =

(
− sinα − cosα
cosα − sinα

)
and therefore QTQ̇ =

(
0 −1
1 0

)
.

Since Q is orthogonal, the 2m× 2m block diagonal matrix U = − diag(Q, . . . , Q) is
orthogonal, too, and

UTJ =


(
−as1
bc1

) (
−bs1
ac1

) (
c1
0

) (
0
s1

) (
c
−s

) (
s
c

)
. . .

...
...

...
...

...(
−asm
bcm

) (
−bsm
acm

) (
cm
0

) (
0
sm

) (
c
−s

) (
s
c

)
 ,

where s = sinα and c = cosα. If we permute the equations, we obtain a similar
structure for the Jacobian as in the circle fit:

J̄ =

(
−aS A
bC B

)
.

That is, S = diag(sinϕi) and C = diag(cosϕi) are two m × m diagonal matrices
and A and B are m× 5 and are defined by:

A(i, 1 : 5) = [ −b sinϕi cosϕi 0 cosα sinα ]
B(i, 1 : 5) = [ a cosϕi 0 sinϕi − sinα cosα ] .

We cannot give an explicit expression for an orthogonal matrix to triangularize the
first m columns of J in a similar way as we did in fitting a circle. However, we can
use Givens rotations to do this in m steps.

Figure 6.1 shows two ellipses fitted to the points given by

(6.1)
x 1 2 5 7 9 3 6 8
y 7 6 8 7 5 7 2 4

.

By minimizing the algebraic distance with u = 1 we obtain the large cigar
shaped dashed ellipse with z = (13.8251,−2.1099), a = 29.6437, b = 1.8806 and
residual norm r = 1.80. If we minimize the sum of squares of the distances then we
obtain the solid ellipse with z = (2.6996, 3.8160), a = 6.5187, b = 3.0319 and r =
1.17. In order to obtain starting values for the nonlinear least squares problem we
used the center, obtained by fitting the best circle. We cannot use the approximation
b0 = a0 = r, since the Jacobian becomes singular for b = a! Therefore, we used
b0 = r/2 as a starting value. With α0 = 0, we needed 71 iteration steps to compute
the “best ellipse” shown in Figure 6.1.
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Figure 6.1: algebraic versus best fit

−−−−−−−− Best fit
− − − − Algebraic fit ( u = 1)

7 Ellipse: Iterative algebraic solutions

In this section, we will present modifications to the algebraic fit of ellipses. The
algebraic equations may be weighted depending on a given estimation—thus leading
to a simple iterative mechanism. Most algorithms try to weight the points such that
the algebraic solution comes closer to the geometric solution. Another idea is to
favor non-eccentric ellipses.

7.1 Curvature weights

The solution of
xTAx + bTx + c ≈ 0

in the least squares sense leads to an equation for each point. If the equation for
point (xi1, xi2) is multiplied by ωi > 1, the solution will approximate this point more
accurately. In [6], ωi is set to 1/Ri, where Ri is the curvature radius of the ellipse
at a point pi associated with (xi1, xi2). The point pi is determined by intersecting
the ray from the ellipse’s center to (xi1, xi2) and the ellipse.

Tests on few data sets show, that this weighting scheme leads to better shaped
ellipses in some cases, especially for eccentric ellipses; but it does not systematically
restrict the solutions to ellipses. Lets look at the curvature weight solution for
two problems. Figure 7.1 shows the result for the data set (6.1) presented earlier:
unluckily, the algorithm finds a hyperbola for the weighted equations in the first
step. On the other side, the algorithm is successful indeed for a data set close to an
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eccentric ellipse. Figure 7.2 shows the large solid ellipse (residual norm 2.20) found
by the curvature weights algorithm. The small dotted ellipse is the solution of the
unweighted algebraic solution (6.77); the dashed ellipse is the best fit solution using
Gauss-Newton (1.66), and the dash-dotted ellipse (1.69) is found by the geometric-
weight algorithm described later.
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Figure 7.1: algebraic fit with curvature weights

−−−−−−−− Conic after first curvature-weight step
− − − − Unweighted algebraic fit

7.2 Geometric distance weighting

We are interested in weighting schemes which result in a least square solution for
the geometric distance. If we define

Q(x) = xTAx + bTx + c ,

then the simple algebraic method minimizes Q for the given points in the least
squares sense. Q has the following geometric meaning: Let h(x) be the geometric
distance from the center to point x

h(x) =
√

(x1 − z1)
2 + (x2 − z2)2

and determine pi by intersecting the ray from the ellipse’s center to xi and the
ellipse. Then, as pointed out in [9]

Q(xi) = κ((h(xi)/h(pi))
2 − 1)(7.1)

' 2κ
h(xi)− h(pi)

h(pi)
, if xi ' pi(7.2)
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Figure 7.2: comparison of different fits

−−−−−−−− Curvature weights solution
− − − − Best fit
· · · · · · · Unweighted algebraic fit
− · − · − Geometric weights solution

for some constant κ. This explains why the simple algebraic solution tends to neglect
points far from the center.

Thus, we may say that the algebraic solution fits the ellipse with respect to the
relative distances, i.e. a distant point has not the same importance as a near point.
If we prefer to minimize the absolute distances, we may solve a weighted problem
with weights

ωi = h(pi)

for a given estimated ellipse. The resulting estimated ellipse may then be used to
determine new weights ωi, thus iteratively solving weighted least squares problems.

Consequently, we may go a step further and set weights so that the equations are
solved in the least squares sense for the geometric distances. If d(x) is the geometric
distance of x from the currently estimated ellipse, then weights are set

ωi = d(xi)/Q(xi).

See the dash-dotted ellipse in figure 7.2 for an example.
The advantage of this method compared to the non-linear method to compute

the geometric fit is, that no derivatives for the Jacobian or Hessian matrices are
needed. The disadvantage of this method is, that it does not generally minimize the
geometric distance. To show this, let us restate the problem:

(7.3) G(x)x
2

= min where x = 1.
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An iterative algorithm determines a sequence (yi), where yk+1 is the solution of

(7.4) G(yk) y 2 = min where y = 1.

The sequence (yi) may have a fixed point ỹ = y∞ without solving (7.3), since the
conditions for critical points x̃ and ỹ are different for the two equations. To show
this, we shall use the notation dz for an infinitesimal change of z. For all dx with
x̃Tdx = 0 the following holds

2(x̃TGTdGx̃ + x̃TGTGdx) = d Gx̃ 2 = 0

for equation (7.3). Whereas for equation (7.4) and ỹTdy = 0 the condition is

2(ỹTGTGdy) = d Gỹ 2 = 0.

This problem is common to all iterative algebraic solutions of this kind, so no mat-
ter how good the weights approximate the real geometric distances, we may not
generally expect that the sequence of estimated ellipses converges to the optimal
solution.

We give a simple example for a fixed point of the iteration scheme (7.4), which
does not solve (7.3). For z = (x, y)T consider

G =

(
2 0
−4y 4

)
;

then z0 = (1, 0)T is a fixed point of (7.4), but z = (0.7278, 0.6858)T is the solution
of (7.3).

Another severe problem with iterative algebraic methods is the lack of conver-
gence in the general case—especially if the problem is ill-conditioned. We will shortly
examine the solution of (7.4) for small changes to G. Let

G = UΣV T

Ḡ = G + dG = ŪΣ̄V̄ T

and denote with σ1, . . . , σn the singular values in descending order, with vi the
associated right singular vectors—where vn is the solution of equation (7.4) for G.
Then we may bound dvn = v̄n − vn as follows. First, we define

λ = V̄ Tvn thus λ = 1
µ = 1− λn2

ε = dG

and note that
σi − ε ≤ σ̄i ≤ σi + ε for all i.

We may conclude
Σ̄λ = ŪΣ̄λ = Ḡvn

and
Ḡvn ≤ Gvn + dGvn ≤ σn + ε,

thus
n∑
i=1

λ2
i σ̄

2
i ≤ σ2

n + 2εσn + ε2.
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Using that σ̄i ≥ σ̄n−1 for i ≤ n − 1, and that λ = 1, we simplify the above
expression to

(7.5) (1− λ2
n)σ̄2

n−1 + λ2
nσ̄

2
n ≤ σ2

n + 2εσn + ε2.

Assuming that σn 6= 0 (otherwise the solution is exact) and ε ≤ σn, we have

σ2
i − 2εσi + ε2 ≤ σ̄2

i .

Applying this to inequality (7.5), we get

µ ≤ 4εσn
σ̄2
n−1 − σ̄2

n

.

Note that

vn − v̄n
2

= λ− (0, . . . , 1)
T 2

= (λn − 1)
2

+ (1− λ2
n) = 2(1− λn).

Assuming that vn − v̄n is small (and thus λn ≈ 1, µ ≈ 0), then we may write σ
for σ̄ and µ = (1 + λn)(1− λn) ≈ 2(1− λn); thus we finally get

vn − v̄n ≤
√

4εσn
σ2
n−1 − σ2

n

≤
√

2ε

σn−1 − σn
.

This shows that the convergence behavior of iterative algebraic methods depends on
how well—in a figurative interpretation—the solution vector ṽn is separated from
its hyper-plane with respect to the residual norm Gv . If σ̃n−1 ≈ σ̃n, the solution
is poorly determined, and the algorithm may not converge.

While the analytical results are not encouraging, we obtained solutions close to
the optimum using the geometric-weight algorithm for several examples. Figure 7.3
shows the geometric-weight (solid) and the best (dashed) solution for such an ex-
ample. Note that the calculation of geometric distances is relatively expensive, so
a pragmatic way to limit the cost is to perform a fixed number of iterations, since
convergence is not guaranteed anyway.

xi yi
2.0143 10.5575

17.3465 3.2690
−8.5257 −7.2959
−7.9109 −7.6447
16.3705 −3.8815
−15.3434 5.0513
−21.5840 −0.6013

9.4111 −9.0697

Table 7.1: Given points close to ellipse

Table 7.1 lists the points to be approximated, resulting in a residual norm of
2.784, compared to 2.766 for the best geometric fit. Since the algebraic method
minimizes wiQi in the least squares sense, it remains to check that wiQi is propor-
tional to the geometric distance di for the estimated conic. We compute

Mi = (wiQi)/di(7.6)

hi = 1−Mi/ M ∞(7.7)

and find—as expected—that h = 1.1E−5.
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Figure 7.3: geometric weight fit vs. best fit

−−−−−−−− Geometric weight solution
− − − − Best fit

7.3 Circle weight algorithm

The main difficulty with above algebraic methods is that the solution may be any
conic—not necessarily an ellipse. To cope with this case, we extend the system by
weighted equations, which favour circles and non-eccentric ellipses:

ω (a11 − a22) ≈ 0(7.8)

ω 2a12 ≈ 0 .(7.9)

Note that these equations are Euclidean-invariant only if ω is the same in both
equations, and the problem is solved in the least squares sense. What we are really
minimizing in this case is

ω2((a11 − a22)
2 + 4a2

12) = ω2(λ1 − λ2)2;

hence, the constraints (7.8) and (7.9) are equivalent to the equation

ω (λ1 − λ2) ≈ 0.

The weight ω is fixed by

(7.10) ω = ε f((λ1 − λ2)2),

where ε is a parameter representing the badness of eccentric ellipses, and

f : [0,∞[→ [0,∞[ continuous, strictly increasing.



Least-Squares Fitting of Circles and Ellipses 79

The larger ε is chosen, the larger will ω be, and thus the more important are
equations (7.8–7.9), which make the solution be more circle-shaped. The parameter
ω is determined iteratively (starting with ω0 = 0), where following conditions hold

(7.11) 0 = ω0 ≤ ω2 ≤ . . . ≤ ω ≤ . . . ≤ ω3 ≤ ω1.

Thus, the larger the weight ω, the less eccentric the ellipse; we prove this in the
following. Given weights χ < ω and

F =

(
1 0 −1 0 0 0
0 1 0 0 0 0

)
,

then we find solutions x and z for the equations∥∥∥∥∥
(
B

χF

)
x

∥∥∥∥∥ = min∥∥∥∥∥
(
B

ωF

)
z

∥∥∥∥∥ = min

respectively. It follows that

Bx 2 + χ2 Fx 2 ≤ Bz 2 + χ2 Fz 2

Bz 2 + ω2 Fz 2 ≤ Bx 2 + ω2 Fx 2

and by adding
χ2 Fx 2 + ω2 Fz 2 ≤ χ2 Fz 2 + ω2 Fx 2

and since ω2 − χ2 > 0
Fz

2 ≤ Fx
2
,

so that
ω̄ = ε f( Fz 2) ≤ ε f( Fx 2) = χ̄ .

This completes the proof, since f was chosen strictly increasing. One obvious choice
for f is the identity function, which was used in our test programs.

8 Comparison of geometric algorithms

The discussion of algorithms minimizing the geometric distance is somewhat differ-
ent from the algebraic distance problems. The problems in the latter are primarily
stability and “good-looking” solutions; the former must be viewed by their effi-
ciency, too. Generally, the simple algebraic solution is orders of magnitude cheaper
than the geometric counterparts (for accurate results about a factor 10–100); thus
iterative algebraic methods are a valuable alternative. But a comparison between
algebraic and geometric algorithms would not be very enlightening—because there
is no objective criterion to decide which estimate is better. However, we may com-
pare different nonlinear least squares algorithms to compute the geometric fit with
respect to stability and efficiency.

8.1 Algorithms

Several known nonlinear least squares algorithms have been implemented:
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1. Gauss-Newton (gauss)

2. Newton (newton)

3. Gauss-Newton with Marquardt modification (marq)

4. Variable projection (varpro)

5. Orthogonal distance regression (odr)

The odr algorithm (see [13], [14]) solves the implicit minimization problem

f(xi + δi, β) = 0∑
i

δi
2 = min

where
f(x, β) = β3(x1 − β1)2 + 2β4(x1 − β1)(x2 − β2) + β5(x2 − β2)

2 − 1 .

Whereas the gauss, newton, marq and varpro algorithms solve the problem

Q(x, ϕ1, ϕ2, . . . , ϕm, z1, z2, r) =
m∑
i=1

[
(xi1 − x(ϕi))

2 + (xi2 − y(ϕi))
2
]

= min .

For a ≈ b , the Jacobian matrix is nearly singular, so the gauss and newton al-
gorithms are modified to apply Marquardt steps in this case. Not surprising, this
modification makes all algorithms behave similar with respect to stability if the
initial parameters are accurate and the problem is well posed.

8.2 Results

To appreciate the results given in table 8.1, it must be said that the varpro algorithm
is written for any separable functional and cannot take profit from the sparsity of
the Jacobian. The algorithms were tested with example data—each consisting of 8
points—for following problems

1. Special set of points (6.1)

2. Uniformly distributed data in a square

3. Points on a circle

4. Points on an ellipse with a/b = 2

5. Points on hyperbola branch

The tests with points on a conic were done both with and without perturbations.
For table 8.1, the initial parameters were derived from the algebraically best fitting
circle (radius ra, center za); initial center z0 = za, axes a0 = ra, b0 = ra and α0 = 0.
Note that these initial values are somewhat rudimentary, so they serve to check
the algorithms’ stability, too. Table 8.1 shows the number of flops (in 1000) for
the respective algorithm and problem; the smallest number is underlined. If the
algorithm didn’t terminate after 100 steps, it was assumed non-convergent and a
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gauss newton marq varpro odr

Special 146 85 468 1146 �
Random � � � 2427 �
Circle 22 22 22 36 7
Circle+ 86 67 189 717 69
Ellipse 30 37 67 143 41
Ellipse+ 186 � 633 1977 103
Hyperbola 22 22 22 36 10
Hyperbola+ � � � � �

Table 8.1: Geometric fit with initial parameters of algebraic circle

#flops/1000, minimum is underlined
‘�’ if non-convergence

gauss newton marq varpro odr

Special 165 896 566 1506 �
Random � � � 2819 �
Circle 32 32 32 102 7
Circle+ 76 63 145 574 66
Ellipse 22 22 22 112 7
Ellipse+ 161 40 435 1870 74
Hyperbola � � � 1747 �
Hyperbola+ � � � 2986 �

Table 8.2: Geometric fit with initial parameters of algebraic ellipse

#flops/1000, minimum is underlined
‘�’ if non-convergence
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‘�’ is shown instead. Table 8.2 contains the results if the initial parameters were
obtained from the Bookstein algorithm.

Table 8.2 shows that all algorithms converge quickly with the more accurate
initial data for exact conics. For the perturbed ellipse data, it’s primarily the newton
algorithm which profits from the starting values close to the solution. Note further
that the newton algorithm does not find the correct solution for the special data,
since the algebraic estimation—which serves as initial approximation—is completely
different from the geometric solution.

General conclusions from this (admittedly) small test series are

• All algorithms are prohibitively expensive compared to the simple algebraic
solution (factor 10–100).

• If the problem is well posed, and the accuracy of the result should be high, the
newton method applied to the parameterized algorithm is the most efficient.

• The odr algorithm—although a simple general-purpose optimizing scheme—is
competitive with algorithms specifically written for the ellipse fitting problem.
If one takes into consideration further, that we didn’t use a highly optimized
odr procedure, the method of solution is surprisingly simple and efficient.

• The varpro algorithm seems to be the most expensive. Reasons for its inef-
ficiency are that most parameters are non-linear and that the algorithm does
not make use of the special matrix structure for this problem.

The programs on which these experiments have been based are given in [17]. The
report [17] and the Matlab sources for the examples are available via anonymous
ftp from ftp.inf.ethz.ch.
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