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1. Introduction and outline of the article

We shall be concerned with hypersurfaces of a semi-Riemannian manifold, for
which the real-valued second fundamental form II is a semi-Riemannian metrical
tensor. The geometry of such hypersurfaces can be explored with respect to either
the first or the second fundamental form.

In analogy with the classical study of the geometry of hypersurfaces as de-
termined by their first fundamental form, a distinction can be made between the
intrinsic geometry of the second fundamental form, which is determined by mea-
surements of II-lengths on the hypersurface only, and the extrinsic geometry of
the second fundamental form, which concerns those measurements for which the
geometry of the second fundamental form of the hypersurface is compared with
the corresponding geometry of nearby hypersurfaces.

It is a natural question to investigate the relation between the intrinsic geom-
etry of the second fundamental form and the shape of the original hypersurface,
and for this purpose the intrinsic curvatures of the second fundamental form have
already been studied. Numerous results in this direction have been established for
ovaloids, i.e., for compact hypersurfaces in a Euclidean space with a positive defi-
nite second fundamental form. For example, R. Schneider’s theorem characterises
the hyperspheres as the only ovaloids for which the second fundamental form has
constant sectional curvature [19]. Some generalisations of this theorem for sur-
faces in certain Lorentzian manifolds have been found by J. A. Aledo, A. Romero,
et al. [2], [3].

However, in the present article we are not concerned with the geometry of the
second fundamental form from the intrinsic point of view, but we will study an
aspect of the “extrinsic” geometry of the second fundamental form. As is known,
the mean curvature H of a hypersurface of a semi-Riemannian manifold describes
the instantaneous response of the area functional with respect to deformations
of the hypersurface. Since we are studying hypersurfaces for which the second
fundamental form is a semi-Riemannian metrical tensor, areas can be measured
with respect to the second fundamental form as well, so we can associate to
any such hypersurface M its area as measured in the geometry of the second
fundamental form. This area, which will be denoted by AreaII(M), is related to
the classical area element dΩ by

AreaII(M) =

∫
M

√
|detA| dΩ ,

where A denotes the shape operator of the hypersurface.
In this article, the notion of mean curvature will be tailored to the geometry

of the second fundamental form: the function which measures the rate of change
of AreaII(M) under a deformation of M , will be called the mean curvature of
the second fundamental form and denoted by HII. In this way, a concept which
belongs to the extrinsic geometry of the second fundamental form is introduced
in analogy with a well-known concept in the classical theory of hypersurfaces.
The mean curvature of the second fundamental form was defined originally by
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E. Glässner [9], [10] for surfaces in E3. The corresponding variational problem has
been studied by F. Dillen and W. Sodsiri [7] for surfaces in E3

1, and for Riemannian
surfaces in a three-dimensional semi-Riemannian manifold in [14].

Some characterisations of the spheres in which this curvature HII is involved
have been found. For example, it has been shown that the spheres are the only
ovaloids in E3 which satisfy HII = C

√
K; furthermore, the spheres are the only

ovaloids on which HII −KII does not change sign (see [22] and G. Stamou’s [21]).
In the initiating Section 2 of this article, the notation will be explained and

several useful formulae from the theory of hypersurfaces will be briefly recalled.
In the following Section 3, the first variation of the area functional of the

second fundamental form is calculated and the mean curvature of the second
fundamental form is defined.

In the subsequent Sections 4–7 the mean curvature of the second fundamental
form will be employed to give several characterisations of extrinsic hyperspheres as
the only hypersurfaces in space forms, an Einstein space, and a three-dimensional
manifold, respectively, which can satisfy certain inequalities in which the mean
curvature of the second fundamental form is involved.

In Section 8 the expression for HII will be investigated for curves. This is of
particular interest, since the length of the second fundamental form of a curve γ,

LengthII(γ) =

∫ √
|κ| ds ,

(where κ is the geodesic curvature and s an arc-length parameter) is a modification
of the classical bending energy ∫

κ2 ds

which has already been studied by D. Bernoulli and L. Euler. Moreover, the results
we present agree with W. Blaschke’s description of J. Radon’s variational problem
[5] and with a more recent article of J. Arroyo, O. J. Garay and J. J. Menćıa [4].

In the final Section 9, the function HII will be investigated for (sufficiently
small) geodesic hyperspheres in a Riemannian manifold by means of the method
of power series expansions, which was applied extensively by A. Gray [11], and also
by B.-Y. Chen and L. Vanhecke [6], [12]. Furthermore, we address the question
of whether the locally flat spaces are characterised by the property that every
geodesic hypersphere has the same II-area as a Euclidean hypersphere with the
same radius.

2. Definitions, notation, and useful formulae

2.1. Assumption

All hypersurfaces are understood to be embedded and connected.
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2.2. Nomenclature

A hypersurface in a semi-Riemannian manifold is said to be (semi-)Riemannian if
the restriction of the metric to the hypersurface is a (semi-)Riemannian metrical
tensor.

2.3. Notation

Since a hypersurface M in a manifold M will be studied, geometric objects in
M are distinguished from their analogues in M with a bar. Geometric entities
derived from the second fundamental form are distinguished from those derived
from the first fundamental form by means of a sub- or superscript II. For example,
the area element obtained from the second fundamental form will be written as
dΩII.

2.4. Notation

The set of all vector fields on a manifold M will be denoted by X(M). Furthermore,
F(M) stands for the set of all real-valued functions on M . If (M, g) is a semi-Rie-
mannian submanifold of a semi-Riemannian manifold (M, g), the set of all vector
fields on M which take values in the tangent bundle TM is denoted by X(M).
The orthogonal projection TpM → TpM will be denoted by [·]T .

2.5. The Laplacian

The sign of the Laplacian will be chosen so that ∆f = f ′′ for a real-valued function
on R.

2.6. The fundamental forms

Let M be a semi-Riemannian hypersurface of dimension m in a semi-Riemannian
manifold (M, g). We shall suppose that a unit normal vector field U ∈ X(M) has
been chosen on M . The shape operator A, the second fundamental form II and
the third fundamental form III of the hypersurface M are defined by the formulae A : X(M) → X(M) : V 7→ −∇V U ;

II : X(M)× X(M) → F(M) : (V, W ) 7→ α g(A(V ), W ) ;
III : X(M)× X(M) → F(M) : (V, W ) 7→ g(A(V ), A(W )) ,

(1)

where α = g(U,U) = ±1. It will be assumed that the second fundamental form
is a semi-Riemannian metric on M .

2.7. Frame fields

Let {E1, . . . , Em} denote a frame field on M which is orthonormal with respect
to the first fundamental form g. Define εi (i = 1, . . . ,m) by εi = g(Ei, Ei) = ±1.
Furthermore, let {V1, . . . , Vm} be a frame field on M which is orthonormal with
respect to the second fundamental form II. Define κi (i = 1, . . . ,m) by κi =
II(Vi, Vi) = ±1.
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2.8. Curvature

The following convention concerning the Riemann-Christoffel curvature tensor R
will be made: for X, Y, Z ∈ X(M), we define R(X, Y )Z = ∇[X,Y ]Z −∇X∇Y Z +
∇Y∇XZ. The Ricci tensor and the scalar curvature will be denoted by Ric and
S. The mean curvature H of the hypersurface M is defined by

H =
α

m
tr(A) =

1

m

m∑
i=1

II(Ei, Ei)εi .

The (M, g)-sectional curvature of the plane spanned by two vectors vp and wp in
TpM , will be denoted by K(vp, wp). The symbols KII(vp, wp) and K(vp, wp) will
be used in accordance with the remark of Subsection 2.3. Similarly, the scalar
curvature of the second fundamental form will be denoted by SII.

2.9. The difference tensor L

The difference tensor L between the two Levi-Civita connections ∇II and ∇ is
defined by

L(X, Y ) = ∇II
XY −∇XY ,

where X, Y ∈ X(M). The trace of L with respect to II is defined to be the vector
field

trIIL =
m∑

i=1

L(Vi, Vi)κi ,

where Vi and κi have been defined in Subsection 2.7.

2.10. The equations of Gauss and Codazzi

The Riemann-Christoffel curvature tensor R of the hypersurface M is related to
the second fundamental form by means of the Gauss equation

g(R(X, Y )Z,W ) = g(R(X, Y )Z,W ) +α
II(X, Z) II(Y, W )− II(X, W ) II(Y, Z)

 ,

which is valid for all tangent vector fields X, Y, Z, W ∈ X(M). As a consequence,
we have

Ric(X, Y ) = Ric(X, Y )− α g(R(X, U)Y, U) + α m H II(X, Y )− α III(X, Y ) . (2)

The Codazzi equation of the hypersurface is

(∇XA)Y − (∇Y A)X = R(X,Y )U ,

for all X, Y ∈ X(M).
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3. The variation of the area of the second fundamental form

3.1. The area functional of the second fundamental form

Let E denote the set of all hypersurfaces in a semi-Riemannian manifold (M, g)
for which the first as well as the second fundamental form is a semi-Riemannian
metrical tensor. Our first objective is to determine the critical points of the area
functional of the second fundamental form

AreaII : E → R : M 7→ AreaII(M) =

∫
M

dΩII .

3.2. The mean curvature of the second fundamental form

Definition 3.1. Let M be a hypersurface in a semi-Riemannian manifold (M, g),
and suppose that the first as well as the second fundamental form of M is a semi-
Riemannian metrical tensor. Let

µ : ]−ε, ε[×M → M : (s, p) 7→ µs(p)

be a mapping such that
µs(M) ∈ E for all s;
µs(p) = p for all p outside of a compact set of M and all s;
µ0(p) = p for all p ∈ M .

Then µ will be called a variation of M in E.

Definition 3.2. Let M be a semi-Riemannian hypersurface of a semi-Riemann-
ian manifold (M, g) which belongs to the class E. The vector field Z in X(M) is
defined by

Z =
m∑

i=1

κi A
←
([

R(Vi, U)Vi

]T)
.

Here A← denotes the inverse of the shape operator A, and Vi and κi were defined
in Subsection 2.7.

It can easily be seen that the vector field Z vanishes if (M, g) has constant sectional

curvature. If M has dimension three, the vector field Z is equal to A(Z)
detA

, where
the vector field Z has been defined in [3, 14] by the condition

∀X ∈ X(M), Ric(U,X) = II(Z,X) .

Theorem 3.3. Let M be a hypersurface in a semi-Riemannian manifold (M, g)
for which the first as well as the second fundamental form is a semi-Riemannian
metrical tensor. Let µ be a variation of M in E, for which the variational vector
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field has normal component f U . The variation of the area functional AreaII is
given by

∂

∂s

∣∣∣∣
s=0

AreaII(µsM) = −α

∫
M

f · 1

2

m H −
m∑

i=1

g(R(Vi, U)Vi, U) κi

+
α

2
∆IIlog |detA| − α divIIZ

 dΩII .

This theorem can be proved by similar methods to those used in [14] (see also
[23]). The formula for the variation of the second fundamental form which was
given there, can be generalised to hypersurfaces in the following way:

∂

∂s

∣∣∣∣
s=0

II(µs)(X, Y ) = α f
g(R(U,X)U, Y )− III(X, Y )

+ Hessf (X, Y ) .

The left-hand side of this expression, which is valid if the variational vector field
is equal to fU , is defined as in [14].

Definition 3.4. Let M be an m-dimensional hypersurface in a semi-Riemannian
manifold (M, g) for which both the first and the second fundamental forms are se-
mi-Riemannian metrical tensors. The mean curvature of the second fundamental
form HII is defined by

HII =
1

2

m H −
m∑

i=1

g(R(Vi, U)Vi, U) κi +
α

2
∆IIlog |detA| − α divIIZ

 . (3)

If HII = 0, the hypersurface will be called II-minimal.

Remark 3.5. This definition extends those of [9, 10]; in [14], the sign of HII was
chosen differently.

Example 3.6. The standard embedding of Sm( 1√
2
) in Sm+1(1) is II-minimal. Fur-

thermore, the standard embedding of Sk( 1√
2
)×Sm−k( 1√

2
) in Sm+1(1) (see, e.g., [16])

is a II-minimal hypersurface (k = 1, . . . ,m − 1). These assertions can be proved
with ease when one takes into account the fact that these hypersurfaces are parallel
(in the sense that ∇II = 0).

Remark 3.7. As a consequence of Theorem 3.3 and Definition 3.4, we obtain the
following formulae for the variation of the classical area (Area) and of the area of
the second fundamental form (AreaII):

∂

∂s

∣∣∣∣
s=0

Area(µs(M)) = −m α

∫
fH dΩ ;

∂

∂s

∣∣∣∣
s=0

AreaII(µs(M)) = −α

∫
fHII dΩII .
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Remark 3.8. The expression for HII can be rewritten in an alternative way at a
point p ∈ M where the frame fields can be chosen such that

• the g-orthonormal basis {E1(p), . . . , Em(p)} of TpM is composed of eigen-
vectors of the shape operator (principal directions) at p:

A(Ei(p)) = λi(p) Ei(p) , (i = 1, . . . m) ;

• the II-orthonormal basis {V1(p), . . . , Vm(p)} of TpM consists of the rescaled
principal directions at p:

Vi(p) =
1√
|λi(p)|

Ei(p) , (i = 1, . . . m) .

In this case, the following expression for the mean curvature of the second funda-
mental form holds at the point p:

(HII)(p) =

(
1

2

mH −
m∑

i=1

1

λi

K(Ei, U)

+
α

4
∆IIlog |detA| − α

2
divIIZ

)
(p)

. (4)

Remark 3.9. By using the contracted Gauss equation (2), yet another expression
for the mean curvature of the second fundamental form can be derived:

HII = −α

2

trIIRic− trIIRic + α(m2 − 2m)H − 1

2
∆IIlog |detA|+ divIIZ

 . (5)

4. A comparison result for the connections

In the sequel of this article we will make use of the following lemma, which slightly
extends well-known results ([15] Theorem 7, [20], and [8], Corollary 13). First we
recall a useful definition.

Definition 4.1. A totally umbilical, compact hypersurface M of a semi-Riemann-
ian manifold (M, g) which satisfies A = ρ id for a constant ρ ∈ R, is called an
extrinsic hypersphere.

Lemma 4.2. Let M be a compact hypersurface of a semi-Riemannian manifold
(M, g). Suppose that both the first and the second fundamental forms are positive
definite and that these metrical tensors induce the same Levi-Civita connection.
Furthermore, assume that (M, g) has either strictly positive or strictly negative
sectional curvature. Then M is an extrinsic hypersphere.

The lemma can be proved either by methods similar to those used in [20], or by
means of the local de Rahm theorem (see [23, p. 96]).
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5. Hypersurfaces in a space form

We shall use M
m+1

0 (C) to denote the following Riemannian manifolds of dimension
m + 1: 

the Euclidean hypersphere Sm+1( 1√
C
) (for C > 0) ;

the Euclidean space Em+1 (for C = 0) ;
the hyperbolic space Hm+1( 1√

−C
) (for C < 0) .

We shall use M
m+1

1 (C) to denote the following Lorentzian manifolds of dimension
m + 1: 

the de Sitter space Sm+1
1 ( 1√

C
) (for C > 0) ;

the Minkowski space Em+1
1 (for C = 0) ;

the anti-de Sitter space Hm+1
1 ( 1√

−C
) (for C < 0) .

Each of the above semi-Riemannian manifolds has constant sectional curvature
C.

Lemma 5.1. Let M be a compact semi-Riemannian hypersurface in a semi-Rie-
mannian manifold (M, g) of constant sectional curvature C and dimension m + 1
(with m > 2). Assume that the second fundamental form of M is positive definite.
The inequality

SII 6 2α(m− 1)
HII + CtrA←

 (6)

is satisfied if and only if the Levi-Civita connections of the first and the second
fundamental forms coincide.

Proof. The following expressions are valid for the curvatures which are involved
in the above inequality:

HII =
1

2

α trA− C trA←
+

α

4

∆IIdetA

detA
− α

4

II(∇IIdetA,∇IIdetA)

(detA)2
;

SII = α(m− 1)
α trA + C trA←

+ II(L, L)− 1

4

II(∇IIdetA,∇IIdetA)

(detA)2
,

where the quantity II(L, L) is defined by

II(L, L) =
m∑

i, j, k =1

(II(L(Vi, Vj), Vk))
2κiκjκk =

m∑
i, j, k =1

(II(L(Vi, Vj), Vk))
2 .

The first expression is an immediate consequence of equation (4). The second
expression can be found in, e.g., [19] (if (M, g) is the Euclidean space of dimension
m + 1), [2] (if (M, g) is the de Sitter space of dimension m + 1), or [1] (if (M, g)
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is a Riemannian space form of dimension m + 1). The inequality (6) is equivalent
to

0 6
(m− 1)

2

∆IIdetA

detA
− (2m− 3)

4

II(∇IIdetA,∇IIdetA)

(detA)2
− II(L, L) ,

and this implies
detA = constant and ∇ = ∇II .

Conversely, if ∇ = ∇II, it follows that ∇II vanishes. Consequently, detA is a
constant and the inequality is satisfied. �

Theorem 5.2. Let M be a compact Riemannian hypersurface in the space form

M
m+1

e (C) (for m > 2). Assume that the second fundamental form of M is positive
definite. The inequality

SII 6 2α(m− 1)
HII + C trA←

 (7)

is satisfied if and only if M is an extrinsic hypersphere.

Proof. Three cases will be treated separately.

1. M
m+1

e (C) is a Riemannian space form.
It has already been shown that inequality (7) implies that M is parallel, in
the sense that ∇II vanishes. Such hypersurfaces were classified in Theorem
4 of [16]. If C > 0, the only hypersurfaces with a positive definite sec-
ond fundamental form which appear in this classification are the extrinsic
hyperspheres. If C < 0, the extrinsic hyperspheres are the only compact
hypersurfaces in the classification.

2. M
m+1

e (C) is a Lorentzian space form with C 6 0.
It follows from the Gauss equation that (M, g) has strictly negative sectional
curvature. The result follows from Lemmas 4.2 and 5.1.

3. M
m+1

e (C) is the de Sitter space.
It follows from (7) that ∇A vanishes. Consequently, M has constant mean
curvature and an application of Theorem 4 of [18] concludes the proof.

�

6. Hypersurfaces in an Einstein space

Theorem 6.1. Let (M, g) be a Riemannian Einstein manifold of dimension m+1
(with m > 3) with strictly positive scalar curvature S. Any compact hypersurface
M ⊆ M with positive definite second fundamental form satisfies

HII + m

√(
m− 2

m + 1

)
S >

1

2
trIIRic (8)

if and only if it is an extrinsic hypersphere with A =
√

S
(m−2)(m+1)

id. Moreover,

in this case there holds HII =
√

S
(m−2)(m+1)

.
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Proof. Since Ric = S
m+1

g, we deduce that trIIRic = S
m+1

trA← . Define β and ρ
by

β =

√(
m− 2

m + 1

)
S and ρ =

√
S

(m− 2)(m + 1)
.

Furthermore, the principal curvatures will be denoted by λi (i = 1, . . . ,m). It
follows now from (5) and the assumption (8) that∫

trIIRic dΩII =

∫ 2 HII + β
m∑

i=1

(
ρ

λi

+
λi

ρ

) dΩII

>
∫

2
HII + m β

 dΩII >
∫

trIIRic dΩII .

This is only possible if all principal curvatures are equal to ρ. �

7. Surfaces in a three-dimensional semi-Riemannian manifold

All previous results agree with [14] if the surrounding space is three-dimensional
(except for the sign convention of HII). Moreover, some results can be sharpened.
Assume M ∈ E and m = 2. Let KII denote the Gaussian curvature of (M, II).
Consequently, the relation 2KII = SII is valid.

Theorem 7.1. Let M be a compact surface in a three-dimensional semi-Rie-
mannian manifold (M, g) and suppose that the first as well as the second fun-
damental form of M is positive definite. Suppose that the Gaussian curvature K
of M is strictly positive. Then M is an extrinsic hypersphere if and only if

KII > α HII +
1

2
trIIRic . (9)

Proof. Assume first that (9) is satisfied. A minor adaptation of the proof
of Proposition 5 of [14] shows that M is totally umbilical, and that equality is
attained in (9). An application of Theorem 6 of [14] shows that we have

KII = α HII +
1

2
trIIRic− 1

4
∆IIlog(detA) ,

and consequently detA is a constant. The converse follows since, if M is an
extrinsic hypersphere, Theorem 6 of [14] shows that equality holds in (9). �

The following corollary, which follows immediately from the above theorem and
Theorem 5.2, generalises a result of [17], [21].

Corollary 7.2. Let M be a compact Riemannian surface in the space form M
3

0

(C) (with C ∈ R) or the de Sitter space. Assume that the second fundamental
form of M is positive definite and that the Gaussian curvature of (M, g) is strictly
positive. Then either

HII − α KII + 2
CH

K − C
changes sign or M is an extrinsic sphere.
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8. Curves in a semi-Riemannian surface

Let γ : ]a, b[ → (M, g) : s 7→ γ(s) be an arcwise parametrised time-like or space-
like curve in a semi-Riemannian surface. Let T denote the unit tangent vector
γ′ along γ. It will be supposed that g(∇T T,∇T T ) vanishes nowhere. By virtue
of this property, γ is sometimes called a Frenet curve. On the other hand, this
requirement precisely means that II is a semi-Riemannian metrical tensor on γ.
Let {T, U} be the Frenet frame field along γ:

T = γ′, U =
1√∣∣g(∇T T,∇T T )

∣∣∇T T .

Further, we set β = g(T, T ) = ±1 and α = g(U,U) = ±1. The geodesic curvature
κ of γ in (M, g) is determined by the Frenet-Serret formulae: ∇T T

∇T U

 =

 0 βκ
−ακ 0

 T
U

 . (10)

The geodesic curvature κ is equal to the mean curvature of γ ⊆ (M, g). The
functional which measures the length of a curve with respect to the second funda-
mental form, which will be denoted by LengthII instead of AreaII, can be computed
as the integral

LengthII(γ) =

∫
γ

√
|κ| ds .

Let K denote the Gaussian curvature of (M, g). A calculation shows

HII =
1

2

−αK

κ
+ κ +

αβ

4

(
2
κ′′

κ2
− 3

(κ′)2

κ3

) . (11)

Example 8.1. A curve γ (with κ > 0) in E2 is II-minimal if and only if the
curvature κ, when regarded as a function of the arc-length, satisfies

4κ4 + 2κκ′′ − 3(κ′)2 = 0 .

Since the formula

κ(s) =
A

A2(s + Q)2 + 1
(where A ∈ ]0, +∞[ and Q ∈ R)

describes the general solution of this differential equation, the catenaries are ex-
actly the II-minimal planar curves. (Compare [5, § 27] for the corresponding vari-
ational problem for space curves.)



S. Haesen, S. Verpoort: The Mean Curvature of the Second Fundamental . . . 167

Example 8.2. For curves on the unit sphere, the equation HII = 0 can be rewrit-
ten as

4κ2 − 4κ4 − 2κ′′κ + 3(κ′)2 = 0 .

This is equation (4) of [4], if the length functional of the second fundamental form
LengthII is interpreted as the so-called curvature energy functional. As is proved
and beautifully illustrated in [4], there exists a discrete family of closed, immersed,
II-minimal curves on the unit sphere. Then S1( 1√

2
) ⊆ S2(1) is an embedded “II-

minimal” curve which belongs to this family. This curve is, as is remarked in [4],
actually a local maximum of AreaII.

9. Geodesic hyperspheres in a Riemannian manifold

As a final example we shall investigate the (sufficiently small) geodesic hyper-
spheres in a Riemannian manifold, since these provide us with a naturally defined
class of hypersurfaces with a positive definite second fundamental form. We will
use the method of power series expansions. The interested reader is referred to
[13] or [23] for the technical calculations which are too extensive to be presented
here.

It is a straightforward consequence of the calculations of [6], [11], [12] that
the locally flat spaces are the only Riemannian manifolds for which all geodesic
hyperspheres have either constant mean curvature which is equal to the inverse of
their radius, or constant Gauss-Kronecker curvature which is equal to the inverse
of the m-th power of their radius. An analysis of the coefficients appearing in
the power series expansion of the mean curvature of the second fundamental form
for small geodesic spheres (as a function of their radius) establishes the following
corresponding property.

Theorem 9.1. A Riemannian manifold (of dimension m + 1) is locally flat if
and only if the mean curvature of the second fundamental form of every geodesic
hypersphere is equal to the constant m

2r
(where r is the radius of the geodesic

hypersphere).

Let us denote the geodesic hypersphere of centre n and radius r by Gn(r). It was
asked in [12] whether the Riemannian geometry of the ambient manifold (M, g)
is fully determined by the area functions

M × ]0, +∞[ → R : (n, r) 7→ Area(Gn(r)) (r sufficiently small)

of the geodesic hyperspheres. It appears that a decisive answer has not yet been
given. Similarly, it may be asked whether a Riemannian manifold for which every
geodesic hypersphere has the same II-area as a Euclidean hypersphere of the same
radius, is locally flat. We were only able to find the following partial answer, which
should be compared with Theorem 4.1 of [12] and makes use of similar methods.
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Theorem 9.2. Let (M, g) be a Riemannian manifold of dimension m + 1, and
suppose that the area of every geodesic hypersphere of M , as seen in the geometry
of the second fundamental form, is equal to r

m
2 αm (where r is the radius of the

geodesic hypersphere, and αm is the area of the unit hypersphere of Em+1). Then
there holds {

S = 0 ;
‖R‖2 = ‖Ric‖2 .

(12)

Further, M is locally flat if any of the following additional hypotheses is made:

(i) dim M 6 5;

(ii) the Ricci tensor of M is positive or negative semi-definite (in particular if
M is Einstein);

(iii) M is conformally flat and dim M 6= 6;

(iv) M is a Kähler manifold of complex dimension 6 5;

(v) M is a Bochner flat Kähler manifold of complex dimension 6= 6;

(vi) M is a product of surfaces (with an arbitrary number of factors).
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