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On new estimates for distances in analytic

function spaces in the unit disk, the polydisk and

the unit ball.

Romi Shamoyan, Olivera Mihic∗.

Abstract. We provide various new sharp estimates for distances of
fixed analytic functions of a certain classical analytic class (analytic
Besov space, Bloch type space) to its subspaces in the unit disk, the
unit polydisk and the unit ball. We substantially enlarge the list of
previously known assertions of this type.

Resumen. Ofrecemos varias nuevas estimaciones fuerte para las
distancias de funciones analiticas fijas de una cierta clase de fun-
ciones anaĺıticas clasicas (espacios analiticos de Besov, espacios de
tipo Bloch) a sus subespacios en el disco unidad, el polydisco unidad
y la bola unidad. Ampliamos sustancialmente la lista de afirma-
ciones previamente conocidas de este tipo.

1 Introduction and main notations

Let D be, as usual, the unit disk on the complex plane, dA(z) be the normalized
Lebesgue measure on D so that A(D) = 1 and dξ be the Lebesgue measure on
the circle T = {ξ : |ξ| = 1}. Let further H(D) be the space of all analytic
functions on the unit disk D.

For f ∈ H(D) and f(z) =
∑
k akz

k, define the fractional derivative of the
function f as usual in the following manner

Dαf(z) =

∞∑
k=0

(k + 1)αakz
k, α ∈ R.

We will write Df(z) if α = 1. Obviously, for all α ∈ R, Dαf ∈ H(D) if
f ∈ H(D).
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For a ∈ D, let g(z, a) = log( 1
|ϕa(z)| ) be the Green’s function for D with pole

at a, where ϕa(z) = a−z
1−az . For 0 < p < ∞, −2 < q < ∞, 0 < s < ∞, −1 <

q + s <∞, we say that f ∈ F (p, q, s), if f ∈ H(D) and

‖f‖pF (p,q,s) = sup
a∈D

∫
D

|Df(z)|p(1− |z|2)qg(z, a)sdA(z) <∞.

As we know [15], if 0 < p < ∞, −2 < q < ∞, 0 < s < ∞, −1 < q + s < ∞,
f ∈ F (p, q, s) if and only if

sup
a∈D

∫
D

|Df(z)|p(1− |z|2)q(1− |ϕa(z)|)sdA(z) <∞.

It is known (see [15]) that F (2, 0, 1) = BMOA.
We recall that the weighted Bloch class Bα(D), α > 0, is the collection of

the analytic functions on the unit disk satisfying

‖f‖Bα = sup
z∈D
|Df(z)|(1− |z|2)α <∞.

Space Bα(D) is a Banach space with the norm ‖f‖Bα .Note B1(D) = B(D) is a
classical Bloch class (see [2], [8] and the references there).

For k > s, 0 < p, q ≤ ∞, the weighted analytic Besov space Bq,ps (D) is the
class of analytic functions satisfying (see [8])

‖f‖qBq,ps =

∫ 1

0

(∫
T

|Dkf(rξ)|p|dξ|
) q
p

(1− r)(k−s)q−1dr <∞.

Quasinorm ‖f‖Bq,ps does not depend on k. If min(p, q) ≥ 1, the class Bq,ps (D)
is a Banach space under the norm ‖f‖Bq,ps . If min(p, q) < 1, then we have a
quasinormed class.

The well-known so called “duality” approach to extremal problems in theory
of analytic functions leads to the following general formula

distY (g,X) = sup
l∈X⊥,‖l‖≤1

|l(g)| = inf
ϕ∈X
‖g − ϕ‖Y ,

where g ∈ Y, X is subspace of a normed space Y, Y ∈ H(D) and X⊥ is the
ortogonal complement of X in Y ∗, the dual space of Y and l is a linear functional
on Y (see [7]).

Various extremal problems in Hp Hardy classes in D based on duality ap-
proach we mentioned were discussed in [3, Chapter 8]. In particular for a func-
tion K ∈ Lq(T) the following equality holds (see [3]), 1 ≤ p <∞, 1

p + 1
q = 1,

distLq (K,H
q) = inf

g∈Hq,K∈Lq
‖K − g‖Hq = sup

f∈Hp,‖f‖Hp≤1

1

2π

∣∣∣∣∣
∫
|ξ|=1

f(ξ)K(ξ)dξ

∣∣∣∣∣ .
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It is well known that if p > 1 then the inf-dual extremal problem in the analytic
Hp Hardy classes has a solution, it is unique if an extremal function exists (see
[3]).

Note also that extremal problems for Hp spaces in multiply connected do-
mains were studied before in [1], [9].

Various new results on extremal problems in Ap Bergman class and in its
subspaces were obtained recently by many authors (see [6] and the references
there).

In this paper we will provide direct proofs for estimation of distY (f,X) =
infg∈X ‖f − g‖Y , X ⊂ Y, X, Y ⊂ H(D), f ∈ Y, not only in unit disk, but also
in higher dimension.

Let further Ωkα,ε = {z ∈ D : |Dkf(z)|(1− |z|2)α ≥ ε}, α ≥ 0, ε > 0, Ω0
α,ε =

Ωα,ε.
Applying famous Fefferman duality theorem, P. Jones proved the following

Theorem A. ([4], [15]) Let f ∈ B. Then the following are equivalent:
(a) d1 = distB(f,BMOA);

(b) d2 = inf{ε > 0 : χΩ1
1,ε(f)(z)

dA(z)
1−|z|2 is a Carleson measure},

where χ denotes the characteristic function of the mentioned set.

Recently, R. Zhao (see [15]) and W. Xu (see [14]), repeating arguments of
R. Zhao in the unit ball, obtained results on distances from Bloch functions
to some Möbius invariant function spaces in one and higher dimensions in a
relatively direct way. The goal of this paper is to develop further their ideas
and present new sharp theorems in the unit disk and higher dimension.

In next sections various sharp assertions for distance function will be given.
We will indicate proofs of some assertions in details, short sketches of proofs in
some cases will be also provided.

Throughout the paper, we write C (sometimes with indexes) to denote a
positive constant which might be different at each occurrence (even in a chain
of inequalities) but is independent of the functions or variables being discussed.

Given two non negative real numbers A, B we will write A . B if there is a
positive constant C such that A < CB.

2 New sharp assertions on distX(f, Y ) function in the
unit disk

For the proof of one of the main results of this paper we will need the following
estimate which can be found in [8].

Lemma 1. (see [8]) Let s > −1, r > 0, t > 0 and r+ t−s > 2. If t < s+2 < r

then we have
∫
D

(1−|z|2)sdA(z)
|1−wz|r|1−az|t ≤

C
(1−|w|2)r−s−2|1−aw|t , a, w ∈ D.
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Note that F (p, q, s) ⊂ B
q+2
p , s ∈ (0, 1], (see [15]). Hence for α ≥ q+2

p , the

problem of finding distBα(f, F (p, q, s)) appears naturally.
In the following theorem we show that in Zhao’s theorems (see[15]) Möebius

invariant Bloch classes can be replaced by Bloch classes with general weights.

Theorem 1. Let 1 ≤ p <∞, α > 0, 0 < s ≤ 1, α ≥ q+2
p , q > α(p− 1)− s−

1, q > s− 2 + α(p− 1) and f ∈ Bα. Then the following are equivalent:
(a) d1 = distBα(f, F (p, q, s));

(b) d2 = inf{ε > 0 : χΩ1
α,ε

(z) dA(z)
(1−|z|2)αp−q−s is an s− Carleson measure}.

Proof. First we show d1 ≤ Cd2. According to the Bergman representation for-
mula (see [2]), we have f(z) = C(α)

∫
D
Df(w)(1− |w|2)αD−1 1

(1−wz)α+2 dA(w)

= C(α)

∫
Ω1
α,ε

Df(w)(1− |w|2)αD−1 1

(1− wz)α+2
dA(w)+

+C(α)
∫
D\Ω1

α,ε
Df(w)(1−|w|2)αD−1 1

(1−wz)α+2 dA(w)) = f1(z)+f2(z),

where C(α) is the constant of the Bergman representation formula (see [2]).

By Df1(z) = C(α)
∫

Ω1
α,ε

Df(w)(1−|w|2)α

(1−wz)2+α dA(w),

|Df1(z)| ≤ C
∫

Ω1
α,ε

|Df(w)|(1−|w|2)α

|1−wz|2+α dA(w) ≤ C‖f‖Bα 1
(1−|w|)α .

Then f1 ∈ Bα. By Lemma 1,∫
D

|Df1(z)|p(1− |z|2)q(1− |ϕa(z)|2)sdA(z)

≤ C‖f1‖p−1
Bα

∫
D

|Df1(z)|(1− |z|2)q−(p−1)α(1− |ϕa(z)|2)sdA(z)

≤ C‖f1‖p−1
Bα

∫
D

∫
Ω1
α,ε

|Df(w)|(1− |w|2)α

|1− wz|2+α
dA(w)(1−|z|2)q−(p−1)α(1−|ϕa(z)|2)sdA(z)

≤ C‖f1‖p−1
Bα ‖f‖Bα

∫
Ω1
α,ε

(1− |a|2)s
∫
D

(1− |z|2)q−(p−1)α+sdA(z)dA(w)

≤ C
∫

Ω1
α,ε

(1− |a|2)s

|1− |w|2|pα−q−s|1− aw|2s
dA(w).

By χΩ1
α,ε

dA(z)
(1−|z|2)αp−q−s is an s-Carleson measure, f1 ∈ F (p, q, s). Also we have

|Df2(z)| ≤ C
∫
D\Ω1

α,ε

|Df(w)|(1− |w|2)α

|1− wz|2+α
dA(w) ≤ Cε

∫
D

dA(w)

|1− wz|2+α
≤ Cε

(1− |z|)α
.

So, distBα(f, F (p, q, s)) ≤ ‖f − f1‖Bα = ‖f2‖Bα < ε.
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It remains to show that d1 ≥ d2. If d1 < d2 then we can find two numbers
ε, ε1 such that ε > ε1 > 0, and a function fε1 ∈ F (p, q, s), ‖f − fε1‖Bα ≤ ε1,

and
χΩ1

α,ε
(z)

(1−|z|2)αp−q−s is not a s-Carleson measure.

Since (|Df(z)| − |Dfε1(z)|)(1− |z|2)α ≤ ε1, we can easily obtain

(ε− ε1)χΩ1
α,ε

(z)dA(z) ≤ C|Dfε1(z)|(1− |z|2)α, (1)

where χΩ1
α,ε

is defined above. Hence from (1) and the fact that fε1 ∈ F (p, q, s)
we arrive at a contradiction. The theorem is proved.

Remark 1. Theorem 1 can be expanded similarly to more general analytic
classes with quasinorms sup|z|<1 |Dγf(z)|(1 − |z|)α, α > 0, with some restric-
tions on α, γ.

Let B̃−t = D−1B−t =
{
f ∈ H(D) : D−1f ∈ B−t

}
, t < 0.

It is well-known that Bq,qs (D) ⊂ B̃−t(D), t = s− 1
q , t < 0, s < 0 (see [8]).

In the following theorem we calculate distances from a weighted Bloch class
to Bergman spaces for q ≤ 1.

Theorem 2. Let 0 < q ≤ 1, s < 0, t ≤ s− 1
q , β >

1−sq
q − 2 and β > −1− t.

Let f ∈ B̃−t. Then the following are equivalent:
(a) l1 = distB̃−t(f,B

q,q
s );

(b) l2 = inf{ε > 0 :
∫
D

(∫
Ωε,−t(f)

(1−|w|)β+t

|1−zw|2+β dA(w)
)q

(1 − |z|)−sq−1dA(z) <

∞}.

Proof. First we show that l1 ≤ Cl2. For β > −1− t, we have

f(z) = C(β)
(∫

D\Ωε,−t
f(w)(1−|w|)β
(1−wz)β+2 dA(w) +

∫
Ωε,−t

f(w)(1−|w|)β
(1−wz)β+2 dA(w)

)
= f1(z)+ f2(z),

where C(β) is a well-known Bergman representation constant (see [2], [8]).
For t < 0,

|f1(z)| ≤ C
∫
D\Ωε,−t

|f(w)|(1− |w|)β

|1− wz|β+2
dA(w) ≤ Cε

∫
D

(1− |w|)β+t

|1− wz|β+2
dA(w) ≤ Cε 1

(1− |z|)−t
.

So supz∈D |f1(z)|(1− |z|)−t < Cε.
For s < 0, t < 0, we have∫

D

|f2(z)|q(1−|z|)−sq−1dA(z) ≤ C
∫
D

(∫
Ωε,−t

(1− |w|)β+t

|1− wz|β+2
dA(w)

)q
(1−|z|)−sq−1dA(z) ≤ C.

So we finally have

distB̃−t(f,B
q,q
s ) ≤ C‖f − f2‖B̃−t = C‖f1‖B̃−t ≤ Cε.
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It remains to prove that l2 ≤ l1. Let us assume that l1 < l2. Then we
can find two numbers ε, ε1 such that ε > ε1 > 0, and a function fε1 ∈ Bq,qs ,

‖f − fε1‖B̃−t ≤ ε1, and
∫
D

(∫
Ωε,−t

(1−|w|)β+t

|1−zw|β+2 dA(w)
)q

(1− |z|)−sq−1dA(z) =∞.
Hence as above we easily get from ‖f−fε1‖B̃−t ≤ ε1 that (ε−ε1)χΩε,−t(f)(z)(1−
|z|)t ≤ C|fε1(z)|, and hence

M =

∫
D

(∫
D

χΩε,−t(f)(z)(1− |w|)β+t

|1− wz|β+2
dA(w)

)q
(1− |z|)−sq−1dA(z)

≤ C
∫
D

(∫
D

|fε1(w)|(1− |w|)β

|1− wz|β+2
dA(w)

)q
(1− |z|)−sq−1dA(z).

Since for q ≤ 1, (see [2], [8])(∫
D

|fε1(z)|(1− |z|)αdA(z)

|1− wz|t

)q
≤ C

∫
D

|fε1(z)|q(1− |z|)αq+q−2dA(z)

|1− wz|tq
, (2)

where α > 1−q
q , t > 0, fε1 ∈ H(D), w ∈ D, and∫

D

(1− |z|)−sq−1

|1− wz|q(β+2)
dA(z) ≤ C

(1− |w|)q(β+2)+sq−1
, (3)

where s < 0, β > 1−sq
q − 2, w ∈ D. We get

M ≤ C
∫
D

|fε1(z)|q(1− |z|)−sq−1dA(z).

So as in the proof of the previous theorem we arrive at a contradiction.

The following theorem is a version of Theorem 2 for the case q > 1.

Theorem 3. Let q > 1, s < 0, t ≤ s − 1
q , β > −1−sq

q and β > −1 − t. Let
f ∈ B̃−t. Then the following are equivalent:

(a) l1 = distB̃−t(f,B
q,q
s );

(b) l̂2 = inf{ε > 0 :
∫
D

(∫
Ωε,−t(f)

(1−|w|)β+t

|1−zw|2+β dA(w)
)q

(1 − |z|)−sq−1dA(z) <

∞}.

The proof of this theorem is similar to the proof of Theorem 2 but here we
will use (4) (see below) instead of (2). For ε > 0, q > 1, β > 0, α > −1

q , (see

[8])(∫
D

|f(z)|(1− |z|)α

|1− wz|β+2
dA(z)

)q
≤ C

∫
D

|f(z)|q(1− |z|)αq

|1− wz|βq−εq+2
dA(z)(1−|w|)−εq, w ∈ D,

(4)
which follows immediately from Hölder’s inequality and (3) (see [8]).
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Remark 2. In Theorems 2 and 3 we considered only the linear case (p = q).
Estimates for distances of more general mixed norm Bp,qs classes, s < 0, can be
obtained similarly. We give an example in this direction.

It is known that Bp,qs (D) ⊂ B̃−(s− 1
q )(D), s < 0 (see [8]).

Theorem 4. Let o < q ≤ 1, p ≤ q ≤ 1, s < 0, t ≤ s − 1
q , β >

−sq
p + 1

q − 2.

Let f ∈ B̃−t. Then the following are equivalent:
(a) l̃1 = distB̃−t(f,B

p,q
s );

(b) l̃2 = inf{ε > 0 :
∫ 1

0

(∫
T

(∫
Ωε,−t(f)

(1−|w|)β+tdA(w)
|1−zw|2+β

)q
dξ
) p
q

(1−|z|)−sp−1d|z| < ∞}.

Let X be a quasinormed class in the unit disk, X ⊂ H(D). Let also

sup
z∈D
|f(z)|(1− |z|)α+τ ≤ Cα,τ‖f‖X , (5)

where Cα,τ (α > 0, τ > 0) is an absolute constant. It is well known that for
many classes the above estimate (5) holds (see [2], [8] and the references there).

The following result follows directly from arguments we provided above dur-
ing the proof of previous theorem.

Theorem 5. Let X,Y ⊂ H(D), X ⊂ Y, α > 0, τ > 0. Let f ∈ Y (D) and

supz∈D |f(z)|(1− |z|)τ ≤ Cτ‖f‖Y , supz∈D |f(z)|(1− |z|)α+τ ≤ Ĉα,τ‖f‖X .
Then B(f,X) ≤ CdistY (f,X), C = C(α, τ), where

B(f,X) = inf

{
ε > 0 : sup

|z|<1

χΩτ,ε(z)(1− |z|)α <∞

}
.

Remark 3. Theorem 5 provides various new results for dist- function for differ-
ent analytic classes. The general theorem we have presented is true even if the
unit disk is replaced by the polydisk or the unit ball, since uniform estimates
like (5), which is the base of proof, are well known in unit disk, unit ball and
polydisk for various concrete classes of analytic functions (Bergman, Hardy,
Bloch, BMOA, Qp, etc.), see [2].

For 0 < p <∞ and α > 0, let as above

B∞,1−α (D) =

{
f ∈ H(D) : sup

r<1

(∫
T

|f(rξ)||dξ|
)

(1− r)α <∞
}
,

Bp,1−α(D) =

{
f ∈ H(D) :

∫ 1

0

(∫
T

|f(rξ)||dξ|
)p

(1− r)αp−1dr <∞
}
.

It is easy to see that Bp,1−α(D) ⊂ B∞,1−α (D), 0 < p <∞, α > 0.
We now define a new subset of the unit interval and then using its character-

istic function we will give a new sharp assertion concerning distance function.
For ε > 0, f ∈ H(D), let Lε,α(f) = {r ∈ (0, 1) : (1− r)α

∫
T
|f(rξ)||dξ| ≥ ε}.
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Theorem 6. Let f ∈ B∞,1−α , α > 0, 1 ≤ p < ∞. Then the following are
equivalent:

(a) s1 = distB∞,1−α
(f,Bp,1−α);

(b) s2 = inf{ε > 0 :
∫ 1

0
(1− r)−1χLε,α(f)(r)dr <∞}.

Proof. First we prove s1 ≥ s2. Let as assume that s1 < s2. Then we can find two
numbers ε, ε1 such that ε > ε1 > 0, and a function fε1 ∈ B

p,1
−α, ‖f−fε1‖B∞,1−α

≤

ε1, and
∫ 1

0
(1− r)−1χLε,α(f)(r) =∞. Hence we have

(1−r)α
∫
T

|fε1(rξ)||dξ| ≥ (1−r)α
∫
T

|f(rξ)||dξ|−sup
r<1

(1−r)α
∫
T

|f(rξ)−fε1(rξ)||dξ|

≥ (1−r)α
∫
T

|f(rξ)||dξ|−ε1.

Hence for any s ∈ [−1,∞),

(ε− ε1)p
∫ 1

0

(1− r)sχLε,α(f)(r)dr ≤ C
∫ 1

0

(∫
T

|fε1(rξ)||dξ|
)p

(1− r)αp+sdr.

Thus we have a contradiction.
It remains to show s1 ≤ Cs2. Let I = [0, 1). We argue as above and obtain

from the classical Bergman representation formula (see [16]).

f(ρζ) = f(z) = C(t)

∫
Lε,α(f)

∫
T

f(rξ)(1− r)t

(1− rξρζ)t+2
dξdr+C(t)

∫
I\Lε,α(f)

∫
T

f(rξ)(1− r)t

(1− rξρζ)t+2
dξdr

= f1(z) + f2(z), where t is large enough. Then we have

(1− ρ)α
∫
T

|f2(ρζ)||dζ| ≤ C(1− ρ)α
∫
T

∫
I\Lε,α(f)

∫
T

|f(rξ)|(1− r)t

|1− rξρζ|t+2
|dξ|dr|dζ|

≤ C(1−ρ)α
∫
I\Lε,α(f)

∫
T

|f(rξ)|(1−r)t
(∫

T

1

|1− rξρζ|t+2
|dζ|

)
|dξ|dr

≤ C(1−ρ)α
∫
I\Lε,α(f)

∫
T

|f(rξ)||dξ| (1− r)t

(1− rρ)t+1
dr ≤ Cε(1−ρ)α

∫ 1

0

(1− r)t−α

(1− rρ)t+1
dr ≤ Cε.

For α > 0,
∫
D

(1− ρ)α−1|f1(ρζ)|dA(ρζ)

≤ C
∫
D

(1− ρ)α−1

∫
Lε,α(f)

∫
T

|f(rξ)|(1− r)t

|1− rξρζ|t+2
|dξ|drdA(ρζ)

≤ C sup
r<1

(
(1− r)α

∫
T

|f(rξ)||dξ|
)∫

Lε,α(f)

(1− r)t−α

(1− r)t+1−α dr
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= C sup
r<1

(
(1− r)α

∫
T

|f(rξ)||dξ|
)∫

Lε,α(f)

1

(1− r)
dr.

Note that the implication‖f1‖Bp,1−α < ∞ for p ≥ 1 follows directly from the

known estimate (see [8])(∫ 1

0

(1− ρ)αp−1

(∫
T

|f1(ρξ)|dξ
)p

dρ

) 1
p

≤ C
∫
D

(1− ρ)α−1|f1(ρξ)|dA(ρξ),

α > 0, p ≥ 1, f1 ∈ H(D).
Hence infg∈Bp,1−α

‖f − g‖B∞,1−α
≤ C‖f − f1‖B∞,1−α

= ‖f2‖B∞,1−α
≤ Cε.

The theorem is proved.

For 0 < p <∞ and α > 0, let as above

Bp,∞−α (D) =

{
f ∈ H(D) :

∫ 1

0

(M∞(f, r))
p

(1− r)αp−1dr <∞
}
,

where M∞(f, r) = maxξ∈T |f(rξ)|, r ∈ (0, 1), f ∈ H(D). It is easy to see that

Bp,∞−α (D) ⊂ B̃α(D), 0 < p <∞, α > 0.

For ε > 0, f ∈ H(D), let L̂ε,α(f) = {r ∈ (0, 1) : (1− r)αM∞(f, r) ≥ ε}.

Theorem 7. Let f ∈ B̃α, α > 0, 1 ≤ p <∞. Then the following are equivalent:
(a) s1 = distB̃α(f,Bp,∞−α );

(b) s2 = inf{ε > 0 :
∫ 1

0
(1− r)−1χL̂ε,α(f)(r)dr <∞}.

The proof of Theorem 7 is repetition of arguments provided in Theorem 6.
We now provide a sharp version of Theorem 6 for p ≤ 1 case.

Theorem 8. Let f ∈ B∞,1−α , p ≤ 1, t > α − 1, α > 0. Then the following are
equivalent:

(a) s1 = distB∞,1−α
(f,Bp,1−α);

(b) ŝ2 = inf{ε > 0 :
∫ 1

0

(∫ 1

0
χLε,α(f)(r)

(1−r)t−α
(1−rρ)t+1 dr

)p
(1− ρ)pα−1dρ <∞}.

Proof. The proof of Theorem 8 is similar to the one provided in Theorem 6.
One part of the theorem follows directly from the estimate

χLε,α(f)(r) ≤ C(ε, ε1)

(∫
T

|fε1(rξ)||dξ|
)q

(1−r)αq, r ∈ (0, 1), 0 < q <∞, α > 0,

(6)
which were given in the proof of the previous theorem. Indeed, from (6) for
q = 1, we get ∫ 1

0

(∫ 1

0

(1− r)t−αχLε,α(f)(r)dr

(1− rρ)t+1

)p
(1− ρ)αp−1dρ
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≤ C
∫ 1

0

∫ 1

0

(∫
T

|fε1(rξ)|dξ
)p

(1− r)αp+p−1+(t−α)p

(1− rρ)(t+1)p
(1−ρ)αp−1drdρ ≤ C‖fε1‖Bp,1−α .

The rest is clear. It remains to argue as in the previous theorem to arrive to a
contradiction.

To prove the second part we note that as in Theorem 6 we get

f(z) = f1(z) + f2(z) and f2(z) ≤ C(1− r)α
∫
T

|f2(rξ)||dξ| ≤ Cε.

And moreover, arguing similarly as for p ≥ 1 in Theorem 6 we will have∫ 1

0

(∫
T

|f1(rξ)||dξ|
)p

(1− r)αp−1dr

≤ C sup
r<1

(
(1− r)α

∫
T

|f(rξ)||dξ|
)p ∫ 1

0

(∫ 1

0

χLε,α(f)(r)
(1− r)t−α

(1− rρ)t+1
dr

)p
(1−ρ)αp−1dρ.

Hence infg∈Bp,1−α
‖f − g‖B∞,1−α

≤ C‖f − f1‖B∞,1−α
= ‖f2‖B∞,1−α

≤ Cε.
The theorem is proved.

Remark 4. Proofs of Theorem 6, 7 and 8 can be easily extended to Bq,p spaces
with more general w(1 − r) weights under some natural restrictions on the
function w(r).

For α > −1, β > 0 and 0 < p <∞, let

Mα
β (D) = {f ∈ H(D) : sup

r<1
(1− r)β

∫
|w|≤r

|f(w)|(1− |w|)αdA(w) <∞}

and

Mα
p,β(D) = {f ∈ H(D) :

∫ 1

0

(1−r)βp−1

(∫
|w|≤r

|f(w)|(1− |w|)αdA(w)

)p
dr <∞}.

Mα
β (D) and Mα

p,β(D) for p ≥ 1 are Banach spaces and they were studied by
various authors (see for example [5]). It is easy to show that Mα

p,β(D) ⊂Mα
β (D),

where p ∈ (0,∞), β > 0, α > −1.
In the following result we provide another sharp result on the dist function

using the characteristic function of a new set. For f ∈ H(D) and ε > 0, let
Gαε,β(f) = {r ∈ (0, 1) : (1 − r)β

∫
|w|≤r |f(w)|(1 − |w|)αdA(w) ≥ ε}, β >

0, α > −1.

Theorem 9. Let p ≥ 1, α > −1, β > 0, f ∈ Mα
β . Then the following are

equivalent:
(a) t1 = distMα

β
(f,Mα

p,β);

(b) t2 = inf{ε > 0 :
∫ 1

0
(1− r)−1χGαε,β(f)(r)dr <∞}.

The proof of Theorem 9 will be omitted. It can be obtained by a small
modification of the proof of the previous theorem.
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3 Sharp assertions for the Dist function in the unit ball
and in the polydisk

The goal of this section is to provide straightforward generalizations of some of
the results of the previous section to the case of the unit ball and the polydisk
in Cn : Practically all results of the previous section can be generalized to
the case of the polydisk and to the unit ball. The proofs of these assertions are
mostly based on the same ideas as in case of one variable, though some technical
difficulties arise on that way. For the proofs of the theorems we will formulate
below in higher dimensions we simply replace the well- known Bergman integral
representation in the unit disk that were used in the previous section by the
corresponding known integral representation version in the unit ball or in the
polydisk (see [2], [16]) and then we define appropriate sets which will allow us
to estimate such integral representation.

To formulate our results we will need some standard definitions (see [2],
[16]).

We denote the open unit ball in Cn by B = {z ∈ Cn : |z| < 1}. The
boundary of B will be denoted by S, S = {z ∈ Cn : |z| = 1}. By dv we denote
the volume measure on B, normalized so that v(B) = 1, and by dσ we denote
the surface measure on S normalized so that σ(S) = 1.

As usual, we denote by H(B) the class of all holomorphic functions on B.
We denote the unit polydisk by Dn = {z ∈ Cn : |zk| < 1, 1 ≤ k ≤ n} and the

distinguished boundary of Dn by Tn = {z ∈ Cn : |zk| = 1, 1 ≤ k ≤ n}. By dA2n

we denote the volume measure on Dn and by dmn we denote the normalized
Lebesgue measure on Tn. Let H(Dn) be the space of all holomorphic functions
on Dn. We refer to [2] and [10] for further details.

For every function f ∈ H(Dn) and f(z1, . . . , zn) =
∑
k1,...kn

ak1,...,knz
k1
1 · · · zknn ,

we define the operator of fractional differentiation by

Dαf(z1, . . . , zn) =

∞∑
k1=0

· · ·
∞∑
k1=0

n∏
j=1

(kj + 1)αak1,...,knz
k1
1 · · · zknn , α ∈ R.

We will write Df(z) if α = 1. For any α, Dα is an operator acting from H(Dn)
to H(Dn) (see [2]).

We formulate now direct generalization of Theorem 6 in the unit ball, its
proof is a simple repetition of arguments we provide above for the unit disk and
will be omitted.

For 0 < p <∞ and α > 0, let

B∞,1−α (B) =

{
f ∈ H(B) : sup

r<1

(∫
S

|f(rξ)||dσ(ξ)|
)

(1− r)α <∞
}
,

Bp,1−α(B) =

{
f ∈ H(B) :

∫ 1

0

(∫
S

|f(rξ)||dσ(ξ)|
)p

(1− r)αp−1dr <∞
}
.
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It is easy to see that Bp,1−α(B) ⊂ B∞,1−α (B), 0 < p <∞, α > 0.
We now define a new set on the unit interval and then using its characteristic

function we will give a new sharp assertion concerning the distance function.
For ε > 0, f ∈ H(B), let Lε,α(f) = {r ∈ (0, 1) : (1− r)α

∫
S
|f(rξ)||dσ(ξ)| ≥

ε}.

Theorem 10. Let f ∈ B∞,1−α (B), α > 0, 1 ≤ p < ∞. Then the following are
equivalent:

(a) ŝ1 = distB∞,1−α (B)(f,B
p,1
−α(B));

(b) ŝ2 = inf{ε > 0 :
∫ 1

0
(1− r)−1χLε,α(f)(r)dr <∞}.

Let I = (0, 1). We denote by rξ = (rξ1, . . . , rξn) where r ∈ I, ξj ∈ T,
j = 1, . . . , n, ξ = (ξ1, . . . , ξn) and also −→r ξ = (r1ξ1, . . . , rnξn), where −→r ∈ In,
−→r = (r1, . . . , rn), rj ∈ I, ξj ∈ T, j = 1, . . . , n.

We formulate now a polydisk version of Theorem 6.
For 0 < p <∞ and α > 0, let as above

B∞,1−α (Dn) =

{
f ∈ H(Dn) : sup

r1<1,...,rn<1

(∫
Tn

|f(−→r ξ)||dmn(ξ)|
) n∏
k=1

(1− rk)α <∞

}
,

Bp,1−α(Dn) =

{
f ∈ H(Dn) :

∫ 1

0

· · ·
∫ 1

0

(∫
Tn

|f(−→r ξ)||dmn(ξ)|
)p n∏

k=1

(1− rk)αp−1dr1 · · · drn <∞

}
.

It is easy to see that Bp,1−α(Dn) ⊂ B∞,1−α (Dn), 0 < p <∞, α > 0.
We now define a new set on In and then using its characteristic function we

will give a new sharp assertion concerning the distance function.
For ε > 0, f ∈ H(Dn), let

Lε,α(f) = {−→r = (r1, . . . rn) ∈ In :

n∏
k=1

(1− rk)α
∫
Tn

|f(−→r ξ)||dmn(ξ)| ≥ ε}.

Theorem 11. Let f ∈ B∞,1−α , α > 0, 1 ≤ p < ∞. Then the following are
equivalent:

(a) ̂̂s1 = distB∞,1−α (Dn)(f,B
p,1
−α(Dn));

(b) ̂̂s2 = inf{ε > 0 :
∫ 1

0
· · ·
∫ 1

0

∏n
k=1(1−rk)−1χLε,α(f)(r1, . . . rn)dr1 · · · drn <

∞}.

Proof. The proof is a repetition of arguments of the one dimensional case and
we omit details.

Now we formulate the polydisk version of Theorem 2 the proof is quite
similar to one dimensional case and will be also omitted.
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Let B̃α(Dn), α > 0, be the collection of the analytic functions on the poly-
disk satisfying

‖f‖B̃α(Dn) = sup
z1∈D,...,zn∈D

|f(z1, . . . , zn)|
n∏
k=1

(1− |zk|2)α <∞.

B̃α(Dn) is a Banach space with the norm ‖f‖B̃α(Dn).

For k > s, 0 < p, q ≤ ∞, Bq,ps (Dn) let be the class of analytic functions on
the polydisk satisfying (see [8])

‖f‖qBq,ps (Dn)
=

∫ 1

0

· · ·
∫ 1

0

(∫
Tn

|Dkf(−→r ξ)|p|dmn(ξ)|
) q
p

n∏
k=1

(1−rk)(k−s)q−1dr1 · · · drn <∞.

It is known that Bq,qs (Dn) ⊂ B̃−(s− 1
q )(Dn), s < 0 (see [2]).

Theorem 12. Let 0 < q ≤ 1, s < 0, t ≤ s− 1
q , β >

1−sq
q and β > −1− t. Let

f ∈ B̃−t(Dn). Then the following are equivalent:
(a) l1 = distB̃−t(Dn)(f,B

q,q
s (Dn));

(b) l2 = inf{ε > 0 :
∫
Dn

(∫
Ωε,−t(f)

∏n
k=1(1−|wk|)β+tdA2n(w1,...,wn)∏n

k=1 |1−zkwk|2+β

)q
×

×
∏n
k=1(1− |zk|)−sq−1dA2n(z1, . . . , zn) <∞}.

We will formulate now a sharp theorem for analytic classes on the subframe.
Let Rsf(z) =

∑
k1,...kn≥0(k1 +· · ·+kn+1)sak1,...,knz

k1
1 · · · zknn and D̃n = (0, 1]×

Tn. It is obvious Rsf ∈ H(Dn) if f ∈ H(Dn).
It is easy to note that ‖f‖B∞,1−α,s(D̃

n) = supr<1(1− r)α
∫
Tn |Rsf(rξ)|dmn(ξ)

≤ C
(∫ 1

0

(∫
Tn

|Rsf(rξ)|dmn(ξ)

)p
(1− r)αp−1dr

) 1
p

= ‖f‖Bp,1−α,s(D̃n),

where s ∈ R, α > 0, 0 < p <∞.
The analytic classes on the subframe D̃n were studied in [11], [12], [13].

For ε > 0 and f ∈ H(Dn), letKε,α,s = {r ∈ I : (1−r)α
∫
Tn
|Rsf(rξ)|dmn(ξ) ≥ ε}.

Theorem 13. Let f ∈ B∞,1−α,s(D̃
n), α > 0, 1 ≤ p < ∞, s ∈ R. Then the

following are equivalent:
(a) ν1 = distB∞,1−α,s(D̃

n)(f,B
p,1
−α,s(D̃

n));

(b) ν2 = inf{ε > 0 :
∫ 1

0
(1− r)−1χKε,α,s(f)(r)dr <∞}.

This paper only concerns with the situation when some Bergman (or mixed
norm) space is acting as a subspace of a larger analytic class where sup can
be seen somehow in quasinorm. It is also easy to notice that we systemati-
cally use the classical Bergman integral representation formula in all our proofs.
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We note that based on similar arguments we obtained corresponding sharp re-
sults in cases when mentioned above Bergman classes are replaced by analytic
(weighted) Hardy type spaces in the unit disk. The only visible difference is that
in such cases proofs are based on the classical Causchy integral representation
formula. We give an example of such a result in the unit disk.

Theorem 14. Let α > 1
p , p ≥ 1, f ∈ B∞,p1

p−α
(D). Then the following are

equivalent:
(a) υ1 = distB̃α(D)(f,B

∞,p
1
p−α

(D));

(b) υ2 = inf{ε > 0 : supr<1

(
1

1−r
∫
T
χΩr,ε,α(ξ)dξ

)
<∞},

where Ωr,ε,α = {ξ ∈ T : |f(rξ)|(1− r)α ≥ ε} .

In [15] the author provided several obvious corollaries of his results. Similar
corollaries can be obtained immediate from our theorems 6 - 9. As example we
note that from Theorem 6 we have the following

Proposition 1. Let α > 0, 1 ≤ p1 < p2 <∞. Then

distB∞,1−α
(f,Bp1,1

−α ) = distB∞,1−α
(f,Bp2,1

−α ).

Proposition 2. Let α > 0, 1 ≤ p1 < p2 < ∞. Then the closures of Bp1,1
−α and

Bp2,1
−α in B∞,1−α are the same and f is in closure of Bp1,1

−α in B∞,1−α if and only if∫ 1

0
(1− r)−1χLε,−α(f)(r) <∞, for every ε > 0.

Similar results obviously are true also in higher dimension. We omit details.
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