Centroaffine Surfaces with parallel traceless Cubic Form

Huili Liu^{*} Changping Wang [†]

Abstract

In this paper, we classify the centroaffine surfaces with parallel cubic Simon form and the centroaffine minimal surfaces with complete positive definite flat metric.

1 Introduction.

Let $x : \mathbf{M} \to \mathbb{R}^3$ be a nondegenerate centroaffine surface. Then x induces a centroaffinely invariant metric g and a so-called induced connection ∇ . The difference of the Levi-Civita connection $\widehat{\nabla}$ of g and the induced connection ∇ is a (1,2)-tensor C on \mathbf{M} with the property that its associated cubic form \widehat{C} , defined by

(1.1)
$$\widehat{C}(u,v,w) = g(C(u,v),w)), \ u,v,w \in TM,$$

is totally symmetric. The so-called Tchebychev form is defined by

(1.2)
$$\widehat{T} = \frac{1}{2} \operatorname{trace}_{g}(\widehat{C}).$$

Using \hat{C} and \hat{T} one can define a traceless symmetric cubic form \tilde{C} by

(1.3)
$$\widetilde{C}(u,v,w) = \widehat{C}(u,v,w) - \frac{1}{2}(\widehat{T}(u)g(v,w) + \widehat{T}(v)g(u,w) + \widehat{T}(w)g(u,v)),$$

*Supported by the DFG-project "Affine Differential Geometry" at the TU Berlin.

[†]Partially supported by the DFG-project "Affine Differential Geometry" at the TU Berlin. Received by the editors March 1996.

Communicated by M. De Wilde.

Key words and phrases : Tchebychev form, Simon's cubic form, centroaffine minimal surface.

Bull. Belg. Math. Soc. 4 (1997), 493-499

¹⁹⁹¹ Mathematics Subject Classification : 53 A 15.

where $u, v, w \in TM$. This cubic form \tilde{C} was introduced and studied by U. Simon (cf. [15] and [16]) in relative geometry; it extends the Pick form and, in particular, plays an important role in centroaffine geometry. In fact, \tilde{C} is an analogue of the cubic form in equiaffine geometry: it is totally symmetric and satisfies an apolarity condition. Furthermore, in relative geometry it is independent of the choice of the relative normalizations (cf. [16]). In the case of the equiaffine normalization \tilde{C} coincides with the cubic form in the equiaffine geometry. For further interesting properties of \tilde{C} we refer to [16], [10], [11], [9] and [6]. We will call \tilde{C} cubic Simon form.

Affine hypersurfaces with parallel cubic Pick forms have been intensively studied by Dillen, Li, Magid, Nomizu, Pinkall, Vrancken, Wang and other authors (cf. [12], [13], [1], [2], [3], [17], [4], [18] and [8]). In this paper, we classify all surfaces with parallel cubic Simon form \tilde{C} . We will prove the following theorem in \mathbb{R}^3 .

Theorem 1: Let $x : \mathbf{M} \to \mathbb{R}^3$ be a nondegenerate centroaffine surface with the $\widehat{\nabla}$ -parallel cubic Simon form. Then x is centroaffinely equivalent to an open part of one of the following surfaces:

- (i) quadrics;
- (ii) $x_1^{\alpha} x_2^{\beta} x_3^{\gamma} = 1, \ \alpha \beta \gamma (\alpha + \beta + \gamma) \neq 0;$
- (iii) $[\exp(\alpha \arctan \frac{x_1}{x_2})](x_1^2 + x_2^2)^\beta x_3^\gamma = 1, \ \gamma(\gamma + 2\beta)(\alpha^2 + \beta^2) \neq 0;$
- (iv) $x_3 = x_1(\alpha \log x_1 + \beta \log x_2), \ \beta(\alpha + \beta) \neq 0;$

where α , β and γ are constants.

Let T be the Tchebychev vector field om \mathbf{M} defined by the equation

(1.4)
$$g(T,v) = \widehat{T}(v), \ v \in TM.$$

Then a centroaffine surface $x: \mathbf{M} \to \mathbb{R}^3$ is called centroaffine Tchebychev if

(1.5)
$$\widehat{\nabla}T = \lambda \operatorname{id},$$

where λ is a function on **M**; a centroaffine surface $x : \mathbf{M} \to \mathbb{R}^3$ is called centroaffine minimal if

(1.6)
$$\operatorname{trace}_{q}(\widehat{\nabla}T) = 0.$$

It is proved by the second author in [19] that x is minimal if and only if x is a critical surface of the volume functional of the centroaffine metric g. For a locally strongly convex surface the centroaffine metric is definite. It is positive (or negative) definite if the position vector x points outward (or inward) (cf. [19]). For centroaffine minimal surfaces, we will prove:

Theorem 2: Let x be a centroaffine minimal surface with complete positive definite flat centroaffine metric g. Then, up to centroaffine transformations in \mathbb{R}^3 , x is an open part of one of the following surfaces

(i)
$$x_3 = x_1^{\alpha} x_2^{\beta}$$

494

where (α, β) is constant in $\mathbb{R}^+ \times \mathbb{R}$ or $\mathbb{R} \times \mathbb{R}^+$ with $\alpha\beta(\alpha + \beta - 1) < 0$;

(ii)
$$x_3 = [\exp(-\alpha \arctan \frac{x_1}{x_2})](x_1^2 + x_2^2)^{\beta},$$

where α and β are constants with $2\beta > 1$;

(iii)
$$x_3 = -x_1(\alpha \log x_1 + \beta \log x_2),$$

where α and β are constants in \mathbb{R} with $\beta(\alpha + \beta) < 0$.

Our main tool is a PDE for the square of the norm of \tilde{C} which we recently derived in [6].

This paper is organized as follows: In section 2, we prove Theorem 1; in section 3, we prove Theorem 2.

2 Proof of Theorem 1.

Let x be a nondegenerate centroaffine surface with $\widehat{\nabla}\widetilde{C} = 0$. Then by Proposition 4.2.1 of [9] we know that x is a Tchebychev surface. From $\widehat{\nabla}\widetilde{C} = 0$ we get $\|\widetilde{C}\|^2 =$ constant. By [6], 5.2.1.1, we have

(2.1)
$$\Delta \|\widetilde{C}\|^2 = 2\|\widehat{\nabla}\widetilde{C}\|^2 + 6\kappa\|\widetilde{C}\|^2.$$

 $\widehat{\nabla}\widetilde{C} = 0$ and (2.1) yield $\kappa \|\widetilde{C}\|^2 = 0$. Thus we get either (i) $\widetilde{C} \equiv 0$; or (ii) $\widetilde{C} \not\equiv 0$ but $\|\widetilde{C}\|^2 = 0$; or (iii) $\kappa \equiv 0$.

If (i) is true, we know that x is an open part of a quadric (cf. [16], 7.11, pp. 117).

Next we consider case (ii). In this case, the centroaffine metric g has to be indefinite. So we choose local asymptotic coordinates (u, v) of g with

(2.2)
$$g = e^{2\omega} (\mathrm{d}u \otimes \mathrm{d}v + \mathrm{d}v \otimes \mathrm{d}u)$$

for some local function ω . We define

(2.3)
$$E_1 = e^{-\omega} \frac{\partial}{\partial u}, \ E_2 = e^{-\omega} \frac{\partial}{\partial v}, \ \theta_1 = e^{\omega} du, \ \theta_2 = e^{\omega} dv$$

Then for the basis $\{E_1, E_2\}$, the local functions $g_{ij} := g(E_i, E_j)$ are given by

(2.4)
$$g_{11} = g_{22} = 0, \ g_{12} = g_{21} = 1.$$

Let $\{\hat{\theta}_{ij}\}\$ be the Levi-Civita connection forms of g with respect to $\{E_1, E_2\}$, then

(2.5)
$$d\theta_i = \Sigma_j \hat{\theta}_{ij} \wedge \theta_j, \ dg_{ij} = g_{ik} \hat{\theta}_{kj} + g_{jk} \hat{\theta}_{ki}.$$

From (2.4) and (2.5) we get

(2.6)
$$\hat{\theta}_{12} = \hat{\theta}_{21} = 0, \ \hat{\theta}_{11} = -\hat{\theta}_{22} = \omega_u \mathrm{d}u - \omega_v \mathrm{d}v.$$

Since $\operatorname{trace}_{g} \tilde{C} = 0$ and $\tilde{C}_{ijk} = \tilde{C}_{ij}^{l} g_{lk}$ are totally symmetric, we have

(2.7)
$$\tilde{C}_{1j}^1 + \tilde{C}_{2j}^2 = \tilde{C}_{12j} + \tilde{C}_{12j} = 2\tilde{C}_{12j} = 0, \ j = 1, 2.$$

Therefore

$$\|\tilde{C}\|^2 = 2\tilde{C}_{111}\tilde{C}_{222}.$$

Since $\tilde{C} \neq 0$ and $\|\tilde{C}\|^2 = 0$, we may assume that $\tilde{C}_{111} = 0$ and $\tilde{C}_{222} \neq 0$. From the fact that $\widehat{\nabla}\tilde{C} = 0$ we get

(2.8)
$$\mathrm{d}\tilde{C}_{222} + 3\tilde{C}_{222}\hat{\theta}_{22} = \Sigma_i\tilde{C}_{222,i}\theta^i = 0.$$

We define

$$\psi := e^{3\omega} \widetilde{C}_{222},$$

then (2.8) is equivalent to

(2.9)
$$\psi_u = 6\omega_u \psi, \ \psi_v = 0$$

Since

$$\psi = e^{3\omega} \tilde{C}_{222} \neq 0,$$

we get from (2.9) that

$$6\omega_{uv} = (\log|\psi|)_{uv} = 0$$

which implies that the Gauss curvature $\kappa = 0$. Thus case (ii) reduces to case (iii).

For the case (iii), the surface x is flat and Tchebychev. Thus we know by the proof of Theorem 4.2 in [10] that $\widehat{\nabla}T = 0$. By choosing special asymptotic coordinates (u, v) of g we have $\omega = 0$. Then (2.6) implies that $\widehat{\theta}_{ij} = 0$. From the fact that $\widehat{\nabla}\widetilde{C} = 0$ we get

(2.10)
$$d\tilde{C}_{111} = 0, \ d\tilde{C}_{222} = 0, \ \text{i.e.} \ \tilde{C}_{ijk} = \text{constant.}$$

Moreover, $\widehat{\nabla}T = 0$, thus we obtain that $T_i = \text{constant}$. From (1.3) we know that $\widehat{C}_{ijk} = \text{constant}$ and therefore x is the so-called canonical surface classified in [8]. Thus Theorem 1 follows from [8], Theorem 1.3.

3 Proof of Theorem 2.

Let $x : \mathbf{M} \to \mathbb{R}^3$ be a centroaffine surface with positive definite centroaffine metric g. We introduce a local complex coordinate z = u + iv with respect to g. Then

(3.1)
$$g = \frac{1}{2}e^{2\omega}(\mathrm{d}z \otimes \mathrm{d}\bar{z} + \mathrm{d}\bar{z} \otimes \mathrm{d}z),$$

for some local function ω . We define

(3.2)
$$\mathbf{E} = \frac{[x, x_z, x_{z\bar{z}}]}{[x, x_z, x_{\bar{z}}]} dz := E dz;$$

(3.3)
$$\mathbf{U} = e^{2\omega} \frac{[x, x_z, x_{zz}]}{[x, x_z, x_{\bar{z}}]} \mathrm{d}z^3 := U \mathrm{d}z^3.$$

It follows from [10] that \mathbf{E} and \mathbf{U} are globally defined centroaffine invariants. Moreover, $\{g, \mathbf{E}, \mathbf{U}\}$ form a complete system of centroaffine invariants which determines the surface up to centroaffine transformations in \mathbb{R}^3 . The relations between g, \mathbf{E} and \mathbf{U} are given by (cf. [10], pp. 82-83)

(3.4)
$$2\omega_{z\bar{z}} - |E|^2 + e^{-4\omega}|U|^2 + \frac{1}{2} = 0;$$

 $(3.5) E_{\bar{z}} = \bar{E}_z;$

(3.6) $\tilde{U_{\bar{z}}} = e^{2\omega} (E_z - 2\omega_z E).$

Furthermore, let $\{E_1, E_2\}$ be the orthonormal basis for g defined by

(3.7)
$$E_1 = e^{-\omega} \frac{\partial}{\partial u}, \ E_2 = e^{-\omega} \frac{\partial}{\partial v}$$

and

$$T = T_1 E_1 + T_2 E_2,$$

then

(3.8)
$$e^{-2\omega}E_{\bar{z}} = \frac{1}{4}\mathrm{trace}_{g}\widehat{\nabla}T.$$

Now if $y : \mathbf{M} \to \mathbb{R}^3$ be a centroaffine minimal surface with complete and flat centroaffine metric g_y , then we have a universal Riemannian covering $\pi : \mathbf{C} \to \mathbf{M}$ such that

(3.9)
$$g = \pi^* g_y = \frac{1}{2} (\mathrm{d}z \otimes \mathrm{d}\bar{z} + \mathrm{d}\bar{z} \otimes \mathrm{d}z)$$

on **C**. We consider the centroaffine surface $x = y \circ \pi : \mathbf{C} \to \mathbb{R}^3$ with $x(\mathbf{C}) = y(\mathbf{M}) \in \mathbb{R}^3$. It is clear that x is again a centroaffine minimal surface with centroaffine metric g given by (3.9), i.e. $\omega = 0$. Since x is centroaffine minimal, we have $\operatorname{trace}_g \widehat{\nabla} T = 0$. By (3.8) we get $E_{\overline{z}} = 0$. Thus $E : \mathbf{C} \to \mathbf{C}$ is a holomorphic function. From (3.4) we know that $|E|^2 \geq \frac{1}{2}$. Thus it follows from Picard theorem (cf. [5], pp. 213, Theorem 27.13) that E = constant. Therefore, (3.4) and (3.6) imply that U is holomorphic and $|U|^2 = |E|^2 - \frac{1}{2} = \text{constant}$. So U must be constant. Since from (2.13) of [10] we know that

(3.10)
$$E = \frac{1}{2}(T_1 - iT_2), \ U = \frac{1}{4}(\tilde{C}_{111} + i\tilde{C}_{222}).$$

Hence we get that T_i and \tilde{C}_{ijk} are constants. Thus x is canonical in the sence of [8]. By the classification theorem 1.3 of [8] and the positive definiteness of the centroaffine metric g we obtain the surfaces in Theorem 2.

This complete the proof of the theorem 2.

Acknowledgements. We would like to thank Professor U. Simon for helpful discussions.

References

- F. Dillen and L. Vrancken: *Generalized Cayley surfaces*, Lecture Notes in Math. 1481, Springer, Berlin, 36-47(1991).
- [2] F. Dillen and L. Vrancken: 3-dimensional affine hypersurfaces in ℝ⁴ with parallel cubic form, Nagoya Math. J., **124**(1991), 41-53.
- [3] F. Dillen and L. Vrancken: *Hypersurfaces with parallel difference tensor*, Preprint, KU Leuven 1995.
- [4] F. Dillen, L. Vrancken, S. Yaprak: Affine hypersurfaces with parallel cubic forms, Nagoya Math. J., 135(1994), 153-164.
- [5] O. Forster: Lectures on Riemann Surfaces, Graduate Texts in Mathematics, No. 81, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- [6] A. M. Li, H. L. Liu, A. Schwenk-Schellschmidt, U. Simon, C. P. Wang: *Cubic form methods and relative Tchebychev hypersurfaces*, Geometriae, Dedicata, to appear.
- [7] A. M. Li, U. Simon and G. Zhao: Global Affine Differential Geometry of Hypersurfaces, W. De Gruyter, Berlin-New York, 1993.
- [8] A. M. Li and C. P. Wang: Canonical centroaffine hypersurfaces in \mathbb{R}^{n+1} , Results in Mathematics, **20**(1991) 660-681.
- [9] H. L. Liu, U. Simon, C. P. Wang: Conformal structures in affine geometry: complete Tchebychev hypersurfaces, Abh. Math. Sem. Hamburg, 66(1996), 249-262.
- [10] H. L. Liu and C. P. Wang: The centroaffine Tchebychev operator, Results in Mathematics, 27(1995), 77-92.
- [11] H. L. Liu and C. P. Wang: *Relative Tchebychev surfaces in* ℝ³, Kyushu J. of Math., **50**(1996), 533-540.
- [12] M. Magid, M. Nomizu: On affine surfaces whose cubic forms are parallel relative to the affine metric, Proc. Japan Acad. 65, Ser. A, 215-218(1989).
- [13] K. Nomizu, U. Pinkall: Cubic form theorem for affine immersions, Results in Math., 13(1988), 338-362.
- [14] K. Nomizu and T. Sasaki: Affine Differential Geometry, Cambridge University Press, 1994.
- [15] U. Simon: Zur Relativgeometrie: Symmetrische Zusammenhänge auf Hyperflächen, Math. Z., 106(1968), 36-46.
- [16] U. Simon, A. Schwenk-Schellschmidt and H. Viesel: Introduction to the Affine Differential Geometry of Hypersurfaces, Lecture Notes, Science University Tokyo, ISBN 3-7983-1529-9, 1991.

- [17] L. Vrancken: Affine higher order parallel hypersurfaces, Ann. Fac. Sci. Toulouse, V. Ser., Math. 9, No. 3, 341-353(1988).
- [18] C. P. Wang: Canonical equiaffine hypersurfaces in \mathbb{R}^{n+1} , Math. Z., **214**(1993), 579-592.
- [19] C. P. Wang: Centroaffine minimal hypersurfaces in \mathbb{R}^{n+1} , Geom. Dedicata, **51**(1994), 63-74

Huili Liu Department of Mathematics Northeastern University Shenyang 110006 P. R. China

Changping Wang Department of Mathematics Beijing University Beijing 100871 P. R. China E-mail: wang@sxx0.math.pku.edu.cn