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Abstract. Nonempty sets X1 and X2 in the Euclidean space Rn are
called homothetic provided X1 = z+λX2 for a suitable point z ∈ Rn and
a scalar λ 6= 0, not necessarily positive. Extending results of Süss and
Hadwiger (proved by them for the case of convex bodies and positive
λ), we show that compact (respectively, closed) convex sets K1 and
K2 in Rn are homothetic provided for any given integer m, 2 ≤ m ≤
n − 1 (respectively, 3 ≤ m ≤ n − 1), the orthogonal projections of K1

and K2 on every m-dimensional plane of Rn are homothetic, where the
homothety ratio may depend on the projection plane. The proof uses a
refined version of Straszewicz’s theorem on exposed points of compact
convex sets.
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1. Introduction and main results

Let us recall that nonempty sets X1 and X2 in the Euclidean space Rn are ho-
mothetic provided X1 = z + λX2 for a suitable point z ∈ Rn and a scalar λ 6= 0
(called homothety ratio); furthermore, X1 and X2 are called positively homothetic
(respectively, negatively homothetic) provided λ > 0 (respectively, λ < 0). We re-
mark that in convex geometry homothety usually means positive homothety, also
called direct homothety. In a standard way, a convex body in Rn is a compact
convex set with nonempty interior.
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Süss [16], [17] proved that two convex bodies in Rn, n ≥ 3, are positively
homothetic if and only if the orthogonal projections of these bodies on every
hyperplane are positively homothetic, where the homothety ratio may depend on
the projection hyperplane (the proof of this statement is given for n = 3 with the
remark in [17, p. 49] that the extension to higher dimensions is routine). Following
a series of intermediate results (see [14] for additional references), Hadwiger [5]
showed that convex bodies K1 and K2 in Rn are positively homothetic if and only
if there is an integer m, 2 ≤ m ≤ n − 1, such that the orthogonal projections
of K1 and K2 on each m-dimensional plane are positively homothetic (see also
Rogers [11] for the case m = 2).

The question whether the statements of Süss and Hadwiger hold for larger
families of geometric transformations in Rn, like similarities, was posed by Naka-
jima [8, p. 169] for n = 3 and, independently, by Petty and McKinney [10] and
Golubyatnikov [3]. Gardner and Volčič [2] (see also Gardner [1]) showed the ex-
istence of a pair of centered and coaxial convex bodies of revolution in Rn whose
orthogonal projections on every 2-dimensional plane are similar, but which are
themselves even not affinely equivalent. On the other hand, Golubyatnikov [3, 4]
proved that compact convex sets K1 and K2 in Rn are homothetic (positively or
negatively) provided their projections on every 2-dimensional plane are similar
and have no rotation symmetries.

Our first theorem shows that the family of positive homotheties in Süss’s and
Hadwiger’s statements can be extended to all homotheties in Rn.

Theorem 1. Given compact (respectively, closed) convex sets K1 and K2 in Rn

and an integer m, 2 ≤ m ≤ n − 1 (respectively, 3 ≤ m ≤ n − 1), the following
conditions are equivalent:

1) K1 and K2 are homothetic,

2) the orthogonal projections of K1 and K2 on every m-dimensional plane of
Rn are homothetic, where the homothety ratio may depend on the projection
plane.

The following example shows that the inequality m ≥ 3 in Theorem 1 is sharp for
the case of unbounded convex sets.

Example 1. Let K1 and K2 be solid paraboloids in R3, given, respectively, by

K1 = {(x, y, z) | x2 + y2 ≤ z} and K2 = {(x, y, z) | 2x2 + y2 ≤ z}.

Obviously, K1 and K2 are not homothetic. At the same time, their orthogonal
projections πL(K1) and πL(K2) on every 2-dimensional plane L ⊂ R3 are positively
homothetic. Indeed, if L = {(x, y, z) | z = const}, then πL(K1) = πL(K2) = L.
For any other 2-dimensional plane L in R3, the sets πL(K1) and πL(K2) are closed
convex sets bounded by parabolas whose axes of symmetry are parallel to the
orthogonal projection of the z-axis on L. Since any two parabolas in the plane
with parallel axes of symmetry are homothetic, the sets πL(K1) and πL(K2) also
are positively homothetic.
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In view of this example, it would be interesting to describe the pairs of closed
convex sets K1 and K2 in Rn such that the orthogonal projections of K1 and
K2 on every 2-dimensional plane of Rn are homothetic. The following corollary
slightly refines Theorem 1.

Corollary 1. Given compact (respectively, closed) convex sets K1 and K2 in Rn,
integers r and m such that 0 ≤ r ≤ m − 2 ≤ n − 3 (respectively, 0 ≤ r ≤
m− 3 ≤ n− 4), and a subspace S ⊂ Rn of dimension r, the following conditions
are equivalent:

1) K1 and K2 are homothetic,

2) the orthogonal projections of K1 and K2 on every m-dimensional plane of
Rn that contains S are homothetic, where the homothety ratio may depend
on the projection plane.

We observe that the proof of Theorem 1 cannot be routinely reduced to that of
Süss and Hadwiger by using compactness and continuity arguments. Indeed, if
orthogonal projections πL(K1) and πL(K2) of the convex sets K1 and K2 on a
plane L ⊂ Rn are homothetic and

πL(K1) = zL + λLπL(K2),

then zL and λL (but not the absolute value of λL) may loose their continuity as
functions of L when both πL(K1) and πL(K2) become centrally symmetric. To
avoid the consideration of centrally symmetric projections, our proof of Theorem 1
uses a refined version of Straszewicz’s theorem on exposed points of a compact
convex set (see Theorem 2 below).

Let us recall that a point x of a closed convex set K ⊂ Rn is called exposed
provided there is a hyperplane H ⊂ Rn supporting K such that H ∩ K = {x}.
Straszewicz’s theorem states that any compact convex set in Rn is the closed
convex hull of its exposed points (see [18]). Klee [6] proved that a line-free closed
convex set K ⊂ Rn is the closed convex hull of its exposed points and exposed
halflines (a set is called line-free if it contains no lines).

Points x and z of a compact convex set K ⊂ Rn are called (affinely) antipodal
provided there are distinct parallel hyperplanes H and G both supporting K such
that x ∈ H ∩ K and z ∈ G ∩ K (see, e. g., [7], [13] for various antipodality
properties of convex and finite sets in Rn). Furthermore, the points x and z are
called antipodally exposed (and the chord [x, z] is called an exposed diameter of K)
provided the parallel hyperplanes H and G can be chosen such that H ∩K = {x}
and G∩K = {z} (see [9], [12]). Clearly, a compact convex set may have exposed
points which are not antipodally exposed (like the point x in Figure 1).

ax
K

Figure 1. An exposed point which is not antipodally exposed
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Theorem 2. Any compact convex set K ⊂ Rn distinct from a singleton is the
closed convex hull of its antipodally exposed points.

In what follows, we will need the following lemma.

Lemma 1. No two distinct exposed diameters of a compact convex set K ⊂ Rn

are parallel.

Proof. Assume for a moment that K has a pair of distinct parallel exposed diam-
eters, say [x1, z1] and [x2, z2]. We may suppose that x1 − z1 and x2 − z2 have the
same direction and ‖x1 − z1‖ ≤ ‖x2 − z2‖. Denote by H and G distinct parallel
hyperplanes both supporting K such that H ∩ K = {x1} and G ∩ K = {z1}.
Let [x′

2, z
′
2] be the intersection of the line (x2, z2) and the closed slab between G

and H. Clearly, ‖x′
2 − z′2‖ = ‖x1 − z1‖. Since [x2, z2] ⊂ K, we conclude that

[x2, z2] ⊂ [x′
2, z

′
2]. Then [x2, z2] = [x′

2, z
′
2] because of ‖x1 − z1‖ ≤ ‖x′

2 − z′2‖. Hence
x2 ∈ H and z2 ∈ G. Due to H ∩ K = {x1} and G ∩ K = {z1}, we obtain
[x1, z1] = [x2, z2], in contradiction with the choice of these diameters.

We conclude this section with necessary definitions, notions, and statements (see,
e. g., [19] for general references). In a standard way, bd K, cl K, and int K denote
the boundary, the closure, and the interior of a convex set K ⊂ Rn; the recession
cone of K is defined by

rec K = {y ∈ Rn | x + αy ∈ K for all x ∈ K and α ≥ 0}.

It is well-known that rec K 6= {o} if and only if K is unbounded. The linearity
space lin K of K is given by lin K = (rec K)∩ (−rec K), and K can be expressed
as the direct sum K = lin K ⊕ (K ∩M), where the subspace M is the orthogonal
complement of lin K and K ∩M is a line-free closed convex set

We say that a closed halfspace P of Rn supports K provided the boundary
hyperplane of P supports K and the interior of P is disjoint from K. If the
halfspace P is given by P = {x ∈ Rn | x·f ≥ α} where f is a unit vector and α is
a scalar, then f is called the inward unit normal of P . Closed halfspaces S and
T in Rn are called opposite provided they can be written as

S = {x ∈ Rn | x·g ≥ α} and T = {x ∈ Rn | x·g ≤ β} (1)

for a suitable unit vector g ∈ Rn and scalars α ≥ β. Clearly, the boundary
hyperplanes of opposite halfspaces are parallel. A plane in Rn is a set of the form
F = z + L, where z ∈ Rn and L is a subspace of Rn. For any plane L ⊂ Rn, we
denote by πL(X) the orthogonal projection of a set X ⊂ Rn on L. To distinguish
similarly looking elements, we write 0 for the real number zero, and o for the
origin of Rn.
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2. Proof of Theorem 2

We precede the proof of Theorem 2 by two necessary lemmas. One might observe
that an alternative proof of Lemma 2 can use a duality argument and the fact
that the set of regular points of a convex body K ⊂ Rn is dense in bd K (see
also [15]).

Lemma 2. Let K ⊂ Rn be a compact convex set and f be a unit vector in Rn.
For any ε > 0, there is a closed halfspace P ⊂ Rn such that K ∩ P is a singleton
and the inward unit normal g of P satisfies the inequality ‖f − g‖ ≤ ε.

Proof. Let Q ⊂ Rn be the closed halfspace with inward unit normal f that sup-
ports K. Denote by H the boundary hyperplane of Q. Choose a point v ∈ H∩K,
and let U ⊂ H be an (n−1)-dimensional closed ball with center v and radius δ > 0
such that the orthogonal projection of K on H lies in U . Let l be the line through
v in the direction of f . Then K entirely lies in the both-way infinite cylinder C
with base U and axis l. Choose a closed ball Bρ(c) with center c ∈ l \ Q and
radius ρ > 0 such that K ∪ U ⊂ Bρ(c). Furthermore, we assume that ρ ≥ δ ·sec γ
where γ = 2 arcsin(ε/2). If y is a boundary point of Bρ(c) that lies in C ∩Q and
ey ∈ Rn is the unit vector such that y + ey is the outward unit normal of Bρ(c) at
y, then the inequality ρ ≥ δ ·sec γ easily implies that ‖ey − f‖ ≤ ε.

By continuity, there is a scalar α ≥ 0 such that the ball B = Bρ(c) − αf
contains K and the boundary of B has at least one common point, say x, with K.
Clearly, x ∈ C. Denote by P the closed halfspace of Rn such that B ∩ P = {x}.
By the above, the inward unit normal g of P satisfies the inequality ‖f − g‖ ≤ ε.
Finally, K ∩ P = B ∩ P = {x} implies that K ∩ P is a singleton (that is, x is an
exposed point of K).

Lemma 3. Let K ⊂ Rn be a compact convex set with more than one point and
f be a unit vector in Rn. For any ε > 0, there is a unit vector g ∈ Rn such that
‖f − g‖ ≤ ε and opposite closed halfspaces P and Q both orthogonal to g and
supporting K satisfy the condition that the sets K ∩ S and K ∩ T are distinct
singletons.

Proof. Consider the compact convex set K∗ = K + (−K). By Lemma 2, there is
a closed halfspace P ⊂ Rn such that K∗ ∩ P is a singleton and the inward unit
normal g of P satisfies the inequality ‖f − g‖ ≤ ε. Furthermore, K∗ ∩ P 6= K∗

since K has more than one point. Denote by S and −T the closed halfspaces that
are translates of P and support the sets K and −K, respectively. From

K∗ ∩ P = (K + (−K)) ∩ P = K ∩ S + (−K) ∩ (−T )

we conclude that both sets K ∩S and (−K)∩ (−T ) are singletons. Finally, K ∩S
and K ∩ T are distinct due to K∗ ∩ P 6= K∗.

We start the proof of Theorem 2 by considering the set E of antipodally exposed
points of K. Obviously, cl (conv E) ⊂ K; so it remains to show the opposite
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inclusion. Assume, for contradiction, the existence of a point a ∈ K \ cl (conv E).
By the separation properties of convex sets, there is a closed halfspace Q ⊂ Rn

that contains a and is disjoint from cl (conv E). Denote by Q′ the translate of
Q that supports K. Clearly, Q′ ⊂ Q; so Q′ ∩ cl (conv E) = ∅. We can write
Q′ = {x ∈ Rn | x ·f ≥ γ}, where f is the inward unit normal of Q′ and γ is
a suitable scalar. Since the set cl (conv E) is compact, there is an ε > 0 such
that any closed halfspace P ⊂ Rn with inward unit normal e is disjoint from
cl (conv E) provided P supports K and ‖f − e‖ ≤ ε. By Lemma 3, there is a unit
vector g with ‖f − g‖ ≤ ε and a pair of opposite closed halfspaces S and T of
the form (1) such that K ∩ S and K ∩ T are distinct singletons. If K ∩ S = {u}
and K ∩ T = {v}, then u and v are antipodally exposed points of K. Finally,
S ∩ cl (conv E) = ∅ implies u /∈ cl (conv E), a contradiction. �

3. Proof of Theorem 1

Obviously, 1) ⇒ 2). We start the proof of the converse statement by considering
the case when both K1 and K2 are compact.

Case I. Both K1 and K2 are compact and 2 ≤ m ≤ n− 1.

Since 2) trivially implies 1) when both K1 and K2 are singletons, we may assume,
in what follows, that each of K1 and K2 has more than one point.

A) We consider the case m = n − 1 separately, dividing our consideration into a
sequence of steps.

Step 1. First, we state that for any exposed diameter [x1, z1] of K1 and opposite
closed halfspaces P1 and Q1 of Rn with the property

K1 ∩ P1 = {x1} and K1 ∩Q1 = {z1},

there is an exposed diameter [x2, z2] of K2 parallel to [x1, z1] and opposite closed
halfspaces P2 and Q2 of Rn that are translates of P1 and Q1, respectively, such
that

K2 ∩ P2 = {x2} and K2 ∩Q2 = {z2}.

Indeed, denote by P2 and Q2 some translates of P1 and Q1, respectively, that
support K2. Clearly, P2 ∩ Q2 = ∅. Choose any points x2 ∈ K2 ∩ P2 and z2 ∈
K2 ∩ Q2. Assume for a moment that [x2, z2] is not parallel to [x1, z1]. Then the
line through x1 parallel to [x2, z2] intersects the hyperplane bd Q1 at a point z′1
distinct from z1. Choose in bd Q1 a line l through z1 orthogonal to the line (z1, z

′
1)

and denote by L the hyperplane through z1 orthogonal to l. Clearly, the parallel
(n− 2)-dimensional planes L ∩ bd Pi and L ∩ bd Qi are distinct and support the
orthogonal projection πL(Ki), i = 1, 2, such that

(L ∩ bd P1) ∩ πL(K1) = {πL(x1)}, (L ∩ bd Qi) ∩ πL(K1) = {πL(z1)},
πL(x2) ∈ (L ∩ bd P2) ∩ πL(K2), πL(z2) ∈ (L ∩ bd Q2) ∩ πL(K2).



V. Soltan: Convex Sets with Homothetic Projections 243

By the hypothesis, πL(K1) and πL(K2) are homothetic. Hence there is an exposed
diameter [u, v] of πL(K2) parallel to [πL(x1), πL(z1)] such that

(L ∩ bd P2) ∩ πL(K2) = {u}, (L ∩ bd Q2) ∩ πL(K2) = {v}.

This gives πL(x2) = u and πL(z2) = v, which is impossible because the line
segments [πL(x1), πL(z1)] and [πL(x2), πL(z2)] are not parallel. The obtained con-
tradiction shows that [x2, z2] is parallel to [x1, z1] for any choice of x2 ∈ K2 ∩ P2

and z2 ∈ K2 ∩ Q2. Hence both sets K2 ∩ P2 and K2 ∩ Q2 are singletons, which
implies that [x2, z2] is an exposed diameter of K2 parallel to [x1, z1].

Step 2. Choose an exposed diameter [x0, z0] of K1 and denote by [x′
0, z

′
0] the

exposed diameter of K2 parallel to [x0, z0] (the uniqueness of [x′
0, z

′
0] follows from

Lemma 1). Replacing K1 with K1 − (x0 + z0)/2 and K2 with

λ(K2 − (x′
0 + z′0)/2), λ = ‖x0 − z0‖/‖x′

0 − z′0‖,

we may assume that [x0, z0] is an exposed diameter for both K1 and K2, centered
at o. By Step 1, both K1 and K2 are supported by opposite closed halfspaces P0

and Q0 such that

K1 ∩ P0 = K2 ∩ P0 = {x0}, K1 ∩Q0 = K2 ∩Q0 = {z0}.

Applying, if necessary, a suitable affine transformation, we may assume that both
hyperplanes bd P0 and bd Q0 are orthogonal to [x0, z0]. Clearly, the orthogonal
projections of the transformed sets K1 and K2 on any plane are homothetic.

Step 3. We state that any exposed diameter [x2, z2] of K2 is a translate of a
suitable exposed diameter [x1, z1] of K1.

Since this statement trivially holds when [x2, z2] = [x0, z0], we assume, in what
follows, that [x2, z2] 6= [x0, z0]. Let P2 and Q2 be opposite closed halfspaces of Rn

with the property K2 ∩ P2 = {x2} and K2 ∩ Q2 = {z2}. Denote by P1 and Q1

translates of P2 and Q2, respectively, that support K1. By Step 1, the sets K1∩P1

and K1 ∩ Q1 are singletons, say {x1} and {z1}, such that [x1, z1] and [x2, z2] are
parallel. Clearly, P1 6= P0 6= P2 and Q1 6= Q0 6= Q2, due to [x2, z2] 6= [x0, z0].

Choose a line l ⊂ bd P0 ∩ bd P1 and denote by L the hyperplane through
[x0, z0] orthogonal to l. Clearly, πL(Ki), i = 1, 2, is a compact convex set distinct
from a singleton and bounded by two pairs of parallel (n− 2)-dimensional planes

L ∩ bd P0, L ∩ bd Q0 and L ∩ bd Pi, L ∩ bd Qi.

This shows that both [πL(x0), πL(z0)] and [πL(xi), πL(zi)] are exposed diameters of
πL(Ki), i = 1, 2. Since πL(K1) and πL(K2) are homothetic and share an exposed
diameter [πL(x0), πL(z0)], the set πL(K2) equals one of the sets πL(K1), πL(−K1).
In either case, [πL(x2), πL(z2)] is a translate of [πL(x1), πL(z1)]. Because [x1, z1]
and [x2, z2] are parallel, we conclude that [x2, z2] is a translate of [x1, z1].

Step 4. Our next statement (in continuation of Step 3) is that the exposed diam-
eter [x2, z2] of K2 coincides with [x1, z1] or with [−x1,−z1].
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Indeed, by the proved in Step 3, πL(K2) equals one of the sets πL(K1), πL(−K1);
whence its exposed diameter [πL(x2), πL(z2)] coincides with one of the line seg-
ments [πL(x1), πL(z1)], [πL(−x1), πL(−z1)]. Without loss of generality, we may
assume that

[πL(x2), πL(z2)] = [πL(x1), πL(z1)]. (2)

Let M be the hyperplane through [x0, z0] parallel to the (n−2)-dimensional plane
bd P0 ∩ bd P1. Denote by M ′ a hyperplane (distinct from both L and M) that
contains the (n− 2)-dimensional plane L∩M , and let P ′

i and Q′
i be the opposite

closed halfspaces of Rn both supporting Ki whose boundary hyperplanes bd P ′
i

and bd Q′
i are parallel to M ′, i = 1, 2. Consider the hyperplane L′ through L∩M

that forms an angle of 90◦ with M ′. If π′
L is the orthogonal projection of Rn onto

L′, then the homothetic sets π′
L(K1) and π′

L(K2) have [x0, z0] as a common exposed
diameter, which implies that π′

L(K2) = π′
L(K1) or π′

L(K2) = π′
L(−K1). Clearly,

the equality π′
L(K2) = π′

L(K1) gives P ′
2 = P ′

1, and the equality π′
L(K2) = π′

L(−K1)
gives P ′

2 = −Q′
1.

Assume, for contradiction, that

[x1, z1] 6= [x2, z2] 6= [−x1,−z1].

Due to (2), both lines (x1, x2) and (z1, z2) are parallel to l. Because x2 and z2 are
the only points of contact of K2 with P2 and Q2, respectively, there is an ε1 > 0
so small that if the angle γ between M and M ′ is positive and less than ε1, then
either x1 ∈ int P ′

2 or z1 ∈ int Q′
2. In either case, P ′

1 6= P ′
2 for all γ ∈ ]0, ε1[; whence

π′
L(K2) 6= π′

L(K1) for all γ ∈ ]0, ε1[.
Under assumption (2), we consider two more subcases.

Step 4a. [πL(x2), πL(z2)] = [πL(−z1), πL(−x1)] (see part (i) of Figure 2).

Then −z1 ∈ (x1, x2) and −x1 ∈ (z1, z2). As above, there is a scalar ε2 > 0 so
small that if the angle γ between M and M ′ is positive and less than ε2, then
either −z1 ∈ int P ′

2 or −x1 ∈ int Q′
2. In either case, P ′

2 6= −Q′
1 for all γ ∈ ]0, ε2[;

whence π′
L(K2) 6= π′

L(−K1) for all γ ∈ ]0, ε2[.

M
M ′

`hhhhhhhhhhhho M
M ′

`hhhhhhhhhhhho

(i) (ii)

`

`

x1

z1

`

`

x2

z2

`

`

−z1

−x1

`

`

x1

z1

`

`

x2

z2

`

`

−z1

−x1

Figure 2. Illustration of subcases 4a and 4b

Step 4b. [πL(x2), πL(z2)] 6= [πL(−z1), πL(−x1)] (see part (ii) of Figure 2).

In particular, πL(x2) 6= πL(−z1). Because of K2∩P2 = {x2} and (−K1)∩(−Q1) =
{−z1}, there is a scalar ε3 > 0 such that if the angle γ between M and M ′ is
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positive and less than ε3, then the compact sets K2 ∩ P ′
2 and (−K1) ∩ (−Q′

1) are
small enough: that is, for any points u ∈ K2 ∩ P ′

2 and v ∈ (−K1) ∩ (−Q′
1),

‖u− x2‖ ≤ 1
4
‖πL(x2)− πL(−z1)‖,

‖v − (−z1)‖ ≤ 1
4
‖πL(x2)− πL(−z1)‖.

(3)

By continuity, ε3 can be chosen so small that

‖π′
L(x2)− π′

L(−z1)‖ ≥ 3
4
‖πL(x2)− πL(−z1)‖ (4)

for all γ ∈ ]0, ε3[. Together with

‖π′
L(u)− π′

L(x2)‖ ≤ ‖u− x2‖, ‖π′
L(v)− π′

L(−z1)‖ ≤ ‖v − (−z1)‖,

the inequalities (3) and (4) give

‖π′
L(u)− π′

L(v)‖
≥ ‖π′

L(x2)− π′
L(−z1)‖ − ‖π′

L(u)− π′
L(x2)‖ − ‖π′

L(v)− π′
L(−z1)‖

≥ 3
4
‖πL(x2)− πL(−z1)‖ − ‖u− x2‖ − ‖v − (−z1)‖

≥ 1
4
‖πL(x2)− πL(−z1)‖.

(5)

Since π′
L(K2) is supported by P ′

2 and π′
L(−K1) is supported by −Q′

1, which is a
translate of P ′

2, the inequality (5) shows that the contact sets

π′
L(K2) ∩ P ′

2 = π′
L(K2 ∩ P ′

2),

π′
L(−K1) ∩ (−Q′

1) = π′
L((−K1) ∩ (−Q′

1))

are disjoint for all γ ∈ ]0, ε3[. Hence π′
L(K2) 6= π′

L(−K1) for all γ ∈ ]0, ε3[.
Finally, with ε0 = min{ε1, ε2, ε3}, we have

π′
L(K1) 6= π′

L(K2) 6= π′
L(−K1) for all γ ∈ ]0, ε0[,

in contradiction with the condition that π′
L(K2) equals one of the sets π′

L(K1),
π′

L(−K1). Thus [x2, z2] coincides with [x1, z1] or with [−x1,−z1].

Step 5. Our concluding statement (in continuation of Step 4) is that K2 = K1 or
K2 = −K1.

Indeed, assume for a moment that K1 6= K2 6= −K1. Since K1 6= K2, Theorem 2
implies that K1 has an exposed diameter [u1, v1] that is not an exposed diameter
of K2. Then Step 4 implies that [−v1,−u1] is a common exposed diameter of
K2 and −K1. In particular, [u1, v1] 6= [−v1,−u1]. Similarly, K2 6= −K1 implies
the existence of an exposed diameter [−v0,−u0] of −K1 which is not an exposed
diameter of K2, while [u0, v0] is a common exposed diameter of K1 and K2. Again,
[u0, v0] 6= [−v0,−u0]. By Lemma 1, [u0, v0] and [u1, v1] are not parallel.

Denote by w the middle point of [u0, v0] and consider the sets K ′
1 = K1 − w

and K ′
2 = K2 − w. We observe that w 6= o because of [u0, v0] 6= [−v0,−u0]. The

origin o is the middle point of the exposed diameter [u0 −w, v0 −w] of K ′
1, which

is also an exposed diameter of K ′
2. By Step 4 (with [u0, v0] instead of [x0, z0]), we
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see that every exposed diameter of K ′
2 is an exposed diameter of K ′

1 or −K ′
1. In

particular, the exposed diameter [−v1 −w,−u1 −w] of K ′
2 should coincide either

with the exposed diameter [u1 − w, v1 − w] of K ′
1 or with the exposed diameter

[−v1 + w,−u1 + w] of −K ′
1.

On the other hand,

[−v1 − w,−u1 − w] 6= [u1 − w, v1 − w]

due to [−v1,−u1] 6= [u1, v1], and

[−v1 − w,−u1 − w] 6= [−v1 + w,−u1 + w]

because of w 6= o. The obtained contradiction shows that K2 = K1 or K2 = −K1,
which concludes the proof of Case I for m = n− 1.

B) Now we assume that 2 ≤ m < n − 1. Let M ⊂ Rn be a plane of dimension
m+1. For any plane L ⊂ M of dimension m, we can express πL as the composition
πL = π′◦πM , where π′ is the orthogonal projection of M onto L. This observation
and condition 2) of the theorem imply that the orthogonal projections of the sets
πM(K1) and πM(K2) on every m-dimensional plane L ⊂ M are homothetic. By
the proved above (with m + 1 instead of n), the sets πM(K1) and πM(K2) are
homothetic. Since this argument holds for every (m + 1)-dimensional plane in
Rn, we can replace m with m + 1 in condition 2) of the theorem. Repeating this
argument finitely many times, we see that the orthogonal projections of K1 and
K2 on each hyperplane of Rn are homothetic. By the proved above, K1 and K2

are homothetic themselves.

Case II. At least one of the sets K1 and K2 is unbounded and 3 ≤ m ≤ n− 1.

Let, for example, K1 be unbounded. Then rec K1 6= {o}. Choose a closed halfline
h with apex o that lies in rec K1 and an m-dimensional subspace L that contains
h. Then h ⊂ rec πL(K1), which shows that πL(K1) is unbounded. Since πL(K2)
is homothetic to πL(K1), the set π(K2) is also unbounded, which implies that K2

is unbounded.

Step 6. We state that lin K1 = lin K2.

Indeed, assume, for example, that lin K1 contains a line l through o that does not
belong to lin K2. Then l does not lie entirely in rec K2, since otherwise l would
belong to lin K2. Let h be a halfline of l with apex o that does not lie in rec K2.
Because rec K2 is a closed convex cone with apex o, there is a closed halfspace
Q that contains rec K2 and is disjoint from h \ {o}. Clearly, o ∈ bd Q. Choose
an (n − m)-dimensional subspace N in bd Q, and denote by L the orthogonal
complement to N . Clearly, the line πL(l) lies in rec πL(K1) and does not lie
in rec πL(K2), which belongs to L ∩ Q. The last is impossible because πL(K1)
and πL(K2) are homothetic by condition 2). Hence lin K1 ⊂ lin K2. Similarly,
lin K2 ⊂ lin K1.

Step 7. Due to Step 6, both K1 and K2 can be expressed as

K1 = lin K1 ⊕ (K1 ∩M), K2 = lin K1 ⊕ (K2 ∩M), (6)
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where the subspace M is the orthogonal complement of lin K1 and both sets
K1 ∩M and K2 ∩M are line-free.

First assume that dim M ≤ m. In this case, we choose an m-dimensional
subspace L ⊂ Rn that contains M . Clearly,

πL(Ki) = (lin K1 ∩ L)⊕ (Ki ∩M), i = 1, 2.

Then K1∩M and K2∩M are homothetic because the sets πL(K1) and πL(K2) are
homothetic by the hypothesis. This and (6) imply that K1 and K2 are homothetic
themselves.

Now assume that dim M > m. Since K1∩M is line-free, it contains an exposed
point x. Translating K1 on the vector −x, we may assume that o is an exposed
point of K1. Let N be a subspace of M of dimension dim M − 1 that supports
K1 ∩ M such that N ∩ (K1 ∩ M) = {o}. Denote by N+ and N− the opposite
closed halfplanes of M bounded by N . Let, for example, K1 ∩M ⊂ N+. Denote
by l the 1-dimensional subspace of M orthogonal to N . Choose an m-dimensional
subspace S of M that contains l. By the above, πS(K1 ∩M) ⊂ S ∩N+.

Step 7a. If πS(K2∩M) is positively homothetic to πS(K1∩M), then the recession
cones of πS(K1 ∩ M) and πS(K2 ∩ M) coincide. This shows that for any other
m-dimensional subspace S ′ of M that contains l, the orthogonal projections of
K1 ∩ M and K2 ∩ M on S ′ are positively homothetic. Since m ≥ 3, it follows
from [14] that K1∩M and K2∩M are positively homothetic, and (6) implies that
K1 and K2 are positively homothetic themselves.

Step 7b. If πS(K2∩M) is negatively homothetic to πS(K1∩M), then the recession
cones of πS(K1 ∩ M) and πS(K2 ∩ M) are symmetric about o. This shows that
for any other m-dimensional subspaces S ′ of M that contains l, the orthogonal
projections of K1∩M and K2∩M on S ′ are negatively homothetic. Since m ≥ 3,
it follows from [14] that K1 ∩M and K2 ∩M are negatively homothetic, and (6)
implies that K1 and K2 are negatively homothetic themselves. �

4. Proof of Corollary 1

Because 1) obviously implies 2), it remains to show that 2) ⇒ 1). Let compact
convex sets K1 and K2 in Rn satisfy condition 2) of the corollary. Choose any
2-dimensional subspace L ⊂ Rn. Since dim (L + S) ≤ r + 2 ≤ m, there is an
m-dimensional subspace M that contains L + S. By condition 2), πM(K1) and
πM(K2) are homothetic. This implies that the orthogonal projections of the sets
πM(K1) and πM(K2) onto L are homothetic. Because πL = π′ ◦ πM , where π′ is
the orthogonal projection of M onto L, we conclude that πL(K1) and πL(K2) are
homothetic. Now Theorem 1 (with m = 2) implies that K1 and K2 are homothetic
themselves.

If K1 and K2 are closed convex sets that satisfy condition 2) of the corollary,
then, repeating the argument above, with any 3-dimensional subspace L ⊂ Rn

and the respective inequality dim (L + S) ≤ r + 3 ≤ m, we obtain the homothety
of K1 and K2.
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