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1 Introduction and statement of the Main Theorem

In this paper we are concerned with classical polar spaces, i. e. with the set of points
and lines of some vector space W on which a non–degenerate (σ, ε)-hermitian form
or pseudo-quadratic form vanishes.

To state the Main Theorem we introduce some notation. Let L be a division
ring and W be a (left–)vector space over L endowed with a (σ, ε)–hermitian form or
a pseudo–quadratic form q (with associated (σ, ε)–hermitian form f) in the sense of
[Ti, §8]. We may assume that ε = ±1 and σ2 = id. We let

Rad(W, f) = {w ∈W | f(w, x) = 0 for all x ∈W},
x⊥ = {w ∈W | f(w, x) = 0} for x ∈W,

Λmin = {c− εcσ | c ∈ L},
Λmax = {c ∈ L | εcσ = −c}.

If Rad(W, f) = 0, then f is said to be non–degenerate. Further f is trace–valued,
if f(w, w) ∈ {c+ εcσ | c ∈ L} for all w ∈W . A subspace U of W is called singular, if
f(u, u′) = 0 resp. q(u) = 0 for all u, u′ ∈ U . The 1–, 2– and 3–dimensional subspaces
of W are called points, lines, planes respectively. Let S be the set of singular points
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of W . For each subspace U of W , we denote by U ∩ S the set of singular points in
U . The subspace of a vector space which is spanned by a subset M is denoted by
<M>.

We prove the following result:

Main Theorem . Let L and K be division rings and let W be a vector space
over L (not necessarily finite–dimensional). We assume that there is either a non–
degenerate (trace–valued) (σ, ε)–hermitian form f on W such that Λmin = Λmax or
that there is a pseudo–quadratic form q on W with corresponding (σ, ε)–hermitian
form f such that Rad(W, f) = 0. We suppose that there are singular lines in W and
that dimW ≥ 5. Further let V be a vector space over K.

We assume that the following hypotheses are satisfied:

(a) There is an injective mapping π from the set of singular points of W into the
set of points of V . (We set π(U ∩ S) := {π(u) | u ∈ U ∩ S} for each subspace
U of W .)

(b) If L1 is a singular line of W , then the subspace <π(L1 ∩ S)> of V generated
by π(L1 ∩ S) is a line in V .

(c) For each singular point x of W we have: If y is a singular point of W with
π(y) ⊆ <π(x⊥ ∩ S)>, then y ⊆ x⊥.

Then there exists an embedding α : L→ K and an injective semi–linear (with respect
to α) mapping ϕ : W → V such that π(Lx) = Kϕ(x) for all x ∈ W , x singular
(i. e. π is induced by a semi–linear mapping).

The mapping π defined by x 7→ π(x), L1 7→ <π(L1 ∩ S)>, where x is a singular
point and L1 is a singular line in W , yields a sub–weak embedding of the polar
space S associated with W and f resp. q into the projective space P(V0), V0 =
<π(W ∩ S)> in the sense of [TVM1].

In the paper [TVM1] it is shown that for a non–degenerate polar space the
concept of sub–weak embeddings is the same as the one of weak embeddings of po-
lar spaces in projective spaces introduced by Lefevre-Percsy [Lef1], [Lef2]. In
[TVM1], [TVM2] Thas and Van Maldeghem classified all polar spaces (degener-
ate or not) of rank at least 3 of orthogonal, symplectic or unitary type, which are
sub–weakly embedded in a finite–dimensional projective space over a commutative
field (except one possibility in the symplectic case over non–perfect fields of char-
acteristic 2). In the non–degenerate case with the radical of the bilinear form of
dimension at most 1, their result is that the polar space is fully embedded over a
subfield.

The Main Theorem shows that this conclusion remains valid, if f resp. q satisfy
the hypotheses of the Main Theorem. The polar space S associated with W and f
resp. q is fully embedded in the projective space P(ϕ(W )), where ϕ(W ) is a vector
space over the sub-division ring Lα of K. For the mapping x 7→ ϕ(x), L1 7→ ϕ(L1),
every point in ϕ(L1) has an inverse image under ϕ. The Main Theorem does not
require rank at least 3, finite dimension or rank, or commutative fields.
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By the classification of non–degenerate polar spaces of rank at least 3, every such
polar space is associated to a non–degenerate trace–valued (σ, ε)–hermitian form or
a non–degenerate pseudo–quadratic form (apart from two classes of exceptions in
rank 3). The assumptions Λmin = Λmax resp. Rad(W, f) = 0 are always satisfied if
char L 6= 2. Thus the set of polar spaces handled in the Main Theorem is sufficiently
rich.

Sections 2 to 5 are devoted to the proof of the Main Theorem. First, inspired by
[Ti, (8.19)] we derive some properties of the mapping π (Section 2), which enables
us to extend π to arbitrary points of W (Section 3). For this we use that every point
is the intersection of two hyperbolic lines (i. e. lines spanned by two singular points
x, y with x 6⊆ y⊥), if Rad(W, f) = 0. For the construction of a semi–linear mapping
ϕ which induces π (Section 5), we need the intermediate step where we construct
such a semi–linear mapping for the restriction of π to a 4+–space in W (Section 4).
By a 4+–space we mean the orthogonal sum of two hyperbolic lines.

2 Properties of the mapping π

In this first part of the proof of the Main Theorem we derive some properties of the
mapping π.

2.1. If a, b are singular points in W with L1 = <a, b> a singular line, then
<π(L1 ∩ S)> = <π(a), π(b)>.

Proof. Since π is injective on singular points, we see that <π(a), π(b)> is a line
which is contained in <π(L1 ∩ S)>. By (b) the claim follows. �

2.2. If L1 is a singular line in W and x is a singular point in W with π(x) ⊆
<π(L1 ∩ S)>, then x ⊆ L1.

Proof. We first consider the case that L1 6⊆ x⊥. Then a := L1 ∩ x⊥ is a point,
without loss x 6= a. Let b be a singular point with L1 = <a, b>. Then b 6⊆ x⊥.
We have <π(x), π(a), π(b)>⊆ <π(L1 ∩ S)> = <π(a), π(b)> by (2.1). Hence π(b) ⊆
<π(x), π(a)> ⊆ <π(x⊥ ∩ S)>. Now (c) yields b ⊆ x⊥, a contradiction.

Thus we are left with the case L1 ⊆ x⊥. Without loss E := <L1, x> is a
singular plane. Let y be a singular point in W with y ⊆ L1

⊥, y 6⊆ x⊥. Then
π(x) ⊆ <π(L1 ∩ S)> ⊆ <π(y⊥ ∩ S)>. Using (c) this yields x ⊆ y⊥, a contradiction.

�

2.3. If L1, L2 are singular lines in W with <π(L1 ∩ S)> = <π(L2 ∩ S)>, then
L1 = L2.

Proof. Using (2.2) we obtain L1 ∩ S = L2 ∩ S, hence L1 = L2. �

2.4. Let Q = <L1, L2> be a 4+–space in W , where L1 = <x1, x2>, L2 = <y1, y2>
are singular lines with x1 6⊆ y1

⊥, x1 ⊆ y2
⊥, x2 ⊆ y1

⊥, x2 6⊆ y2
⊥. Then <π(Q ∩ S)> =

<π(x1), π(x2), π(y1), π(y2)> is 4–dimensional.
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Proof. By (c) π(y1) 6⊆ <π(x1), π(x2)> and similarly π(y2) 6⊆ <π(x1), π(x2), π(y1)>.
Hence <π(L1 ∩ S), π(L2 ∩ S)> = <π(x1), π(x2), π(y1), π(y2)> is 4–dimensional.

By [Ti, (8.10)] Q∩S is the smallest subset X of S containing L1 ∩S and L2 ∩S
such that for every singular line L′ of W which has two points in X necessarily
L′∩S is contained in X. Let Y := {y ∈ S | π(y) ⊆ <π(L1 ∩ S), π(L2 ∩ S)>}. Then
Y is a subset of S having the properties mentioned above. Hence Q ∩ S ⊆ Y and
<π(Q ∩ S)> ⊆ <π(L1 ∩ S), π(L2 ∩ S)>. This yields (2.4). �

2.5. If H is a hyperbolic line of W and x is a singular point of W with π(x) ⊆
<π(H ∩ S)>, then x ⊆ H.

Proof. Since W contains singular lines, H⊥ is generated by its singular points. If a
is a singular point in H⊥, then π(x) ⊆ <π(H ∩ S)> ⊆ <π(a⊥ ∩ S)>. Using (c) we
obtain x ⊆ a⊥, hence H⊥ ⊆ x⊥. This yields x ⊆ H⊥⊥ = H, since Rad(W, f) = 0. �

2.6. If H1, H2 are hyperbolic lines in W with <π(H1 ∩ S)> = <π(H2 ∩ S)>, then
H1 = H2.

Proof. Using (2.5) we obtain H1 ∩ S = H2 ∩ S, hence H1 = H2. �

2.7. Let U be a subspace of W with U = <U ∩ S> 6= 0. If u ∈ U , u 6∈ Rad(U, f),
then u = cx1 + y1 for some c ∈ L and a hyperbolic pair (x1, y1) of U .

Proof. Since u 6∈ Rad(U, f), there exists a singular point a in U with a 6⊆ u⊥.
Let a = <x1> with f(x1, u) = 1. If there is a pseudo–quadratic form on W , let
q(u) = c + Λmin and set y1 = −cx1 + u. If there is a trace–valued (σ, ε)–hermitian
form on W , let f(u, u) = c + εcσ and set y1 = cx1 + u. �

2.8. If Q is a 4+–space in W and x is a singular point of W with π(x) ⊆ <π(Q ∩ S)>,
then x ⊆ Q.

Proof. Since Q is finite–dimensional with Rad(Q, f) = 0, we have W = Q ⊥ Q⊥.
Let x = L(w + s) where w and s are vectors in Q, Q⊥ respectively. Without loss
s 6= 0.

We first consider the case that s is singular. Then W contains singular planes
and Q⊥ contains hyperbolic lines. Let a be a singular point in Q⊥ with a 6⊆ s⊥,
hence a 6⊆ x⊥. Then π(x) ⊆ <π(Q ∩ S)> ⊆ <π(a⊥ ∩ S)>. Using (c) this yields
x ⊆ a⊥, a contradiction.

Thus we are left with the case that s is non–singular. Then w is non–singular.
Let w = cx1 + y1 as in (2.7) and let Q = <x1, y1> ⊥ <x2, y2> with (x2, y2) a
hyperbolic pair.

By (c) <π(x1), π(x2), π(y1)> is 3–dimensional. Hence

<π(x1), π(x2), π(y1)> = <π(Q ∩ S)> ∩<π(x2
⊥ ∩ S)>,

since otherwise <π(Q ∩ S)> ⊆ <π(x2
⊥ ∩ S)> and y2 ∈ x2

⊥ by (c), a contradiction.
Similarly <π(Q ∩ S)>∩<π(y2

⊥ ∩ S)> = <π(x1), π(y1), π(y2)>. Since x ⊆ x2
⊥∩y2

⊥,
this yields

π(x) ⊆ <π(x1), π(x2), π(y1)> ∩<π(x1), π(y1), π(y2)> = <π(x1), π(y1)>.

The last equality is obtained using (c). By (2.5) we see that x ⊆ <x1, y1> ⊆ Q. �
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2.9. If Q1, Q2 are 4+–spaces in W with <π(Q1 ∩ S)> = <π(Q2 ∩ S)>, then Q1 =
Q2.

Proof. Using (2.8) we obtain Q1 ∩ S = Q2 ∩ S, hence Q1 = Q2. �

2.10. Let H1 be a hyperbolic line in W and let z be an arbitrary point in H1
⊥.

Then z is the intersection of two hyperbolic lines in H1
⊥ or we have the following

exceptional situation:
|L| ≤ 4, dimW ≤ 6, W is associated to a quadratic form. If H2 is a hyperbolic line
in H1

⊥ which contains z, then there exists a singular point b in H1
⊥ with b 6⊆ H2,

b ⊆ z⊥.

Proof. Let H2 be a hyperbolic line which contains z. We write z = <cx2 + y2>
where (x2, y2) is a hyperbolic pair in H2, using (2.7). Since H2 and z⊥ are proper
subspaces of H1

⊥, there exists a singular point a in H1
⊥ with a 6⊆ H2, a 6⊆ z⊥ by

[Ti, (8.17)], provided that |L| ≥ 4. Then <z, a> is a second hyperbolic line, which
contains z.

Further, if there are singular lines in H1
⊥, then we let <x2, y2> ⊥ <x3, y3> ⊆ H1

⊥

with (x3, y3) a hyperbolic pair and choose <z, x2 + x3> as second hyperbolic line
containing z.

So we are left with the case |L| ≤ 3 and dimH1
⊥ ≤ 4. Under the assumptions of

the Main Theorem we may assume that W is equipped with a quadratic form, since
in the case |L| = 3, f a symplectic form (σ = id, ε = −1) we can proceed as in the
previous paragraph. Let H2 ⊥ <a> ⊆ H1

⊥ with q(a) 6= 0. Then b = −q(a)x2+y2+a
is singular. If c 6= q(a), then <z, b> is a second hyperbolic line containing z. If
c = q(a), then <b> is a singular point in H1

⊥, b 6∈ H2, b ∈ z⊥. This yields the claim.
�

2.11. If E is a plane of W with E = <E ∩ S>, then <π(E ∩ S)> is a plane of V .

Proof. We first consider the case that E is a singular plane. Then

E = <x1, x2, x3> ⊆ <x1, y1> ⊥ <x2, y2> ⊥ <x3, y3>

where (xi, yi) is a hyperbolic pair (i = 1, 2, 3). If a is a singular point in E then
a = <αx1 + βx2 + γx3> with α, β, γ ∈ L. Hence by (2.1)

π(a) ⊆ <π(x1), π(βx2 + γx3)> ⊆ <π(x1), π(x2), π(x3)>.

This shows that <π(E ∩ S)> = <π(x1), π(x2), π(x3)>, which is a plane by (c).
Thus we are left with the case that E is not singular. Then E = <x1, y1> ⊥ z,

where x1, y1 are singular points in E with x1 6⊆ y1
⊥. Since <π(E ∩ S)> cannot

equal <π(x1), π(y1)> by (c), we see that dim<π(E ∩ S)> ≥ 3. Let H1 := <x1, y1>
and choose a singular point z′ in H1

⊥ with z′ 6⊆ z⊥. Let H2 := <z, z′>. Then
Q := H1 ⊥ H2 is a 4+-space which contains E.

We first neglect the special situation occurring in (2.10) and choose a hyperbolic
line H3 in H1

⊥ which contains z and is different from H2. Then Q1 := H1 ⊥ H3 is a
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second 4+–space containing E. Since <π(E ∩ S)> ⊆ <π(Q ∩ S)> ∩ <π(Q1 ∩ S)>,
we obtain dim<π(E ∩ S)> ≤ 3 by (2.9).

In the special situation we choose a singular point b ⊆ E⊥ as constructed in the
proof of (2.10). We show directly that dim<π(E ∩ S)> ≤ 3. For this we assume
that <π(E ∩ S)> = <π(Q ∩ S)>. Then π(x) ⊆ <π(E ∩ S)> ⊆ <π(b⊥ ∩ S)> for all
x ∈ Q ∩ S. Hence Q ⊆ b⊥ by (c), a contradiction. �

2.12. Let E be a plane of W with E = <E ∩ S> and E not singular. If x is a
singular point in W with π(x) ⊆ <π(E ∩ S)>, then x ⊆ E.

Proof. If we do not have the special situation occurring in (2.10), then we write
E = Q ∩ Q1, where Q and Q1 are 4+–spaces in W , as in the proof of (2.11). Then
(2.8) yields x ⊆ Q ∩Q1 = E.

In the special situation we let b be a singular point in E⊥ as constructed in the
proof of (2.10). Then π(x) ⊆ <π(E ∩ S)> ⊆ <π(b⊥ ∩ S)>. Now (c) yields that
x ⊆ b⊥. Further, x ⊆ Q by (2.8) as above. Thus x ⊆ b⊥ ∩Q = E. �

2.13. If a, b are singular points in W with H := <a, b> a hyperbolic line, then
<π(H ∩ S)> = <π(a), π(b)>.

Proof. Since the line <π(a), π(b)> is contained in <π(H ∩ S)>, we have to show that
<π(H ∩ S)> is a line. Let H = <x1, y1> ⊆ <x1, y1> ⊥ <x2, y2> =: Q with (xi, yi) a
hyperbolic pair (i = 1, 2). With E := <x1, y1, x2> and E1 := <x1, y1, y2> we obtain
that <π(H ∩ S)> ⊆ <π(E ∩ S)> ∩ <π(E1 ∩ S)>. By (2.11) and (c) <π(E ∩ S)>
and <π(E1 ∩ S)> are different planes of V , hence (2.13). �

2.14. Let x, y, z be singular points in W with E := <x, y, z> a plane. Then
<π(x), π(y), π(z)> is 3–dimensional.

Proof. If E is singular compare the proof of (2.11). If without loss H := <x, y>
is a hyperbolic line, then the assumption π(z) ⊆ <π(x), π(y)> leads to π(z) ⊆
<π(H ∩ S)>. Hence z ⊆ H by (2.5), a contradiction. �

3 The extension of π to arbitrary points of W

In this section we extend the mapping π to arbitrary points, using that every point
is the intersection of two hyperbolic lines (compare the approach in the proof of
[HO, (8.1.5)]).

3.1. Let a be a non–singular point in W . Then
⋂

<π(H ∩ S)>, where H is a hy-
perbolic line which contains a, is a point in V .

Proof. For every hyperbolic line H which contains a we set H ′ := <π(H ∩ S)>. By
(2.10) a = H0 ∩H1 with hyperbolic lines H0, H1. By (2.6), (2.13) H0

′ and H1
′ are

different lines in V . Since E := H0 + H1 is a plane with E = <E ∩ S>, we obtain
dimH0

′ + H1
′ = 3 by (2.11). Hence P ′ := H0

′ ∩H1
′ is a point.
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If H2 is an arbitrary hyperbolic line containing a, then P ′ ⊆ H2
′. Otherwise

H0
′ ∩ H1

′ ∩ H2
′ = 0. Let H0

′ ∩H1
′ =: K1, H0

′ ∩H2
′ =: K2, H1

′ ∩ H2
′ =: K3. As

above K1, K2, K3 are points in V . Since H0
′ ∩H1

′ ∩H2
′ = 0, we see that K1, K2,

K3 are pairwise distinct and K1 +K2 +K3 is 3–dimensional. Hence H0
′ = K1 +K2,

H1
′ = K1 + K3, H2

′ = K2 + K3.
Let H be a hyperbolic line with a ⊆ H. As above H ′ ∩ Hi

′ 6= 0 for i = 0, 1, 2.
Without loss H ′ ∩H0

′ 6= H ′ ∩H1
′, since H0

′ ∩H1
′ ∩H2

′ = 0. Hence

H ′ = (H ′ ∩H0
′) + (H ′ ∩H1

′) ⊆ H0
′ + H1

′ ⊆ K1 + K2 + K3.

This yields that π(x) ⊆ H ′ ⊆ K1 + K2 + K3 for all singular points x in W with
H := <a, x> a hyperbolic line.

Let next x be a singular point with x ⊆ a⊥. We choose a singular point y with
y ⊆ x⊥, y 6⊆ a⊥. Then L1 = <x, y> is a singular line. Let z be a point in L1 with
z 6= x, y, then z 6⊆ a⊥. Hence π(x) ⊆ <π(L1 ∩ S)> = <π(z), π(y)> ⊆ K1 + K2 +K3

by the preceding paragraph.
Hence π(x) ⊆ K1 + K2 + K3 for all singular points in W , a contradiction by

(2.4). Thus P ′ ⊆ H2
′ and P ′ =

⋂
<π(H ∩ S)>, where H is a hyperbolic line which

contains a, is a point in V . �

3.2. Definition:
For each non–singular point a of W we set

π(a) :=
⋂

<π(H ∩ S)>, where H is a hyperbolic line which contains a.

By (3.1) π(a) is a point in V .
Using (2.6), (2.13) we see that the definition given above is also valid for singular

points a of W . Thus we have extended π to arbitrary points of W .

3.3. If x is a singular point and a is a non–singular point of W with a ⊆ x⊥, then
π(a) ⊆ <π(x⊥ ∩ S)>.

Proof. Let x = Lx1 and H1 = <x1, y1> with (x1, y1) a hyperbolic pair. Since
W = H1 ⊥ H1

⊥, there are α ∈ L and s ∈ H1
⊥ with a = L(αx1 + s). As in (2.7) we

write s = βx2 + y2, where 0 6= β ∈ L and (x2, y2) is a hyperbolic pair in H1
⊥. With

H = <αx1 + βx2, y2> we obtain

π(a) ⊆ <π(H ∩ S)> by (3.2)

= <π(L(αx1 + βx2)), π(Ly2)> by (2.13).

Since L(αx1 + βx2) and Ly2 are singular points in x⊥, this yields the claim. �

3.4. π is injective on the set of all points of W .

Proof. Let a, b be points in W with π(a) = π(b). If a and b are singular, then a = b,
since π is injective on singular points.

We next assume that a is singular and b is not singular and lead this to a
contradiction. Let H be a hyperbolic line which contains b. Then π(a) = π(b) ⊆
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<π(H ∩ S)> by (3.2). Using (2.5) we obtain a ⊆ H for every hyperbolic line H
containing b. Hence a = b, a contradiction.

Thus we are left with the case that a and b are non–singular. We assume that
a 6= b. Then there exists a singular point x with x ⊆ a⊥ and x 6⊆ b⊥. With H :=
<x, b> we obtain π(x), π(b) ⊆ <π(H ∩ S)> using (3.2). Since π(x) 6= π(b) by the
paragraph above, (2.13) yields that <π(H ∩ S)> = <π(x), π(b)> = <π(x), π(a)> ⊆
<π(x⊥ ∩ S)>. By (c) this shows H ⊆ x⊥, a contradiction. �

3.5. Let a be a singular point in W and z be an arbitrary point in W with L1 :=
<a, z> a line. Then π(y) ⊆ <π(a), π(z)> for every point y in L1.

Proof. If z 6⊆ a⊥, then (3.2), (2.13) and (3.4) yield

π(y) ⊆ <π(L1 ∩ S)> = <π(a), π(z)>.

If z ⊆ a⊥ and z singular, then the claim follows by (2.1).
So let z ⊆ a⊥ and z not singular. Let a = Lx1, H1 = <x1, y1> with (x1, y1) a

hyperbolic pair and z = L(cx1 + s), where c ∈ L, s ∈ H1
⊥. We choose different

hyperbolic lines H and H0 in H1
⊥ containing s, using (2.10) and excluding the

special case mentioned there. Then E := H ⊥ a and E0 := H0 ⊥ a are different
planes of W which are generated by their singular points. We write H = <s, t>,
H0 = <s, t0> where t and t0 are singular points in H1

⊥.
For a 6= y ⊆ <a, z>, y is contained in the two different hyperbolic lines M :=

<y, t> and M0 := <y, t0>. Because of π(y) = <π(M ∩ S)> ∩ <π(M0 ∩ S)> by
(3.2), π(y) is contained in E ′ := <π(E ∩ S)> and in E0

′ := <π(E0 ∩ S)>. By
(2.11) and (2.12) E ′ and E0

′ are different planes in V . Since X := <z, t> ⊆ E
is a hyperbolic line, (3.2) yields that π(z) ⊆ <π(X ∩ S)> ⊆ <π(E ∩ S)> = E ′.
Similarly we have π(z) ⊆ E0

′. Hence E ′ ∩ E0
′ contains <π(a), π(z)>. We obtain

π(y) ⊆ E ′ ∩E0
′ = <π(a), π(z)> by (3.4).

In the remaining special situation we let b be a singular point in <x1, y1, z>
⊥, as

constructed in the proof of (2.10). As above <π(y), π(a), π(z)> ⊆ E ′. We assume
that π(y) 6⊆ <π(a), π(z)>. Then E ′ = <π(y), π(a), π(z)> ⊆ <π(b⊥ ∩ S)> by (3.3).
Now (c) yields E ⊆ b⊥, a contradiction. �

4 Construction of a semi–linear mapping on 4+–spaces

In this section we show that the mapping π restricted to the set of points of a 4+–
space in W is induced by a semi–linear mapping. We use the idea of the proof of
[JW, (1.2.4)]. The main ingredient in Section 4 is (3.5). For w ∈W , we often write
π(w) instead of π(Lw).

4.1. Let Q be a 4+-space in W . Then there is an embedding α : L → K and an
injective semi–linear (with respect to α) mapping ϕ : Q → V with π(Lx) = Kϕ(x)
for x ∈ Q.
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Proof. Let Q = <x1, y1> ⊥ <x2, y2> be a 4+–space in W . Let x1, x2, y1, y2 be
generated by e1, e2, e3, e4 respectively and let π(ei) be generated by fi (i = 1, . . . , 4).
By (2.4) f1, f2, f3, f4 are linearly independent. For j ≥ 2 we have L(e1 + ej) ⊆
<e1, ej>, hence π(e1 + ej) ⊆ <π(e1), π(ej)> by (3.5). Thus there is a b ∈ K with
π(e1 + ej) = K(f1 + bfj). Further, b 6= 0, since π is injective. Replacing fj by bfj
we may assume

π(ei) = Kfi, π(e1 + ej) = K(f1 + fj)

for i, j = 1, . . . , 4, j ≥ 2.
For j ≥ 2 and c ∈ L we have π(e1 +cej) 6= π(ej). Hence there is a scalar denoted

by αj(c) in K with π(e1 + cej) = K(f1 + αj(c)fj) as in the preceding paragraph.
This defines a mapping αj : L→ K with αj(0) = 0 and αj(1) = 1.

We show:

(∗) αj = α2 =: α is an embedding from L in K for j ≥ 2.

Let i, j ≥ 2, i 6= j, and ci, cj ∈ L. Then L(e1 + cjej + ciei) is contained in
<e1 + cjej, ei> and in <e1 + ciei, ej>. Hence (3.5) and the fact that f1, fi, fj are
linearly independent yield

π(e1 + cjej + ciei) = K(f1 + αj(cj)fj + αi(ci)fi)

for i, j ≥ 2, i 6= j.
Similarly, L(cjej + ei) is contained in <ej, ei> and in <e1, e1 + cjej + ei>. Using

the above paragraph and αi(1) = 1, we obtain

π(cjej + ei) = K(αj(cj)fj + fi)

for i, j ≥ 2, i 6= j.
Let i ≥ 3 and c, d ∈ L. Then L(e1 + (c + d)e2 + ei) ⊆ <e1 + ce2, de2 + ei>.

Since e1 + ce2 is singular, applying π and (3.5) yield K(f1 + α(c + d)f2 + fi) ⊆
<f1 + α(c)f2, α(d)f2 + fi>. Hence

α(c + d) = α(c) + α(d)

for c, d ∈ L by comparing coefficients.
Similarly, for c, d ∈ L we have L(e1 + cde2 + cei) ⊆ <e1, de2 + ei>. Thus K(f1 +

α(cd)f2 + αi(c)fi) ⊆ <f1, α(d)f2 + fi> as above. This leads to

α(cd) = αi(c)α(d)

for i ≥ 3, c, d ∈ L by comparing coefficients.
The special case d = 1 yields αi = α for i ≥ 3 and α is a homomorphism.
Further, if c ∈ L with α(c) = 0 then π(e1 + ce2) = Kf1 = π(e1). Since π is

injective on singular points we obtain c = 0, and α is injective. Thus α : L→ K is
an embedding and (∗) holds.

Next we show:

(∗∗) If x =
∑4
i=1 ciei ∈W , then π(Lx) = K(

∑4
i=1 α(ci)fi).
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If only one of the coefficients ci is different from 0 the claim holds.
We first assume that exactly two of the coefficients ci are different from 0. If

c1 6= 0, we use the fact that π(e1 + cei) = K(f1 + α(c)fi) for c ∈ L. If c1 = 0, then
there are i, j ≥ 2, i 6= j with Lx = L(ciei + cjej) ⊆ <e1, e1 + ciei + cjej>. Further,
Lx ⊆ <ei, ej>. We apply π and use the intermediate step of the proof that α is an
embedding. This yields the claim.

We now assume that exactly three of the coefficients ci are different from 0. If
c1 6= 0, we use the intermediate step as in the preceding paragraph. If c1 = 0, then
Lx ⊆ <e1 − c2e2 − c3e3, e1 + c4e4> and Lx ⊆ <e1 − c3e3 − c4e4, e1 + c2e2>. Since
e1 + c4e4 and e1 + c2e2 are singular, we can use (3.5) and the claim follows.

Finally, assume that all coefficients ci are different from 0. Then we have Lx ⊆
<c1e1 + c3e3 + c4e4, e2> and Lx ⊆ <c1e1 + c2e2, c3e3 + c4e4> with e2 and c1e1 + c2e2

singular. Hence we can finish the proof of (∗∗) as above.
The mapping ϕ : Q → V defined by ϕ(

∑4
i=1 ciei) :=

∑4
i=1 α(ci)fi is semi–linear

(with respect to the embedding α : L→ K) and satisfies π(Lx) = Kϕ(x) for x ∈ Q.
Further ϕ is injective, since α is. �

5 The construction of a semi–linear mapping inducing π

In this last section of the proof of the Main Theorem we show that the mapping
π from the set of all points of W into the set of points of V constructed in (3.2)
is induced by a semi–linear mapping. We proceed similarly as in the proof of the
Fundamental Theorem of Projective Geometry in [Ba, p. 44].

5.1. Let Lx and Ly be different points of W . At least one of Lx and Ly is assumed
to be singular. Let π(Lx) = Kx′. Then there exists a unique y′ ∈ V such that
π(Ly) = Ky′ and π(L(x − y)) = K(x′ − y′). We write h(x, x′, y) := y′ and set
h(x, x′, 0) := 0.

Proof. Since L(x − y) ⊆ Lx + Ly, (3.5) yields that π(L(x− y)) ⊆ π(Lx) + π(Ly).
Hence π(L(x− y)) = Kt, where t = cx′ − z with c ∈ K and z ∈ π(Ly). Necessarily
c 6= 0 and z 6= 0, since π is injective by (3.4). Hence y′ := c−1z satisfies the above
conditions. The uniqueness of y′ is straight forward. �

5.2. If Lx and Ly are different points with at least one singular, then we have
h(x, x′, y) = y′ if and only if h(y, y′, x) = x′.

Proof. This is obvious from the definition of h in (5.1). �

5.3. Let u, v, t ∈ W be linearly independent with u, v singular and u 6∈ v⊥. Let
π(Lu) = Ku′, π(Lv) = Kv′, π(Lt) = Kt′. If h(u, u′, v) = v′ and h(u, u′, t) = t′,
then h(v, v′, t) = t′.

Proof. We have to show that π(L(v− t)) = K(v′− t′). Since <u, v> is a hyperbolic
line, the plane E := <u, v, t> is contained in some 4+–space Q. Let a ∈ E be
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singular with E = <u, v, a>. Then π(Lu) + π(Lv) + π(La) is 3–dimensional by
(2.14). Using (3.5) we obtain that π(La) ⊆ π(Lu) + π(Lv) + π(Lt). Hence u′, v′, t′

are linearly independent. By (4.1) there is an embedding α : L → K and an
injective semi–linear mapping ϕ : Q → V with π(Lx) = Kϕ(x) for x ∈ Q. Hence
Ku′ = Kϕ(u), Kz′ = Kϕ(z), K(u′ − z′) = Kϕ(u − z) for z ∈ {v, t}. Comparing
coefficients yields ϕ(v − t) = ϕ(v) − ϕ(t) = λ(v′ − t′) for some λ ∈ K∗. Hence
π(L(v − t)) = K(v′ − t′). �

5.4. Let x, a, b ∈ W be linearly independent and singular and let π(Lx) = Kx′.
Then h(x, x′, a + b) = h(x, x′, a) + h(x, x′, b).

Proof. We set a′ := h(x, x′, a), b′ := h(x, x′, b). By (2.14) x′, a′, b′ are linearly inde-
pendent. We have to prove that h(x, x′, a + b) = a′ + b′. By definition of h we have
to show that π(L(a + b)) = K(a′ + b′) and that π(L(x− a− b)) = K(x′ − a′ − b′).

We first consider the second equation. Since L(x− a− b) ⊆ L(x − a) + Lb and
L(x − a − b) ⊆ L(x − b) + La with b and a singular, we can apply (3.5). Thus
π(L(x−a− b)) is contained in K(x′−a′)+Kb′ and in K(x′− b′)+Ka′. Comparing
coefficients yields π(L(x− a− b)) = K(x′ − a′ − b′).

Further, L(a + b) ⊆ La + Lb and L(a + b) ⊆ Lx + L(x− a− b). Since a and x
are singular, (3.5) and the preceding paragraph show that π(L(a + b)) is contained
in Ka′ + Kb′ and in Kx′ + K(x′ − a′ − b′). Hence π(L(a + b)) = K(a′ + b′). �

5.5. Let x, a, b ∈ W be singular with Lx 6⊆ La + Lb and let π(Lx) = Kx′. Then
h(x, x′, a + b) = h(x, x′, a) + h(x, x′, b).

Proof. If x, a, b are linearly independent this is (5.4). Thus, we may assume that
x, a, b are linearly dependent and hence La = Lb 6= Lx. Since W contains singular
lines, there exists a w ∈W with w, w + a singular and x, a, w linearly independent.
We obtain

h(x, x′, w) + h(x, x′, a + b)

= h(x, x′, w + a + b) by (5.4)

= h(x, x′, w + a) + h(x, x′, b) by (5.4)

= h(x, x′, w) + h(x, x′, a) + h(x, x′, b) by (5.4).

In the first application of (5.4) x, w, a + b are singular and linearly independent (or
a + b = 0). Subtraction of h(x, x′, w) yields the claim. �

5.6. Since W contains singular lines, there are u, v, w ∈ W singular and linearly
independent with u 6∈ v⊥, u 6∈ w⊥, v 6∈ w⊥. We let π(Lu) = Ku′ and set v′ :=
h(u, u′, v), w′ := h(u, u′, w).

5.7. If x, y ∈ {u, v, w} with x 6= y, then h(x, x′, y) = y′.

Proof. By (5.2) we have to consider the cases (x, y) = (u, v), (u, w), (v, w). In the
first two cases the claim holds by definition and in the third case we use (5.3). �
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5.8. Let 0 6= t ∈ W . Then two of the three expressions h(u, u′, t), h(v, v′, t) and
h(w, w′, t) are defined and equal. We denote this value by ϕ(t).

Proof. We have Lt 6⊆ (Lu + Lv) ∩ (Lu + Lw) ∩ (Lv + Lw) = 0. Hence without
loss Lt 6⊆ Lu + Lv and u, v, t are linearly independent. Now h(u, u′, v) = v′ and
h(u, u′, t) := t′ yields h(v, v′, t) := t′ by (5.3). �

5.9. The mapping ϕ : W → V defined in (5.8) (we set ϕ(0) = 0) satisfies π(Lt) =
Kϕ(t) for 0 6= t ∈W .

Proof. We have ϕ(t) = h(x, x′, t) for a suitable x ∈ {u, v, t}, hence π(Lt) = Kϕ(t).
�

5.10. We have ϕ(a + b) = ϕ(a) + ϕ(b) for all a, b ∈W with a, b singular.

Proof. Without loss a, b 6= 0. We first consider the case that a+b 6= 0. Then by (5.8)
ϕ(a + b) = h(x, x′, a + b) = h(y, y′, a + b) for suitable x, y with {u, v, w} = {x, y, z}
and L(a + b) 6⊆ Lx +Ly. Hence Lx 6⊆ La +Lb or Ly 6⊆ La +Lb. Without loss Lx 6⊆
La+Lb. Since x, a, b are singular, (5.5) yields h(x, x′, a+b) = h(x, x′, a)+h(x, x′, b).
Since La 6⊆ Lx+Ly or La 6⊆ Lx+Lz, we have h(x, x′, a) = ϕ(a) by (5.8). Similarly
h(x, x′, b) = ϕ(b), and the claim follows.

If a + b = 0, we choose c 6= 0 singular with c 6= a and b + c singular. Then the
first case yields ϕ(c) = ϕ(a + b + c) = ϕ(a) + ϕ(b + c) = ϕ(a) + ϕ(b) + ϕ(c), i. e.
(5.10). �

5.11. We have ϕ(a + b) = ϕ(a) + ϕ(b) for a, b ∈W with a singular.

Proof. Let a = x1, H1 = <x1, y1> with (x1, y1) a hyperbolic pair and b = αx1 +
βy1 + s with s ∈ H1

⊥. We write s = γx2 + δy2, where (x2, y2) is a hyperbolic pair
in H1

⊥. Hence

ϕ(a + b) = ϕ((x1 + αx1 + γx2) + (βy1 + δy2))

= ϕ(x1 + (αx1 + γx2)) + ϕ(βy1 + δy2) by (5.10)

= ϕ(x1) + ϕ(αx1 + γx2) + ϕ(βy1 + δy2) by (5.10)

= ϕ(x1) + ϕ(αx1 + γx2 + βy1 + δy2) by (5.10)

= ϕ(a) + ϕ(b).

�

5.12. If n ∈ N and a1, . . . , an are singular, then ϕ(
∑n
i=1 ai) =

∑n
i=1 ϕ(ai).

Proof. We may assume ai 6= 0 for i = 1, . . . , n. With (5.11) the claim follows by
induction on n. �

5.13. The mapping ϕ is additive, i.e. ϕ(a + b) = ϕ(a) + ϕ(b) for a, b ∈W .

Proof. Since W is generated by its singular points, we can choose a basis {ei | i ∈ I}
where ei is singular (i ∈ I). We write a and b as linear combination of the basis
vectors and apply (5.12). �
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5.14. The mapping ϕ is injective.

Proof. Since ϕ : (W, +)→ (V, +) is a homomorphism, we have to show that kerϕ =
0. If 0 6= t ∈W with ϕ(t) = 0, then π(Lt) = Kϕ(t) = 0, a contradiction. �

5.15. For 0 6= t ∈W and 0 6= λ ∈ L we have Kϕ(t) = π(Lt) = π(L(λt)) = Kϕ(λt).
Hence ϕ(λt) = α(λ, t)ϕ(t), where α(λ, t) ∈ K. We set α(0, t) := 0.

5.16. If 0 6= t1, t2 ∈W , then α(λ, t1) = α(λ, t2) for λ ∈ L.

Proof. If t1 and t2 are linearly independent, then the claim follows by a straight
forward calculation using the definition of α. If t1 and t2 are linearly dependent, we
choose 0 6= t ∈W with Lt 6= Lt1 = Lt2 and restrict to the first case. �

5.17. For λ ∈ L we set α(λ) := α(λ, t0) where 0 6= t0 ∈W . By (5.16) this definition
is independent of the choice of t0 and we have ϕ(λt) = α(λ)ϕ(t) for λ ∈ L, t ∈W .

5.18. The mapping α : L→ K is an embedding.

Proof. This is straight forward. �

5.19. The steps (5.1) to (5.18) show that there is an embedding α : L → K and
an injective semi–linear (with respect to α) mapping such that π(Lx) = Kϕ(x) for
0 6= x ∈W . This completes the proof of the Main Theorem.
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