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Abstract. Let G/P be a generalized flag variety, where G is a complex
semisimple connected Lie group and P ⊂ G a parabolic subgroup. Let
also X ⊂ G/P be a Schubert variety. We consider the canonical embed-
ding of X into a projective space, which is obtained by identifying G/P
with a coadjoint orbit of the compact Lie group K, where G = KC. The
maximal torus T of K acts linearly on the projective space and it leaves
X invariant: let Ψ : X → Lie(T )∗ be the restriction of the moment map
relative to the Fubini-Study symplectic form. By a theorem of Atiyah,
Ψ(X) is a convex polytope in Lie(T )∗. In this paper we show that all
pre-images Ψ−1(µ), µ ∈ Ψ(X), are connected subspaces of X. We then
consider a one-dimensional subtorus S ⊂ T , and the map f : X → R,
which is the restriction of the S moment map to X. We study quotients
of the form f−1(r)/S, where r ∈ R. We show that under certain as-
sumptions concerning X, S, and r, these symplectic quotients are (new)
examples of spaces for which the Kirwan surjectivity theorem and Tol-
man and Weitsman’s presentation of the kernel of the Kirwan map hold
true (combined with a theorem of Goresky, Kottwitz, and MacPherson,
these results lead to an explicit description of the cohomology ring of the
quotient). The singular Schubert variety in the Grassmannian G2(C4)
of 2 planes in C4 is discussed in detail.
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1. Introduction

Let K be a compact connected semisimple Lie group and T ⊂ K a maximal torus.
We also consider the complexification G of K and P ⊂ G a parabolic subgroup. In
this paper we study Schubert varieties in the flag manifold G/P . More specifically,
any such variety X is T invariant and admits canonical T equivariant embeddings
into projective spaces with linear T actions: we will be interested in the symplectic
quotients of X induced by the action of T . We need to give more details in order
to be able to state the results. Let us denote by R the roots of K relative to T
and by R+ the set of all positive roots with respect to a certain choice of a simple
root system. Let also k, g, t denote the Lie algebras of K, G, respectively T . We
may assume that the Lie algebra of P is tC⊕

⊕
gα, where α ∈ R+∪ (−R+

P ). Here
gα is the root space of α and R+

P is a certain subset of R+ canonically associated
to P (cf. [7, Section 23.3]). Let WP denote the subgroup of W generated by all
reflections sα, with α ∈ R+

P . The Schubert cells in G/P give a cell decomposition
of this space. They are labeled by the quotient W/WP . Namely, let us consider
the Borel subgroup B of G whose Lie algebra is tC ⊕

⊕
α∈R+ gα. The Schubert

cells are the B orbits BwP/P , where w ∈ W/WP . To any such w corresponds
the Schubert variety

X(w) = BwP/P .

In the equation above, the closure is taken relative to the differential topology of
G/P : we will see that both G/P and X(w) are (Zariski closed) subvarieties of
the same projective space. Such projective embeddings are constructed as follows.
Let us first pick a dominant weight λ ∈ t∗ such that

R+
P = {α ∈ R+ : λ(α∨) = 0}.

Here {α∨ : α ∈ R} denotes the root system dual to R. Then we have

P = Pλ,

that is, the Lie subgroup of G whose Lie algebra is tC⊕
⊕

α∈R,λ(α∨)≥0 gα. Let χλ :

Pλ → C∗ be the group homomorphism whose differential d(χλ)e : Lie(Pλ) → C is
the composition of λ⊗C (regarded as a C-linear function on tC) with the natural
projection Lie(Pλ) → Lie(TC). Consider the line bundle Lλ over G/Pλ whose total
space is G× C/Pλ, where h.(g, z) := (gh−1, χ−1

λ (h)z), for h ∈ Pλ, (g, z) ∈ G× C.
One can show that Lλ is very ample. More concretely, one can embed G/Pλ

into P(Vλ) as a G orbit, in such a way that Lλ is the restriction to G/Pλ of the
hyperplane bundle over P(Vλ). Here Vλ = Γhol(G/Pλ, Lλ)

∗ is the irreducible rep-
resentation of K of highest weight λ: this is the content of the Borel-Weil theorem
(see e.g. [5, Section 4.12], [17, Chapter V]). The action of B on P(Vλ) is linear,
thus the Schubert variety X(w) defined above is a (Zariski closed) subvariety of
P(Vλ). Note that X(w) is in general not smooth. The singularities of Schubert
varieties have been intensively investigated (see for instance the survey [3]). For
instance, by a theorem of Ramanathan [25], X(w) has rational singularities.
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We equip P(Vλ) with the Fubini-Study symplectic form. A moment map of
the T action is Ψ : P(Vλ) → t∗, whose component along ξ ∈ t is given by

Ψξ([v]) =
i

2π

(ξv) · v
v · v

,

for all v ∈ Vλ \ {0}. Here “·” is a K-invariant Hermitian inner product on Vλ,
which is uniquely determined up to a non-zero factor; the vector ξv ∈ Vλ arises
from the infinitesimal automorphism of Vλ induced by ξ. As already mentioned,
we will study symplectic quotients of X(w) relative to Ψ|X(w). Of course this map
is the same as the restriction of Ψ|G/Pλ

to X(w). This observation is useful to us,
since Ψ|G/Pλ

is well understood. Namely, we identify

G/Pλ = Oλ, (1)

where Oλ := Ad∗(K)λ is the coadjoint orbit of λ. More precisely, there is a diffeo-
morphism Oλ → G/Pλ with the property that the pull-back of the Fubini-Study
symplectic form on G/Pλ (see above) is just Kirillov-Kostant-Souriau symplectic
form on Oλ. We deduce that we have Ψ|G/Pλ

= Φ, where Φ is given by

Φ : Oλ ↪→ k∗ → t∗,

which is the composition of the inclusion map with the restriction map. The
details of this discussion can be found for instance in [17, Chapter V].

The identification (1) leads us to the following approach: the coadjoint orbit
Oλ admits an action of G and the Schubert cells are the orbits of the induced
B action. To be more precise, we consider the natural action of the Weyl group
W = NK(T )/T on t∗ and the orbit Wλ = W/Wλ, which is contained in Oλ. Then
the Schubert cells are Bwλ and the Schubert varieties are

X(w) = Bwλ,

for all w ∈ W (the closure is relative to the standard topology of Oλ). Thus, what
we actually study in this paper are symplectic quotients of X(w) relative to the
T moment map Φ : Oλ → t∗.

We also consider a circle S ⊂ T and the moment map of the S action on Oλ:
this is just the composition of Φ with the restriction map t∗ → Lie(S)∗. More
precisely, let us consider a ∈ t such that S = exp(Ra). In fact, a is an element of
the integral lattice of T , that is, ker(exp : t → T ). We can also assume that a is
not an integer multiple of any other integral element. Denote by ν the element of
the dual space (Ra)∗ determined by ν(a) = 1. Then the S moment map of Oλ is
Φaν : Oλ → (Ra)∗ = Rν, where Φa denotes the evaluation of Φ at a.

Let us fix a Schubert variety X = X(w), where w ∈ W . We study the
topology of the quotients

(Φ−1(µ) ∩X)/T and (Φ−1
a (r0) ∩X)/S,

where µ ∈ Φ(X) and r0 ∈ Φa(X). In the case where X is non-singular, these
spaces are symplectic quotients of X. If X does have singularities, we can choose
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µ and r0 such that Φ−1(µ) and Φ−1
a (r0) are contained in X \ Sing(X). The two

quotients are symplectic quotients of the latter space, which is a (non-compact)
Kähler manifold. The assumption above will not be in force everywhere in this
paper.

Remark. Such quotients could be relevant for the study of the Demazure (B)-
module Vw(λ) (cf. [4]). Guillemin and Sternberg used “quantization commutes
with reduction” to prove the following result: if a weight vector µ occurs among
the weights of the K representation Vλ (irreducible of highest weight λ, see above),
then µ is contained in Φ(Oλ); moreover, the multiplicity of µ is equal to the di-
mension of the space of sections of the line bundle induced by Lλ on the symplectic
quotient Φ−1(µ)/T (cf. [11], [28]). Now the Demazure module Vw(λ) is the dual of
the space of sections H0(X,Lλ|X) with the canonical B action (see [4, Corollary
3.3.11]). We can expect again that if the weight vector µ is a weight of Vw(λ),
then µ is in Φ(X) (see also Remark 1 below) and the multiplicity of µ is equal
to the dimension of the space of sections of the line bundle induced by Lλ on
(Φ−1(µ) ∩ X)/T . This is certainly not an obvious result. First, because X is
not smooth: however, we could use Teleman’s [29] “quantization commutes with
reduction” theorem, which holds for linear group actions on projective varieties
which have rational singularities (Schubert varieties do have this property). Sec-
ond, the Borel subgroup B is not reductive: Ion [18] was able to overcome this
and obtain geometric formulas for the multiplicities of the weights of Vw(λ) by
extending methods which had been used previously by Mirković and Vilonen in
the context of representations of reductive Lie groups. We will not explore such
phenomena in this paper.

Our first result states (or rather implies) that the quotients defined above are
connected. Note that the result holds without any assumption on µ or r0.

Theorem 1.1. All preimages Φ−1(µ) ∩ X, µ ∈ Φ(X), and Φ−1
a (r0) ∩ X, r0 ∈

Φa(X), are connected.

Remark 1. 1. This theorem is related to the convexity theorem for Hamiltonian
torus actions on symplectic manifolds of Atiyah and Guillemin-Sternberg. Namely,
Atiyah’s proof of the latter result uses the fact that all preimages of the moment
map are connected (cf. [1], see also [22, Section 5.5]). In the same paper [1], he
shows that if X and Φ are as above, then Φ(X) is the convex hull of the set Φ(XT )
in t∗. Since X is in general not smooth, the argument involving the connectivity of
the preimages cannot be used: instead, Atiyah uses a convexity result for closures
of TC orbits on Kähler manifolds. It would be interesting to find a proof of the
convexity of Φ(X) which uses Theorem 1.1.

Remark 2. Here is a simpler proof of the connectivity of Φ−1(µ), under the
assumption that µ is a weight vector in t∗. Let us consider the character χµ :
TC → C∗ induced by µ and the twisted action of TC on the line bundle Lλ (see
above), which is defined as follows:

t.[(g, z)] := [(gt−1, χµ(t)−1z)],
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for all t ∈ TC, g ∈ G, and z ∈ C. Let Xss(Lλ)/T
C be the corresponding Ge-

ometric Invariant Theory (shortly GIT) quotient (here Xss(Lλ) is the space of
semistable points of the pair (X,Lλ)). It is homeomorphic to the symplectic quo-
tient (Φ−1(µ) ∩X)/T , by a theorem of Kirwan and Ness (see e.g. [15, Section 1]
and [16, Section 2]). The GIT quotient is connected, because Xss(Lλ) is connected
(in turn, this follows from the fact that X is an irreducible projective variety and
Xss(Lλ) is Zariski open in X). Thus (Φ−1(µ)∩X)/T is connected. Consequently,
Φ−1(µ)∩X is connected as well. Note that this proof works only in the case where
µ is a weight vector. We wanted to mention it because the proof of Theorem 1.1
(see Section 2 below) does use these ingredients, together with some others, most
importantly a theorem of Heinzner and Migliorini [14]. Everything we said here
remains true if we replace T by S and µ by an integer number n.

The cohomology of GIT quotients of smooth projective varieties has been exten-
sively investigated during the past two decades, starting with the seminal work of
Kirwan [19]. By contrary, little seems to be known in this respect about quotients
of singular varieties equipped with algebraic group actions. Except the results of
[20] (where the intersection cohomology is discussed), we are not aware of any
other approaches concerning this topic. The next two theorems give a description
of the ordinary (i.e. singular) cohomology1 ring of the symplectic quotients

X//λS(r0) := (Φ−1
a (r0) ∩X)/S.

We can only do that under certain restrictions on a, r0, λ, and w.

Assumption 1. (concerning a) The vector −a is in the (interior of the) funda-
mental Weyl chamber of t. The numbers Φa(vλ), vλ ∈ Wλ, are any two distinct.

One consequence of this is that the fixed point set OS
λ is given by

OS
λ = OT

λ = Wλ.

Thus, for our Schubert variety X = X(w) we have

XS = XT = Wλ ∩X.

Assumption 1 also implies that the unstable manifolds of Φa relative to the Kähler
metric on Oλ are just the Bruhat cells (cf. e.g. [6]). This will allow us to use Morse
theory for the restriction of Φa to X \ Sing(X), which is one of the main tools we
will be employing in our proofs: for instance, we will show that the critical points
of this function are in Wλ (see Lemma 3.1).

An important instrument will be the Kirwan map

κ : H∗
S(X) → H∗

S(Φ−1
a (r0) ∩X).

1All cohomology rings will be with coefficients in R.
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The domain of this map can be described as follows. We start with a Goresky-
Kottwitz-MacPherson [8] type presentation of the ring H∗

T (Oλ) (cf. [8]): the map

H∗
T (Oλ) → H∗

T (OT
λ ) =

⊕
vλ∈Wλ

H∗
T (pt)

induced by the inclusion OT
λ ⊂ Oλ is injective and we know exactly its image (see

for instance [9, Section 2.3] or the discussion preceding Lemma 3.4 below). The
action of T on X is equivariantly formal, by [8, Section 1.2]: indeed, any of the
Bruhat cells in the CW decomposition of X is T invariant. Since X is a closed
TC invariant subvariety of Oλ, the GKM description of H∗

T (Oλ) yields readily a
similar description of the ring H∗

T (X), as the image of the (injective) map

∗ : H∗
T (X) → H∗

T (XS) =
⊕

vλ∈XS

H∗
T (pt) (2)

induced by the inclusion  : XS → X. The image of ∗ is described in terms of
the moment graph of X. The vertices of this graph are the elements of the set
XS = Wλ ∩ X. If γ ∈ Φ+ and v ∈ W such that vλ 6= sγvλ and both vλ and
sγvλ are in X, then we join the vertices vλ and sγvλ by an edge, which is labeled
with γ. Denote by Γ the resulting graph. The image of ∗ consists of all ordered
sets (pvλ)vλ∈XS where pvλ ∈ S(t∗), which are admissible relative to Γ: by this we
mean that if vλ and uλ are joined by an edge with label γ, then the difference
pvλ − puλ is divisible by γ (cf. e.g. [9], see also the discussion preceding Lemma
3.4 below). Now because the action of T on X is equivariantly formal, the map
H∗

T (X) → H∗
S(X) is surjective. The image of the injective map

H∗
S(X) → H∗

S(XS) =
⊕

vλ∈XS

H∗
S(pt)

is obtained from the image of the map given by (2) by projecting it via the
canonical map

H∗
T (pt) = Symm(t∗) → Symm((Ra)∗) = H∗

S(pt).

If X were smooth and r0 a regular value of Φa|X , we could determine the ring
H∗(X//λS(r0)) as follows: use that the action of S on Φ−1

a (r0) is locally free, which
implies that we have the ring isomorphism H∗

S(Φ−1
a (r0) ∩ X) ' H∗(X//λS(r0));

then use that κ is surjective (cf. Kirwan [19]), and the Tolman-Weitsman [27]
description of kerκ. In the second part of this paper we give examples of non-
smooth Schubert varieties for which this program still works. Namely, they must
satisfy the following assumptions.

Assumption 2. (concerning X) The singular set of X consists of one single
point, that is, we have

Sing(X) = {λ}.
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For example, let us consider the Grassmannian G2(Cn) of 2-planes in Cn. Take p
an integer such that 4 ≤ p ≤ n. The Schubert variety

X = {V ∈ G2(Cn) : dim(V ∩ C2) ≥ 1, dim(V ∩ Cp) ≥ 2}

has one singular point (to prove this, we use [3, Theorem 9.3.1]). The case n =
p = 4 will be discussed in detail in the last section of the paper.

We will also need an assumption concerning r0. This is expressed in terms of
the moment graph of X (see above). We note that, by Assumption 1, the points
λ and wλ are the global minimum point, respectively the global maximum point
of Φa|X . Let us remove from the graph Γ all vertices vλ with Φa(vλ) < r0, as
well as any edge with at least one endpoint at such a vertex. Denote by Γr0 the
resulting graph.

Assumption 3. (concerning r0)
(i) The number r0 is in Φa(X) \ Φa(X

S).

(ii) If the ordered set (p′uλ)uλ∈XS ,Φa(uλ)>r0
is admissible relative to Γr0 , then

there exists an ordered set (pvλ)vλ∈XS which is admissible relative to Γ and
puλ = p′uλ whenever Φa(uλ) > r0.

The second point of this assumption seems to be hard to verify. We can always
find r0 for which this condition is satisfied. This happens for instance when r0 is
“high enough”, such that Γr0 consists of only one point, that is, Γr0 = {wλ}: an
extension (pvλ)vλ∈XS of the polynomial p′wλ is given by pvλ = p′wλ for all vλ ∈ Wλ.
However, we will see in the last section an example where there exist numbers r0
such that Γr0 has more than one vertex and Assumption 3 (ii) is satisfied.

These assumptions will allow us to prove the Kirwan surjectivity theorem for
κ.

Theorem 1.2. (Kirwan surjectivity) If Assumptions 1, 2, and 3 are satisfied,
then the map κ is surjective.

To determine the cohomology of our quotient, we first notice that, by Assumption
3, point (i), r0 is a regular value of the map Φa restricted to X \ {λ} (see also
Lemma 3.1 below). This space is a Kähler S invariant submanifold of Oλ and
Φa|X\{λ} is a moment map. Thus the action of S on the level Φ−1

a (r0) ∩ X is
locally free and we have

H∗
S(Φ−1

a (r0) ∩X) ' H∗(X//λS(r0)).

We also deduce that our quotient X//λS(r0) has at most orbifold singularities. A
complete description of the ring H∗(X//λS(r0)) will be obtained after finding the
kernel of κ. This is done by the following theorem.

Theorem 1.3. (The Tolman-Weitsman kernel) If Assumptions 1, 2, and 3 are
satisfied, then the kernel of κ is equal to K− + K+. Here K− consists of all
α ∈ H∗

S(X) such that

α|vλ = 0, for all vλ ∈ XS with Φa(vλ) < r0,

and K+ is defined similarly (the last condition is Φa(vλ) > r0).
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Here, by α|vλ we have denoted the image of α under the map H∗
S(X) → H∗

S({vλ})
induced by the inclusion {vλ} → X.

Remark. The space X//λS(r0) is a symplectic quotient of the Kähler manifold
X \ {λ} with respect to the S action. However, Theorems 1.2 and 1.3 are not
direct consequences of the classical results known in this context. For example,
the surjectivity of κ is not a consequence of Kirwan’s surjectivity theorem (cf. [19],
[27]): indeed, the restriction of the moment map Φa to X \ {λ} is not a proper
map (because it is bounded, as Φa(Oλ) is a bounded subset of R). Thus we cannot
use Morse theory for (Φa − r0)

2 on X \ {λ}. We use instead the restriction of the
function Φa and its properties, like the fact that its critical set is XS \{λ} and its
unstable manifolds are Bruhat cells (see Section 3 below). To understand exactly
why is each of the three assumptions necessary for our development, one can see
the remark at the end of Section 3.

Acknowledgements. I wanted to thank Lisa Jeffrey for discussions concerning
the topics of the paper. I am also grateful to the referee for carefully reading the
manuscript and suggesting many improvements.

2. Connectivity of the levels of Φ

In this section we will be concerned with Theorem 1.1. We mention that a similar
connectivity result (for Schubert varieties in loop groups) has been proved in [13,
Section 3], by using essentially the same arguments as here.

We start with some general considerations. Let Y be a Kähler manifold acted
on holomorphically by a compact torus T . Assume that T preserves the Kähler
structure and the action of T is Hamiltonian. Let Ψ : Y → Lie(T )∗ be any moment
map. A point y ∈ Y is called Ψ-semistable if the intersection TCy ∩ Ψ−1(0) is
non-empty, where TC is the complexification of T and TCy is the closure of the
orbit of y. We denote by Y ss(Ψ) the space of all Ψ-semistable points of Y . We
also choose an inner product on t, denote by ‖ · ‖ the corresponding norm, and
consider the function ‖Ψ‖2 : Y → R. We denote by Y min(‖Ψ‖2) the minimum
stratum of ‖Ψ‖2, that is, the space of all points y ∈ Y with the property that
the ω-limit of the integral curve through y of the negative gradient vector field
−grad(‖Ψ‖2) is contained in Ψ−1(0). The following result is a direct consequence
of [19, Theorem 6.18].

Theorem 2.1. (Kirwan) We have

Y ss(Ψ) = Y min(‖Ψ‖2).

There is another version of the notion of semistability, which is defined as follows.
Let us assume that Y is a smooth projective variety. We endow Y with the Kähler
structure induced by its projective embedding. Let L be a TC equivariant ample
line bundle on Y . A point y ∈ Y is called L-semistable if there exists an integer
number n ≥ 1 and a TC equivariant section s of L⊗n such that s(y) 6= 0. We
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denote by Y ss(L) the set of all L-semistable points in Y . The following theorem
has been proved by Heinzner and Migliorini [14].

Theorem 2.2. (Heinzner and Migliorini) If Y is a smooth projective variety with
a holomorphic action of T which preserves the Kähler form and Ψ : Y → t∗ is a
moment map, then there exists a very ample TC equivariant line bundle L on Y
such that

Y ss(Ψ) = Y ss(L).

The two theorems above will allow us to prove Theorem 1.1, as follows.

Proof of Theorem 1.1. We take µ ∈ Φ(X) and show t hat Φ−1(µ)∩X is connected.
To this end, we consider the function g : Oλ → R, g(x) = ‖Φ(x) − µ‖2. By
Theorem 2.1, we have

Omin
λ (g) = Oss

λ (Φ− µ).

Since the action of T on P(Vλ) is linear, it is holomorphic and it leaves the Fubini-
Study symplectic form invariant. By Theorem 2.2, there exists a TC-equivariant
very ample line bundle L on Oλ such that

Oss
λ (Φ− µ) = Oss

λ (L).

The semistable set of X ⊂ Oλ with respect to the line bundle L|X is

Xss(L|X) = Oss
λ (L) ∩X.

This is a Zariski open subspace of X. The Schubert variety X = Bwλ is ir-
reducible: indeed, since B is connected, the orbit Bwλ is an irreducible locally
closed projective variety. Consequently, Xss(L|X) is a connected topological sub-
space of X relative to the differential topology (by [24, Corollary 4.16]). We will
need the following claim.

Claim. The space Xss(L|X) = Omin
λ (g)∩X contains g−1(0)∩X as a deformation

retract.

To prove this, let us first consider the flow σt, t ∈ R, on Oλ induced by the vector
field −gradg (the gradient is relative to the Kähler metric on Oλ). By a theorem
of Duistermaat (see for instance [21, Theorem 1.1]), the map

[0,∞]×Omin
λ (g) → Omin

λ (g), (t, x) 7→ σt(x)

is a deformation retract of Omin
λ (g) to g−1(0). The claim follows from the fact

that for any t ∈ [0,∞), the automorphism σt of Oλ leaves Bwλ, hence also
X = X(w) = Bwλ, invariant. Indeed, for any x ∈ Bwλ, we have

(gradg)x = 2Jx((Φ(x)− µ).x), (3)

where Jx denotes the complex structure of Oλ at x. In the equation above, we use
the inner product on t to identify Φ(x)− µ with an element of t; this induces the
infinitesimal tangent vector (Φ(x) − µ).x at x (cf. [19, Lemma 6.6.]). Equation
(3) implies that the vector (gradg)x is tangent to Bwλ, as this space is a complex
TC invariant submanifold of Oλ. The claim is proved.

The claim implies that the space g−1(0) ∩X = Φ−1(µ) ∩X is connected.
The fact that Φ−1

a (r0) ∩X is connected can be proved in a similar way. �
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3. Kirwan surjectivity and the Tolman-Weitsman kernel via Morse the-
ory

Assumptions 1, 2, and 3 are in force throughout this section. We will prove
Theorems 1.2 and 1.3. To this end, let us consider the function

f := Φa|X : X → R.

The main instrument of our proofs will be Morse theory for the function f re-
stricted to X \ {λ}. This space is a smooth, non-compact submanifold of the
orbit Oλ. Its tangent space at any of its points is a complex vector subspace of
the tangent space to Oλ = G/Pλ at that point (since X is a complex subvariety of
G/Pλ). Thus the restriction of the canonical Kähler structure of Oλ (cf. e.g. [1,
Section 4]) to X \ {λ} makes the latter space into a Kähler manifold. We denote
by 〈 , 〉 the corresponding Riemannian metric. We start with the following lemma,
which is a consequence of Assumption 1.

Lemma 3.1. The critical set of f restricted to X \ {λ} is Wλ ∩ X \ {λ}. All
critical points are non-degenerate.

Proof. Let ψt : Oλ → Oλ, t ∈ R, denote the flow on Oλ determined by the
gradient vector field gradΦa with respect to the Kähler metric. The fixed points
of this flow are the critical points of Φa, that is, the elements of Wλ. If vλ is
such a point, we consider the unstable manifold {x ∈ Oλ | limt→∞ ψt(x) = vλ}.
This is the same as the Bruhat cell Bvλ (see [1, Section 4]). Consequently, for
any t ∈ R, the automorphism ψt of Oλ leaves each Bruhat cell invariant. Thus it
leaves X \ {λ} invariant (since this space is a union of Bruhat cells). We deduce
that the vector field gradΦa is tangent to X \ {λ} at any of its points. Its value
at any such point x must be the same as (gradf)x. In conclusion, the critical
points mentioned in the lemma are those points x ∈ X \ {λ} with the property
that (gradΦa)x = 0. This condition is equivalent to x ∈ Wλ.

The last assertion in the lemma follows from the fact that f is a moment map
of the S action on X \ {λ}. Thus, it is a Morse function (cf. e.g. [19, p. 39]). �

For any number r we denote

X−
r := f−1((−∞, r)), X+

r := f−1((r,∞)).

Since the function Φa and the subspace X of Oλ are S invariant, X− and X+ are
S invariant subspaces of X. If α ∈ H∗

S(X) and A is an S invariant subspace of
X, we denote by α|A the image of α under the map H∗

S(X) → H∗
S(A) induced by

the inclusion A→ X. We are now ready to state our next lemma.

Lemma 3.2. Take ε > 0 such that f(λ) < r0 − ε and the intersection f−1([r0 −
ε, r0 + ε]) ∩XS is empty. Then we have

kerκ = K ′
− +K ′

+ (4)
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where we have denoted

K ′
− = {α ∈ H∗

S(X) : α|X−
r0+ε/3

= 0},

and
K ′

+ = {α ∈ H∗
S(X) : α|X+

r0−ε/3
= 0}.

Proof. To simplify notations, put X− := X−
r0+ ε

3
, X+ := X+

r0− ε
3
. Both K ′

−
and K ′

+, hence also their sum, are evidently contained in kerκ. We show that
kerκ ⊂ K ′

− +K ′
+. To this end, we need the following claim.

Claim. The space X− ∩ X+ = f−1((r0 − ε
3
, r0 + ε

3
)) contains f−1(r0) as an S-

equivariant deformation retract.

The idea of the proof is to deform f−1((r0 − ε
3
, r0 + ε

3
)) onto f−1(r0) in X \ {λ}

along the gradient lines of the function f |X\{λ}. This is possible since the preimage
f−1([r0−ε, r0 +ε])∩X \{λ} = f−1([r0−ε, r0 +ε]) is compact and does not contain
any critical points of f (by Lemma 3.1). The arguments we will employ in what
follows are standard (see for instance [23, Proof of Theorem 3.1]). Here are the
details of the construction. We start with a smooth function F : R → R such
that:

• F (s) = 1 for s ∈ (r0 − 2ε
3
, r0 + 2ε

3
)

• F (s) = 0 for s outside the interval [r0 − ε, r0 + ε].

We then consider the function ρ : X \ {λ} → R given by ρ(x) = F (f(x))
‖(gradf)x‖2 , for all

x ∈ X \ {λ} (here ‖ · ‖ is the norm induced by the Kähler metric). The vector
field ρgradf on X \ {λ} vanishes outside the compact set f−1([r0 − ε, r0 + ε]). By
[23, Lemma 2.4], it generates a flow φt, t ∈ R, on X \ {λ}. For any x ∈ X \ {λ}
and any t ∈ R we have

d

dt
f(φt(x)) = 〈(gradf)φt(x), ρ(φt(x))(gradf)φt(x)〉 = F (f(φt(x))).

Assume that x ∈ f−1((r0 − ε
3
, r0 + ε

3
)). Then we have

f(φt(x)) = t+ f(x)

for all t ∈ (− ε
3
, ε

3
) (the reason is that both sides of the equation represent solutions

of the same initial value problem). Then

Rτ (x) := φτ(r0−f(x))(x),

τ ∈ [0, 1], x ∈ f−1((r0 − ε
3
, r0 + ε

3
)), defines a deformation retract of f−1((r0 −

ε
3
, r0 + ε

3
)) onto f−1(r0). It only remains to show that for any τ ∈ [0, 1], the map

Rτ from f−1((r0 − ε
3
, r0 + ε

3
)) to itself is S-equivariant. This follows from the fact

that for any t ∈ R, the automorphism φt of X \ {λ} is S-equivariant. Indeed,
the function f : X \ {λ} → R is S-invariant; since S acts isometrically on Oλ,
the vector field gradf , hence also ρgradf , is S equivariant. The claim is now
completely proved.
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The claim implies that the pair (X− ∩X+, f−1(r0)) is S-equivariantly homotopy
equivalent to (f−1(r0), f

−1(r0)). Hence we have H∗
S(X− ∩ X+, f−1(r0)) = {0}.

From the long exact sequence of the triple (X,X− ∩X+, f−1(r0)) we deduce that
the canonical map

ψ : H∗
S(X,X− ∩X+) → H∗

S(X, f−1(r0))

is an isomorphism.
Let us now focus on the proof of the inclusion kerκ ⊂ K ′

− + K ′
+. Take

α ∈ kerκ, that is, α ∈ H∗
S(X) such that α|f−1(r0) = 0. From the long exact

sequence of the pair (X, f−1(r0)) we deduce that there exists β ∈ H∗
S(X, f−1(r0))

whose image via H∗
S(X, f−1(r0)) → H∗

S(X) is α. We set

η = ψ−1(β).

We use the relative Mayer-Vietoris sequence of the triple (X,X−, X+). Let i∗− :
H∗

S(X,X−) → H∗
S(X,X− ∩X+) and i∗+ : H∗

S(X,X+) → H∗
S(X,X− ∩X+) be the

maps induced by the obvious inclusions. Because X− ∪ X+ = X, the exactness
of the Mayer-Vietoris sequence implies that the map

H∗
S(X,X−)⊕H∗

S(X,X+) → H∗
S(X,X− ∩X+)

defined by
(η1, η2) 7→ i∗−(η1)− i∗+(η2)

is an isomorphism. This map is in the top of the following commutative diagram.

H∗
S(X,X−)⊕H∗

S(X,X+) //

��

H∗
S(X,X− ∩X+)

��

H∗
S(X)⊕H∗

S(X) // H∗
S(X)

(5)

There exists (η1, η2) ∈ H∗
S(X,X−)⊕H∗

S(X,X+) such that

i∗−(η1)− i∗+(η2) = η.

The image of η via the right-hand side map in the diagram is α. Let (α1, α2) be
the image of (η1, η2) via the left-hand side map in the diagram. The classes α1, α2

have the property that α1|X− = 0 and α2|X+ = 0. From the commutativity of the
diagram we have

α = α1 − α2.

This finishes the proof. �

Remark. In the general context of circle actions on compact symplectic mani-
folds, Tolman and Weitsman gave a description of the kernel of the Kirwan map
similar to equation (4) above (see [27, Theorem 1]). Their proof is different from
the one above. However, they do mention that their theorem can be proved by
using the Mayer-Vietoris sequence of the triple (X,X−, X+) (see [27, Remark
3.5]). We have used this idea to prove Lemma 3.2 above.

We will characterize K ′
+ and K ′

− separately. In the next lemma we describe
K ′

+.
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Lemma 3.3. (i) For any r2 > r1 > f(λ), the space f−1([r1, r2]) ∩ (X \ {λ}) is
compact.

(ii) Take r ∈ f(X), r > f(λ), r /∈ f(XS). Then the restriction map

H∗
S(X+

r ) → H∗
S(X+

r ∩XS)

is injective and the canonical map

H∗
T (X+

r ) → H∗
S(X+

r )

is surjective.

(iii) We have K ′
+ = K+.

(iv) The restriction map

κ1 : H∗
S(X+

r0− ε
3
) → H∗

S(f−1(r0))

is surjective.

Proof. Point (i) follows from the fact that f−1([r1, r2]) is contained in X \ {λ},
thus

f−1([r1, r2]) ∩ (X \ {λ}) = f−1([r1, r2]).

The latter space is compact, because it is closed in X.

(ii) We use the Morse theoretical arguments of [26] and [27] (see also [12, Section
2]) for the function f |X\{λ}. More precisely, let us first note that this function
has a maximum at the point wλ (where w is given by X = X(w)): this follows
from the fact that λ and wλ are the minimum, respectively maximum points of
f on X (cf. [6, Section 4]). To prove the first assertion it is sufficient to take
r1, r2 ∈ R \ f(XS) such that r < r1 < r2 and note that:

• if f−1([r1, r2]) ∩XS = {wλ} then H∗
S(X+

r1
) → H∗

S({wλ}) is injective (since
{wλ} is an S-equivariant deformation retract of X+

r1
).

• if f−1([r1, r2])∩XS is empty, then the map H∗
S(X+

r1
) → H∗

S(X+
r2

) induced by
the inclusion X+

r2
→ X+

r1
is an isomorphism (since X+

r2
is an S-equivariant

deformation retract of X+
r1

).

• if the map H∗
S(X+

r2
) → H∗

S(X+
r2
∩ XS) is injective and f−1([r1, r2]) ∩ XS =

{vλ} for some v ∈ W , then the map H∗
S(X+

r1
) → H∗

S(X+
r1
∩XS) is injective

as well.

To prove the last item, let us consider the following commutative diagram:

· · · // H∗
S(X+

r1
, X+

r2
)

2©
//

'
��

H∗
S(X+

r1
) //

1©
��

H∗
S(X+

r2
) // · · ·

H∗−k
S ({vλ}) ∪e // H∗

S({vλ})

(6)

Here k is the dimension of the positive space of the Hessian of f at the point vλ,
call it T+

vλX. Also, ' denotes the isomorphism obtained by composing the excision
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map H∗
S(X+

r1
, X+

r2
) ' H∗

S(Dk, Sk−1) (where Dk, Sk−1 are the unit disk, respectively

unit sphere in T+
vλX), with the Thom isomorphism H∗

S(Dk, Sk−1) ' H∗−k
S ({vλ}).

The map 1© is induced by the inclusion of {vλ} in X+
r1

. The cohomology class
e ∈ Hk

S({vλ}) = Hk(BS) is the S equivariant Euler class of T+
vλX. Let us note

that the group S acts linearly without fixed points on the latter space (since vλ is
an isolated fixed point of the S action). By the Atiyah-Bott lemma (cf. [2]), e is a
non-zero element of H∗(BS). Thus, the multiplication by e is an injective endo-
morphism of H∗(BS). We deduce that the map 2© is injective and consequently
the long exact sequence of the pair (X+

r1
, X+

r2
) splits into short exact sequences of

the form
0 −→ H∗

S(X+
r1
, X+

r2
) −→ H∗

S(X+
r1

) −→ H∗
S(X+

r2
) −→ 0. (7)

Let us consider now the following commutative diagram.

0 // H∗
S(X+

r1
, X+

r2
) //

3©
��

H∗
S(X+

r1
) //

ı∗1
��

H∗
S(X+

r2
) //

ı∗2
��

0

0 // H∗
S({vλ}) // H∗

S(X+
r1
∩XS) // H∗

S(X+
r2
∩XS) // 0

where we have identified H∗
S(X+

r1
∩ XS, X+

r2
∩ XS) = H∗

S({vλ}). By hypothesis,
the map ı∗2 is injective. The map 3© is the same as the composition of 1© and 2©
(see diagram (6)), thus it is injective as well. By a diagram chase we deduce that
ı∗1 is injective.

The second assertion is proved by the same method as before, by induction over
the sublevels of −f |X\{λ}. This time we confine ourselves to show that if r1, r2 ∈
R \ f(XS) satisfy r2 > r1 > f(λ), f−1([r1, r2]) ∩ XS = {vλ}, and the map
H∗

T (X+
r2

) → H∗
S(X+

r2
) is surjective, then the map H∗

T (X+
r1

) → H∗
S(X+

r1
) is surjective

too. To this end we first note that both restriction maps H∗
T (X+

r1
) → H∗

T (X+
r2

) and
H∗

S(X+
r1

) → H∗
S(X+

r2
) are surjective: we use the exact sequence (7) and its analogue

for T equivariant cohomology. Let us consider the following commutative diagram

0 // H∗
T (X+

r1
, X+

r2
) //

4©
��

H∗
T (X+

r1
) //

5©
��

H∗
T (X+

r2
) //

6©
��

0

0 // H∗
S(X+

r1
, X+

r2
) // H∗

S(X+
r1

) // H∗
S(X+

r2
) // 0

The map 4© is surjective: indeed, as before, we have H∗
T (X+

r1
, X+

r2
) ' H∗−k

T ({vλ}),
and similarly if we replace T by S; thus the map 4© is just the canonical (restric-
tion) map Symm(Lie(T )∗) → Symm(Lie(S)∗). A diagram chase shows that if 6©
is surjective, then 5© is surjective as well.

Point (iii) is a straightforward consequence of the first assertion of (ii), by taking
r = r0 − ε

3
.

(iv) We prove the surjectivity of κ1 inductively, along the sublevels of the function
f |X+

r0−
ε
3

. At the first induction step, we note that for any number r such that

r0 +
ε

3
< r < min{f(vλ) : vλ ∈ XS, f(vλ) > r0}
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the space f−1((r0− ε
3
, r)) contains f−1(r0) as an S-equivariant deformation retract.

This can be proved exactly like the claim in the proof of Lemma 3.2. Then we
consider r1, r2 ∈ R \ f(XS) such that r0 < r1 < r2 and show that the map

H∗
S(f−1((r0 −

ε

3
, r2))) → H∗

S(f−1((r0 −
ε

3
, r1)))

is surjective, in each of the following two situations:

• the intersection f−1([r1, r2]) ∩XS is empty.

• the intersection f−1([r1, r2])∩XS consists of exactly one point, say vλ, where
v ∈ W .

We use the argument exposed in the proof of point (ii) above. In the second
situation (when f−1([r1, r2])∩XS = {vλ}) we use the analogue of the short exact
sequence (7). �

The following lemma is the final step towards the proof of Theorem 1.2. Assump-
tion 3, (ii) is essential in the proof of this lemma. We will use the 1-skeleton of
the T action on Oλ. By definition (cf. [26]), this consists of all points in Oλ whose
stabilizer have codimension at most 1. In the case at hand one can describe the
1-skeleton as follows. For any v ∈ W and any γ ∈ R+ such that sγvλ 6= vλ, there
exists a subspace Sγ(vλ) ⊂ Oλ, which is a metric sphere in Euclidean space k∗

relative to an Ad∗(K) invariant inner product on the latter space. Moreover, it
contains vλ and sγvλ as antipodal points. The 1-skeleton is the union of all these
spheres. The torus T leaves Sγ(vλ) invariant; in fact, the sphere is left pointwise
fixed by the kernel of the character T → S1 induced by γ (cf. [9, Section 2.2]).
From the Goresky-Kottwitz-MacPherson theorem (cf. [8], [26]), we deduce that
the map H∗

T (Oλ) → H∗
T (Wλ) is injective and its image consists of all ordered sets

(pvλ)vλ∈Wλ with the property that

pvλ − psγvλ is divisible by γ, (8)

for all v ∈ W and γ ∈ R+. If both vλ and sγvλ are in X, then the whole Sγ(vλ)
is contained in X. Thus, the T equivariant cohomology ring of X is isomorphic
to the ring of all ordered sets (pvλ)vλ∈XS with the property that the condition (8)
holds for all v ∈ W and γ ∈ R+ such that vλ and sγvλ are in X. Finally, we note
that the space Sγ(vλ) is an orbit of the complex subgroup SL2(C)γ of G (cf. [15,
Chapter V, Section 6]), thus it is a Kähler submanifold of Oλ.

Lemma 3.4. The map

κ2 : H∗
S(X) → H∗

S(X+
r0− ε

3
)

is surjective. Thus, κ = κ1 ◦ κ2 is surjective (the map κ1 was defined in Lemma
3.3, (iv)).
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Proof. It is sufficient to prove that the map κT
2 : H∗

T (X) → H∗
T (X+

r0− ε
3
) is

surjective. This is because in the commutative diagram

H∗
T (X) //

κT
2

��

H∗
S(X)

κ2

��

H∗
T (X+

r0− ε
3
) // H∗

S(X+
r0− ε

3
)

the horizontal maps are surjective (here we have used that X is T equivariantly
formal, respectively Lemma 3.3, (ii)).

Take α ∈ H∗
T (X+

r0− ε
3
). Take γ ∈ R+ and u ∈ W such that uλ and sγuλ are in

X, uλ 6= sγuλ. We will need the following claim.

Claim. If uλ and sγuλ are in X+
r0− ε

3
, then the whole Sγ(uλ) is contained in X+

r0− ε
3
.

Indeed, the sphere Sγ(uλ) is contained in X. Moreover, the restriction of Φa to
Sγ(uλ) is just the moment map of the S action. Thus its critical points are the
fixed points of the S action, namely uλ and sγuλ. One of these two points is a
global minimum point. The claim is now proved.

The class α restricted to Sγ(uλ) is an element of its T equivariant cohomology.
From the discussion preceding the lemma we deduce that

α|uλ − α|sγuλ is divisible by γ.

Here we have denoted by α|uλ the image of α under the map induced by the
inclusion {uλ} → X+

r0− ε
3
, and similarly for α|sγuλ. Consequently, the ordered set

(α|uλ)uλ∈XS ,Φa(uλ)>r0
is admissible relative to Γr0 . By Assumption 3, (ii), there

exists an ordered set (pvλ)vλ∈XS which is admissible relative to Γ, such that

pvλ = α|vλ, whenever vλ ∈ X+
r0−ε. (9)

The collection (pvλ) represents a cohomology class, call it β, in H∗
T (X). By equa-

tion (9) and Lemma 3.3, (ii), we have κ2(β) = α. This finishes the proof. �

The only piece of information which is still missing is the fact that K ′
− equals K−.

This is the content of the following lemma.

Lemma 3.5. We have K ′
− = K−.

Proof. We only need to show that K− ⊂ K ′
−. We actually show that for any

r > f(λ), r /∈ f(XS), the map H∗
S(X−

r ) → H∗
S(X−

r ∩ XS) is injective. The idea
we will use is the same as in the proof of Lemma 3.3, (ii). Some adjustments are
necessary, though, since X−

r and all the other sublevels involved in the argument
contain the singular point λ. We proceed by proving the following claims.

Claim 1. Take δ > 0 such that Φa(λ) < δ < Φa(vλ) for any vλ ∈ Wλ \ {λ}. Then
the restriction map H∗

S(X−
δ ) → H∗

S({λ}) is injective.
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Claim 2. If r1, r2 ∈ R \ f(XS) such that f(λ) < r1 < r2 and f−1([r1, r2]) ∩XS is
empty, then the map H∗

S(X−
r2

) → H∗
S(X−

r1
) induced by the inclusion X−

r1
→ X−

r2
is

an isomorphism.

Claim 3. If r1, r2 ∈ R \ f(XS) such that f(λ) < r1 < r2, the map H∗
S(X−

r1
) →

H∗
S(X−

r1
∩ XS) is injective, and f−1([r1, r2]) ∩ XS = {vλ} for some v ∈ W , then

the map H∗
S(X−

r2
) → H∗

S(X−
r2
∩XS) is injective as well.

To prove Claim 1, we note that X−
δ is a subset of the stable manifold at λ of the

function Φa : Oλ → R relative to the Kähler metric on Oλ. It is also invariant
under any of the automorphisms ψt ofOλ, where t ≤ 0 (by ψt, t ∈ R, we denote the
flow of Oλ induced by gradΦa, like in the proof of Lemma 3.1). Consequently, it
is contractible to {λ}. Moreover, since X−

δ is S invariant, the retract X−
δ → {λ}

is S equivariant. Thus the inclusion map {λ} → X−
δ induces an isomorphism

H∗
S(X−

δ )
'→ H∗

S({λ}). The claim is now proved.

To prove Claim 2, we take into account that f−1([r1, r2]) is a compact subset
of the smooth manifold X \ {λ}. Consequently, there exists a family of maps
Qτ : X−

r2
\ {λ} × [0, 1] → X−

r2
\ {λ}, τ ∈ [0, 1], which is a strong deformation

retract of X−
r2
\ {λ} on X−

r1
\ {λ}, that is, Q1(X

−
r2
\ {λ}) ⊂ X−

r1
\ {λ}, Q0 is the

identity map of X−
r2
\{λ}, and Qτ restricted to X−

r1
\{λ} is the identity map, for all

τ ∈ [0, 1]. The concrete expression of Qτ can be found for instance in [23, p. 13]:
it can be seen from there that for any τ ∈ [0, 1], the map Qτ is S equivariant. We
extend Qτ to a continuous map X−

r2
→ X−

r2
by setting Qτ (λ) = λ. This gives a

(continuous) deformation retract of X−
r2

on X−
r1

, which is S equivariant. In this
way we have proved Claim 2.

We now prove Claim 3. Like for the previous claim, we use Morse theory for the
function f on X \ {λ}. By Lemma 3.1, vλ is a non-degenerate critical point of
this function. Denote by m its index. There exists a closed m-cell em ⊂ X−

r2
\ {λ}

which can be attached to X−
r1

, and a strong deformation retract Q′
τ , τ ∈ [0, 1], of

X+
r2
\ {λ} onto (X−

r1
∪ em) \ {λ}. From the exact expression of em and Q′

τ (see [23,
proof of Theorem 3.2]), we can see that the former is S invariant and the latter is
S equivariant. By setting Q′

τ (λ) = λ, for all τ ∈ [0, 1], we obtain an S equivariant
deformation retract of X−

r2
onto X−

r1
∪ em. We repeat the argument in the proof

of Lemma 3.3, (ii). �

Theorems 1.2 and 1.3 are now completely proved.

Remark. At this point we can understand exactly where each of the assumptions
made in the introduction has been used. Namely, Lemmas 3.1, 3.2, and 3.3 use
only Assumption 1 and the regularity hypothesis on r0 given in Assumption 3,
(i). Lemma 3.5 needs Assumption 2 (see especially Claim 1 in the proof of this
lemma). Lemma 3.4 needs Assumption 3, (ii).

4. An example

The Grassmannian G2(C4) of 2-dimensional vector subspaces in C4 can be iden-
tified with a coadjoint orbit of SU(4). Let us be more specific. Denote by T the
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space of all diagonal matrices in SU(4), which is a maximal torus. Its Lie algebra
t can be described as

t = {x = (x1, x2, x3, x4) ∈ R4 : x1 + x2 + x3 + x4 = 0},

which is a hyperplane in R4. We equip R4, and also its subspace t, with the
Euclidean metric ( , ). To each x ∈ R4 we assign the element x∗ ∈ t∗ given by

x∗(y) := (x, y),

for all y ∈ t. A simple root system of SU(4) relative to T is

α1 := e∗2 − e∗1, α2 := e∗3 − e∗2, α3 := e∗4 − e∗3,

where e1, e2, e3, e4 denotes the standard basis of R4. The fundamental weights are
e∗1, e

∗
1 +e∗2, e

∗
1 +e∗2 +e∗3. The polyhedral cone generated by them is the fundamental

Weyl chamber. The coadjoint orbit of any λ which is a positive integer multiple
of e∗1 + e∗2 can be identified with the Grassmannian G2(C4) of all 2-planes V in C4

(see [10, Section 5.3]). As usual, we denote by si the reflection of t∗ corresponding
to the root αi, where i ∈ {1, 2, 3}. They generate the Weyl group W . To each
element of Wλ corresponds a Schubert variety in G2(C4). In this example we
discuss the Schubert variety X corresponding to s3s1s2λ. This can be described
explicitly as

X = {V ∈ G2(C4) : dim(V ∩ C2) ≥ 1}.
It has an isolated singularity at C2, which is the same as the point λ on the
coadjoint orbit (see the paragraph following Assumption 2 in the introduction).
So Assumption 2 is satisfied. The image of X under the moment map Φ is the
polytope generated by the elements of XT , which are λ, s2λ, s1s2λ, s3s2λ, and
s3s1s2λ.

We identify H∗
T (pt) with the polynomial ring S(t∗) = R[α1, α2, α3]. Accord-

ing to the GKM theorem (see the introduction) the T equivariant cohomology
ring H∗

T (X) consists of all elements (f1, f2, f3, f4, f5) of H∗
T ({λ}) ⊕ H∗

T ({s2λ}) ⊕
H∗

T ({s1s2λ})⊕H∗
T ({s3s2λ})⊕H∗

T ({s3s1s2λ}) = S(t∗)⊕S(t∗)⊕S(t∗)⊕S(t∗)⊕S(t∗)
such that

f5 − f4 is divisible by α1

f5 − f3 is divisible by α3

f5 − f1 is divisible by α1 + α2 + α3

f4 − f2 is divisible by α3 (10)

f4 − f1 is divisible by α2 + α3

f3 − f2 is divisible by α1

f3 − f1 is divisible by α1 + α2

f2 − f1 is divisible by α2.

We compute the cohomology ring of the symplectic quotient of X with respect to
S = exp(Ra), where a is an integral element of t. The situation is described in
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Figure 1 (a), where the identification t∗ = t induced by ( , ) is in force. We also
consider the element ν ∈ t∗ such that ν(a) = 1 and ν is identically zero on the
orthogonal complement of a in t. Then ν is identified with the vector a/(a, a).
For any x ∈ t, the orthogonal projection of x∗ on the line Rν is (x, a)ν, which is
the same as Φa(x

∗)ν.

(a) (b)

Figure 1. The upside-down pyramid in figure (a) is the image under the moment
map of th e Schubert variety X(s3s1s2) in the Grassmannian G2(C4). Its corners
λ, s2λ, s1s2λ, s3s2λ and s3s1s2λ are projected orthogonally onto the line Rν,
where ν is in the Weyl chamber opposite to the fundamental one. We can also
see the vector r0ν, where r0 > 0 satisfies equation (11). Figure (b) describes the
moment graph of X(s3s1s2).

The figure shows that r0 has been chosen such that

Φa(λ) < Φa(s2λ) < Φa(s1s2λ) < Φa(s3s2λ) < r0 < Φa(s3s1s2λ). (11)

Assumption 3 is obviously satisfied in this case (see the paragraph following As-
sumption 3 in the introduction). This is the case where we will compute the
cohomology ring. Before doing this, we would like to point out that if r0 satisfies

Φa(λ) < Φa(s2λ) < Φa(s1s2λ) < r0 < Φa(s3s2λ) < Φa(s3s1s2λ)

then Assumption 3 is also satisfied. Indeed, the moment graph is described in
Figure 1 (b). Thus, Γr0 consists of the vertices s3s2λ and s3s1s2λ which are joined
by an edge with label α1. Let f ′5 and f ′4 be two polynomials such that f ′5 − f ′4 is
divisible by α1, that is, f ′4 = f ′5 +α1g, for some g ∈ R[α1, α2, α3]. The polynomials

f5 = f ′5, f4 = f ′4 = f5 + α1g, f3 = f5 + α3g,

f2 = f5 + (α1 + α3)g, f1 = f5 + (α1 + α2 + α3)g

satisfy the equations (10).
Let us now return to the case where r0 satisfies equation (11) and compute

the cohomology of X//λS(r0). To this end we first note that equations (10) yield
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the following description of H∗
T (X): it consists of all elements of H∗

T ({λ}) ⊕
H∗

T ({s2λ})⊕H∗
T ({s1s2λ})⊕H∗

T ({s3s2λ})⊕H∗
T ({s3s1s2λ}) which are of the form

(p1, p1+α2p2, p1+(α1+α2)p2+α1(α1+α2)p3, p1+(α2+α3)p2+α3(α2+α3)p4,

p1+(α1+α2+α3)p2+α1(α1+α2+α3)p3+α3(α1+α2+α3)p4

+α1α3(α1+α2+α3)p5),

where p1, p2, p3, p4, p5 are in R[α1, α2, α3]. The restriction map Symm(t∗) = R[α1,
α2, α3] → Symm((Ra)∗) = R[ν] is given by αi 7→ aiν, 1 ≤ i ≤ 3, where ai :=
αi(a). We deduce that H∗

S(X) consists of the elements of H∗
S({λ})⊕H∗

S({s2λ})⊕
H∗

S({s1s2λ})⊕H∗
S({s3s2λ})⊕H∗

S({s3s1s2λ}) which are of the form

(q1, q1 + a2νq2, q1 + (a1 + a2)νq2 + a1(a1 + a2)ν
2q3,

q1 + (a2 + a3)νq2 + a3(a2 + a3)ν
2q4, (12)

q1 + (a1 + a2 + a3)νq2 + a1(a1 + a2 + a3)ν
2q3 + a3(a1 + a2 + a3)ν

2q4 + ν3q5),

where q1, q2, q3, q4, q5 ∈ R[ν]. By Theorem 1.3, the ring H∗(X//λS(r0)) is the
quotient of H∗

S(X) by the ideal K− + K+. Here K− is the ideal generated by
(0, 0, 0, 0, ν3) and K+ consists of all ordered sets of the form (12) where

q1 + (a1 + a2 + a3)νq2 + a1(a1 + a2 + a3)ν
2q3 + a3(a1 + a2 + a3)ν

2q4 + ν3q5 = 0.

To achieve a better understanding of this ring, we first note that it is graded, with
the graduation given by deg ν = 2. Thus, we have H2k+1(X//λS(r0)) = {0}, for
all k ≥ 0. We also have as follows:

• The elements of H0(X//λS(r0)) are the cosets of (c, c, c, c, c), where c ∈
R. Thus, dimH0(X//λS(r0)) = 1, with a basis consisting of the coset of
(1, 1, 1, 1, 1).

• The elements of H2(X//λS(r0)) are the cosets of

(c1ν, c1ν+c2a2ν, c1ν+(a1 +a2)c2ν, c1ν+(a2 +a3)c2ν, c1ν+(a1 +a2 +a3)c2ν),

where (c1, c2) ∈ R2. Thus H2(X//λS(r0)) can be identified with the quo-
tient of R2 by the kernel of the function (c1, c2) 7→ c1 + (a1 + a2 + a3)c2.
A basis of this quotient is the coset of (c1, c2) = (1, 0). We deduce that
dimH2(X//λS(r0)) = 1, with a basis consisting of the coset of (ν, ν, ν, ν, ν)
in H∗

S(X).

• Similarly, dimH4(X//λS(r0)) = 1, with a basis consisting of the coset of
(ν2, ν2, ν2, ν2, ν2).

• Hm(X//λS(r0)) = {0} for all m ≥ 5.

From the description above we can see that X//λS(r0) has the same cohomology
ring as CP 2. We do not know whether it is actually diffeomorphic to CP 2 or even
whether it is smooth.
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