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Counting domino trains

Antonio M. Oller-Marcén.

Abstract. In this paper we present a way to count the number of
trains that we can construct with a given set of domino pieces. As
an application we obtain a new method to compute the total number
of eulerian paths in an undirected graph as well as their starting and
ending vertices.

Resumen. En este art́ıculo presentamos una manera de contar
el número de trenes que se puede construir con un determinado
conjunto de fichas de dominó. Como una aplicación se obtiene un
nuevo método para calcular el número total de caminos eulerianos
en un grafo no dirigido, aśı como sus vértices inicial y final.

1 Introduction

Let G be a directed graph with set of vertices VG and edge set EG. A path of
length m on G is a sequence of vertices v0, v1, . . . , vm such that (vi−1, vi) ∈ EG
for all 1 ≤ i ≤ m. A path is a cycle if v0 = vm and (vi−1, vi) 6= (vj−1, vj) for
all 1 ≤ i < j ≤ m. An eulerian path or cycle is a path or cycle of length |EG|.
These concepts can be extended to the case when G is an undirected graph in
a natural way (see [4] for these and other elementary concepts about Graph
Theory).

Two eulerian cycles are called equivalent if one is a cyclic permutation of the
other. Let Eul(G) denote the number of equivalence classes of eulerian cycles.
If G is a directed graph there is a well-known theorem, the so called BEST
Theorem (see [2, 3]), which computes Eul(G) but if G is an undirected graph
the situation is much more difficult. Nevertheless, in the case of complete graphs
interesting results exist. In [1] for instance, an asymptotic value for Eul(Kn)
(as well as the exact number for n ≤ 21) is given, with Kn being the complete
graph with n vertices.

Now let us denote by Eulji (G) the number of eulerian paths in G starting
in vertex vi and ending in vertex vj (with no equivalence relation taken into
account). In this paper we introduce a new approach and present a new method
to compute Eulji (G) for any undirected graph G. In particular we will count the
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number of trains that we can construct with a given set of domino pieces, where
a train is a chain constructed following the rules of domino and using all the
pieces from the given set. Since any graph gives rise to a set of domino pieces
where trains correspond to eulerian paths, our method applies to any graph.

The paper is organized as follows. In the first section we present some
elementary definitions and fix the notation. The second section is devoted to
prove the main result in the paper, namely to present a method to compute the
number of trains constructible from a given set of domino pieces. Finally, in
the third section we translate this result to a graph theory setting.

2 Definitions and notation

Let us denote by {eij | 1 ≤ i, j ≤ n} the set of matrix units in Mn(R); i.e.,
eij is the square matrix of size n having a 1 in position (i, j) and 0 elsewhere.
Now, we define eij = eij + eji for all i 6= j and eii = eii. Clearly the set
B = {eij | 1 ≤ i ≤ j ≤ n} is a basis for the vector space Sn(R) of real symmetric
matrices of size n. If we define a new product overMn(R) by A•B = AB+BA
our basis multiply in the following way:

eij • ekl =


ejl if i = k and j 6= l

2eii + 2ejj if i = k and j = l and i 6= j

2eii if i = j = k = l

0 if {i, j} ∩ {k, l} = ∅

(1)

It is well-known that • is commutative but non-associative. Nevertheless, we
may define recursively A1•· · ·•Ar = (A1•· · ·•Ar−1)•Ar. Now, given m ∈ N we

consider the polynomial Pm(X1, . . . , Xm) =
∑
σ∈Sm

Xσ(1) •Xσ(2) • · · · •Xσ(m).

With the previous convention and choosing et = eitjt for t = 1, . . . ,m it makes

sense to compute Pm(e1, . . . , em) =
∑
σ∈Sm

eσ(1) • · · · • eσ(m). Moreover, there

must exist {αij} ⊆ R such that Pm(e1, . . . , em) =
∑
αijeij .

In what follows we will denote by (i, j) the domino piece marked with
numbers i and j. We recall that in the game of domino two pieces can be
placed together if they share at least one of their numbers. Now let us sup-
pose that we are given certain set of dominoes that we shall denote by D =
{(i1, j1), . . . , (im, jm)}, we define a train as a sequence (ik1 , jk1) · · · (ikm , jkm) ad-
missible by the rules of domino; i.e., such that jkr = ikr+1

for all 1 ≤ r ≤ m−1.
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3 Counting domino trains

Given a set of domino pieces D = {(i1, j1), . . . , (im, jm)} we are interested in
counting the number of trains that we can construct using all the pieces of D. If
an element of D appears more than once, we will assume that we can distinguish
them.

For any domino piece (i, j) we will identify (i, j)↔ eij . Clearly, two pieces
(i, j) and (k, l) can be placed together following the rules of domino if and only
if eij • ekl 6= 0. Consequently we have the following:

Lemma 1. A sequence (i1, j1)(i2, j2) · · · (in, jn) is a train if and only if ei1j1 •
ei2j2 • · · · • einjn 6= 0.

Proof. By induction on n. Cases n = 1, 2 are obvious due to (1). Now let us
suppose that (i1, j1)(i2, j2) · · · (in, jn) is a train with n ≥ 3 and ei1j1 • ei2j2 •
· · · • einjn = 0. Then, there must exist 2 ≤ k < n such that ei1j1 • · · · • eikjk = 0
and by our induction hypothesis (i1, j1) · · · (ik, jk) is not a train which is a
contradiction. Conversely if ei1j1 •ei2j2 •· · ·•einjn 6= 0, then ei1j1 •ei2j2 6= 0 and
ei2j2 • · · · • einjn 6= 0 so, by induction, both (i1, j1)(i2, j2) and (i2, j2) · · · (in, jn)
are trains and consequently so is (i1, j1)(i2, j2) · · · (in, jn).

Now, given the set D and since the set B is a basis for Sn(R), we have that
Pm(ei1j1 , . . . , eimjm) =

∑
αijeij . In fact, the following lemma holds.

Lemma 2. In the previous situation, αikjk 6= 0 if and only if we can construct
a train starting with ik and ending with jk (or viceversa) using the pieces of the
set D.

Proof. It is an easy consequence of (1) and Lemma 1.

Observe that, given a train (i1, j1)(i2, j2)(i3, j3) we could have placed its
pieces in different ways according to the order. Namely we could have firstly
placed the piece (i1, j1) then (i2, j2) on its right and finally the piece (i3, j3) on
the right of the latter. We could also have started by piece (i2, j2), then (i1, j1)
on its left and finally (i3, j3) on the right of the former. If we denote by c(n)
the number of different ways we can construct a train of length n we have.

Lemma 3. c(n) = 2n−1

Proof. Clearly we can finish a given train either by placing the first piece (the
one in the left) or the last one (the one in the right). This implies that c(n) =
2c(n− 1) and since c(1) = 1 the result follows.

With these technical lemmas in mind, we are in condition to prove the main
result of this paper.



140 A. M. Oller-Marcén.

Proposition 1. Given a set of domino pieces D = {(i1, j1), . . . , (im, jm)}, the
number

αikjk
2m−1

is exactly the number of domino trains that we can construct

starting with ik and ending with jk (or viceversa) using the pieces from the set
D.

Proof. Again, cases m = 1, 2 are obvious and can be verified by direct compu-
tation using (1). Now if m ≥ 3 it is enough to observe that

Pm(ei1,j1 , . . . , eim,jm) =

m∑
k=1

Pm−1(ei1j1 , . . . , êikjk , . . . , eimjm) • eikjk

and proceed by induction on m.

Example 1. Given the set D = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} we have

that P6(e11, e12, e13, e22, e23, e33) = 25

(
3∑
i=1

4eii

)
. So, we can construct 4 trains

starting and ending with 1, and the same number with 2 and 3.

Example 2. Given the set D = {(1, 2), (1, 3), (2, 3), (2, 3), (2, 4), (3, 4)} we have
that P6(e12, e13, e23, e22, e24, e34) = 25 (12e11 + 24e22 + 24e33 + 12e44). So, we
can construct 12 trains starting and ending with 1 (the same number with 4),
and 24 trains with 2 (the same number with 3).

4 Counting eulerian paths in graphs

Given a set of dominoes D = {(i1, j1), . . . , (im, jm)} we can construct a graph
in the following straightforward way: we draw a vertex for each of the numbers
appearing ir our set D and we join two of such vertices if and only if the
corresponding piece lies in our set. Clearly we can proceed backwards and
obtain a set of dominoes from every graph. Moreover, domino trains correspond
exactly with eulerian paths or cycles. Thus, our previous construction allows
us to count them.

Also observe that given a graph G if we denote by DG the set of domi-

noes coming from the previous construction, then
∑

(i,j)∈DG

eij = AG where AG

is the adjacency matrix of G. Conversely, given a graph G with adjacency

matrix AG we can write AG =

m∑
k=1

eikjk with m = |EG| and we know that

Pm(ei1j1 , . . . , eimjm) =
∑
αijeij . The following result translates Proposition 1

to this setting.

Proposition 2. In the previous situation and with the notation of Section 1,

Eulji (G) =
αij

2m−1
.
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Example 3. Given the graph below:

1 2

3 4

(1, 2)

(1, 3)

(2, 3)

(2, 3)
(2, 4)

(3, 4)

it is clear that the associated set of domino pieces is

DG = {(1, 2), (1, 3), (2, 3), (2, 3)(2, 4), (3, 4)},

and according to Example 2 above, the total number of eulerian cycles of G is
72, 12 starting and ending in vertex 1, 24 in vertex 2, 24 in vertex 3 and 12 in
vertex 4.

Example 4. Consider the graph G given in the figure below.

In this case P8(e12, e13, e23, e24, e25, e34, e35, e45) = 27 · 44e45 and thus G has
44 eulerian paths starting in vertex 4 and ending in vertex 5 (and vice versa).
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