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Abstract. A neighborliness property of marginal polytopes of hierar-
chical models, depending on the cardinality of the smallest non-face of
the underlying simplicial complex, is shown. The case of binary vari-
ables is studied explicitly, then the general case is reduced to the binary
case. A Markov basis for binary hierarchical models whose simplicial
complexes is the complement of an interval is given.
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1. Introduction

The marginal polytope is an interesting combinatorial object that appears in
statistics [9], coding theory [6, 12, 18] and, under a different name, in toric algebra
[7]. It encodes in its face lattice the complete combinatorial information about the
boundary of certain statistical models. To define it we have to take a very brief
excursion to statistics, namely the theory of hierarchical models for contingency
tables.

Consider a collection of n random variables taking values in finite sets Xi, i =
1, . . . , n. We denote N := {1, . . . , n}, and its power set as 2N := {B : B ⊆ N}.
For a subset B ⊆ N of the variables, we denote its set of values as XB :=

∏
i∈B Xi,

and abbreviate X := XN . We have the natural projections

XB : X → XB

(xi)i∈N 7→ (xi)i∈B =: xB.
(1)
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We slightly abuse notation and denote xB the projection of x = (xi)i∈N , which
is a function of x, and by the same symbol an arbitrary element xB ∈ XB. A
contingency table is a function u : X → N0. It is thereby a vector in the space
NX

0 . For B ⊆ N we define the marginal table uB ∈ NXB
0 as the vector with

components

uB(xB) :=
∑

y:XB(y)=xB

u(y). (2)

A so called hierarchical model for contingency tables can be given by a simplicial
complex ∆ on the set N of variable indexes [4, 9]. The facets F of ∆ are defined
as the inclusion maximal faces. They determine the marginal map:

π∆ : RX →
⊕
F∈F

RXF

u 7→ (uF )F∈F .

(3)

It is a linear map computing all marginal tables corresponding to facets. We
define cylinder sets denoting for B ⊆ N , and yB ∈ XB

{XB = yB} := {x ∈ X : XB(x) = yB} . (4)

With respect to the canonical basis, the matrix representing π∆ is the d × |X |
matrix

A∆ := (A(B,yB),x)(B,yB),x where A(B,yB),x :=

{
1 if XB(x) = yB,

0 otherwise.
(5)

The rows of this matrix are indexed by pairs (B, yB), where B ∈ F is a facet of
∆ and yB ∈ XB is a configuration on B. Then d is defined as the number of such
pairs. If the simplicial complex is clear, we will sometimes omit the index ∆.

Definition 1. (Marginal polytope) The marginal polytope is the convex hull of
the columns of A∆:

Q∆ := conv {Ax : x ∈ X} ⊆ Rd. (6)

Example 2. (Two independent binary variables) In the case of two binary vari-
ables, we have X = {(00), (01), (10), (11)}. Let ∆ = {{1} , {2}}, then the matrix
A∆ is given as

A∆ =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 . (7)

The columns are ordered as ({1} , 0), ({1} , 1), ({2} , 0), ({2} , 1). If ∆ was the
whole power set, A∆ would be the 4 × 4 identity matrix. The marginal poly-
topes are easily identified as a 2-dimensional square and a 3-dimensional simplex,
respectively.
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Our object of interest is the toric ideal:

I∆ :=
〈
pu − pv : u, v ∈ NX

0 , π∆(u) = π∆(v)
〉
. (8)

Here, we used the standard notation for monomials in the variables {px : x ∈ X},
namely pu :=

∏
x∈X p

u(x)
x . Throughout the whole paper we use the convention that

00 = 1. The set of indexes with non-vanishing exponent will be called the support
of the binomial supp(pu − pv) := {x ∈ X : u(x) + v(x) > 0}. The supports of u
and v will also be called the positive respectively negative support of the binomial.
The ideal I∆ is a homogeneous prime ideal in the polynomial ring C[px : x ∈ X ].
In statistics the restriction of the corresponding variety to the non-negative real
cone would be called the closure of an exponential family. This seminal observation
is the cornerstone of what is now called algebraic statistics [5],[8],[15].

A first task is to find a suitable finite generating set of this ideal. Very useful
is a Markov basis defined as follows:

Definition 3. A finite set M ⊆ kerZ π∆ is called a Markov basis for the hierar-
chical model ∆ if for each two contingency tables u, v ∈ NX

0 with equal marginals
π∆(u) = π∆(v) there exists a sequence mi, i = 1, . . . , l in ±M such that

u = v +
l∑

i=1

mi, (9)

where

v +
k∑

i=1

mi ∈ NX
0 for all k = 1, . . . , l. (10)

The crucial property of a Markov basis is that any two tables, having the same
marginals, can be connected without leaving the non-negative cone. A key theo-
rem is that exactly a Markov basis gives the desired set of generators:

Theorem 4. [5] A finite set M is a Markov basis if and only if

I∆ =
〈
pm+ − pm−

: m ∈ M
〉

, (11)

where m+(x) := max {0, m(x)}, m−(x) := max {0,−m(x)}, which allows the
decomposition m = m+ −m−.

The elements in a Markov basis are referred to as Markov moves.
In the following section we will give our main theorem, which is a lower bound

on the cardinality of the positive and negative support of any move. Then in Sec-
tion 3 we will state and prove the neighborliness property of marginal polytopes.
Finally, in Section 4 we discuss a case where the lower bound and an upper bound
on the generators coincide and the Markov basis consists of very simple moves.
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2. A lower degree bound

Theorem 5. Let ∆ be a simplicial complex on N and I∆ the corresponding toric
ideal. Let g be the minimal cardinality of a non-face of ∆. Each generator of
I∆ has degree at least 2g−1. Moreover, the positive and negative supports of each
generator both have cardinality bigger or equal to 2g−1. The degree bound is realized
only by square free binomials.

Remark. Note that we give a lower bound on the – smallest – degree among
the generators. Lower bounds on the largest degree have been considered for a
measure of complexity of the model for instance in [8]. There it is shown that
one finds a simplicial complex on 2n units, such that there exists a generator of
degree 2n. Furthermore, in [4] the authors study an algorithm which, for graph
models, computes all generators of a given degree. Finally, in [13] the case of 2-
margins of (r, s, 3)-tables is studied. It is shown that as r and s grow the support
and degree of a maximal generator cannot be bounded. This has interesting
implications for data disclosure.

Remark. (Graph models) A graph model is a hierarchical model for which dim ∆
≤ 1 holds. If its graph is not complete, the bound reduces to the trivial bound
deg m ≥ 2. On the other hand, for the complete graph, there are no quadratic
generators.

Remark. (Type of generators) The vectors that achieve the bound (see Lemma
7) are natural generalizations of the quadratic Markov moves for the independence
model [5].

We will prove Theorem 5 in two steps. First, the binary case is studied explicitly.
Then the general case is reduced to the binary case.

2.1. The binary case

In this section we have X = {0, 1}N . This will allow us to use a special orthogonal
basis of kerZA∆. Using this, we find that any element in the kernel has a lower
bound for the cardinality of its support.

Put ∆c := 2N \∆ the set of non-faces of ∆. For elements G ∈ ∆c we define
the upper intervals

[G, N ] := {B ⊆ N : B ⊇ G} (12)

which are contained in ∆c. Next, for each B ⊆ N we define a vector eB ∈ RX

with components:
eB(x) := (−1)E(B,x) (13)

where E(B, x) := |{i ∈ B : xi = 1}| is the number of entries equal to one that x
has in B. Observe, that eB depends on its argument only through xB, the part in
B. Therefore we will sometimes abuse notation and write eB(xB) for the value of
eB at any configuration which projects to xB. We have

Lemma 6. ([10]) The set {eB : B ⊆ N} is an orthogonal basis of RX such that
{eB : B ∈ ∆c} is a basis of kerZA∆.
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Remark. (Characters) If we treat X as the additive group (Z/2Z)n then the
characters of this group form an orthonormal basis (with respect to the product
induced by the Haar measure, which in this case is proportional to the standard
product) of CX . The characters are exactly given by the vectors eB, B ⊆ N . In
our case the characters are real functions and also a basis of RX . See [10, 16] for
details.

Lemma 7. Let G ∈ ∆c and G := [G, N ]. For g := |G| it holds

m0
G(x) :=

∑
B∈G

eB(x) =

{
2n−g eG(xG) if xN\G = (0, . . . , 0),

0 otherwise .
(14)

Furthermore, for any xC ∈ XC we have the identity

∑
x∈{XC=yC}

eB(x) =

{
2n−|C|eB(yC) if B ⊆ C,

0 otherwise.
(15)

Proof. For the second case in (14) assume we have i ∈ N \ G such that xi = 1.
Since half of the sets in [G, N ] contain i, while the other half does not contain i,
it follows that the sum equals zero if such an i exists. The first case is now clear.
All the summands are equal to eG in this case, and there are exactly 2n−g terms.
The identity (15) follows by the same argument. �

Remark. By choosing appropriate signs in the sum, one can achieve any of the
cylinder sets

{
XN\G = xN\G

}
instead of

{
XN\G = 0

}
as the support. To be con-

crete, we have

m
yN\G

G (x) :=
∑
B∈G

(−1)E(B,yN\G)eB(x)

=

{
2n−g eG(xG) if xN\G = yN\G,

0 otherwise.

(16)

The vectors we have just constructed have minimal support. In the following we
will deduce a technical, but elementary statement about large subsets of X . In
Lemma 9, it will follow that choosing G minimal in ∆c, the value 2n − 2|G|, as in
Lemma 7, is the maximal number of zero components, which can be achieved by
non-trivial linear combinations of the vectors eB, B ∈ ∆c.

Lemma 8. Let g ∈ {1, . . . , n} be fixed. For Y ⊆ X with |Y| > 2n − 2g the
following statement holds:

• For each B⊆N with |B|≥g, Y contains one of the cylinder sets {XB =xB}.
More formally: ∃xB∈XB such that {XB =xB} ⊆ Y.

Proof. The statement follows from a simple cardinality argument. Assume the
contrary, let B be given, and ∀xB ∈ XB, ∃x ∈ X \ Y such that xB = XB(x).
These x are all distinct, since they differ on B. We find |Y| ≤ 2n − 2g. �
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Lemma 9. Let g denote the minimal cardinality among the sets in ∆c. Then any
non-zero linear combination of the vectors eB, B ∈ ∆c has at least 2g−1 positive
and 2g−1 negative components.

Proof. Assume we have a linear combination

m =
∑

B∈∆c

zBeB ∈ ker π∆ (17)

which has less then 2g−1 positive components. It has at least 2n − 2g−1 + 1 non-
positive components. Let Y≤ ⊆ X denote the corresponding indexes. Let G ∈ ∆c

have cardinality g and choose i ∈ G arbitrary. By Lemma 8 we find a cylinder set{
XG\{i} = yG\{i}

}
which is contained in Y≤. We have

m(x) =
∑

B∈∆c

zBeB(x) ≤ 0, x ∈ Y≤. (18)

Summing up these equations over the cylinder set
{
XG\{i} = yG\{i}

}
yields∑

x∈{XG\{i}=yG\{i}}

∑
B∈∆c

zBeB(x) ≤ 0. (19)

Note that this summation is in fact the computation of the marginal mG\{i} eval-
uated at the value yG\{i}. Since m ∈ ker π∆, and G \ {i} ∈ ∆, equality must hold
in (19). We find that every term in the sum was already zero:∑

B∈∆c

zBeB(x) = 0, x ∈
{
XG\{i} = yG\{i}

}
. (20)

We will now inductively show that m = 0. Contained in
{
XG\{i} = yG\{i}

}
we

have a smaller set {XG = yG}. Summing up the respective components of m for
this set we find, using Lemma 7,

0 =
∑

x∈{XG=yG}

∑
B∈∆c

zBeB(x)

= zG2n−geG(xG).

(21)

It follows that zG = 0. Applying the same argument, we can show that all
coefficients zH vanish for |H| = g. Inductively, we continue with sets of cardinality
g +1. Finally, this argument yields that all coefficients vanish and m is zero. The
whole procedure applies, mutatis mutandis, for the negative components as well. �

Lemma 9 completes the proof of Theorem 5 in the binary case. It shows that the
degree of each Markov move is at least 2g−1. Since in fact we have a lower bound
for the support, the degree bound can only be realized by square free binomials.
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2.2. The non-binary case

We now study the non-binary case. Let X =
∏

i∈N Xi be some arbitrary, finite
configuration space.

Definition 10. Let φi : Xi → {0, 1} , i ∈ N be surjective maps. For each B ⊆ N ,
the composed maps

φB : XB → {0, 1}B

xB 7→ (φi(xi))i∈B

(22)

are called collapsing maps. Abbreviating, put φ := φN . We have an induced map
on contingency tables:

Φ : NX
0 → N{0,1}N

0

(u(x))x∈X 7→

 ∑
w∈φ−1(z)

u(w)


z∈{0,1}N

.
(23)

The key property of such a collapsing is that it commutes with marginalization.

Lemma 11. Let u ∈ NX
0 . For B ⊆ N, zB ∈ {0, 1}B it holds:∑

xB∈φ−1
B (zB)

∑
w∈{XB=xB}

u(w) =
∑

y∈{XB=zB}

∑
w∈φ−1(y)

u(w). (24)

Note that for the cylinder set on the left hand side, {XB = xB} ⊆ X , while on
the right hand side {XB = zB} ⊆ {0, 1}N .

Proof. Since on each side, every w appears at most once, it suffices to show the
set equality ⋃

xB∈φ−1
B (zB)

{XB = xB} =
⋃

y∈{XB=zB}

{
φ−1(y)

}
. (25)

“⊆”: Let w from the left hand side be given. One has XB(w) = xB for some xB

with φB(xB) = zB. Therefore φ(w) = y with XB(y) = zB and w is contained
in the right hand side.

“⊇”: Let w = φ−1(y), y ∈ {XB = zB} from the right hand side be given. We
have XB(w) ∈ φ−1(zB), so w is contained in the left hand side.

�

Lemma 12. Let u, v ∈ NX
0 be contingency tables. Denote the marginal map in

the non-binary model as π∆, the corresponding binary one as ρ∆. In this case,
π∆(u) = π∆(v) implies ρ∆(Φ(u)) = ρ∆(Φ(v)).

Proof. Let B ∈ ∆, zB ∈ {0, 1}N . We have to show that∑
y∈{XB=zB}

Φ(u)(y) =
∑

y∈{XB=zB}

Φ(v)(y). (26)
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By definition this equation is∑
y∈{XB=zB}

∑
w∈φ−1(y)

u(w) =
∑

y∈{XB=zB}

∑
w∈φ−1(y)

v(w). (27)

Using Lemma 11 and the hypothesis, the statement follows. �

Proof of Theorem 5. Using the collapsing map, from generators of the non-binary
model we can construct relations in the corresponding binary model as follows.
Consider the polynomial rings R := C[px : x ∈ X ] and Q := C[qz : z ∈ {0, 1}N ].
Given a simplicial complex ∆, denote I∆ ⊆ R the non-binary toric ideal and
J∆ ⊆ Q the binary one.

To each binomial pm+ − pm− ∈ R associate the collapsed binomial qΦ(m+) −
qΦ(m−) ∈ Q. By Lemma 12 it is clear that elements in the toric ideal I∆ are
mapped to J∆. Furthermore, the supports of qΦ(m+) and qΦ(m−) will have smaller
cardinality than the supports of pm+

and pm−
, respectively. Finally, if the non-

binary model had a generator violating the statement of the theorem, then we
can choose the maps φi : i ∈ N in such a way that this generator gets mapped
to a non-zero binomial which violates the statement for the binary case. This
contradiction concludes the proof. �

3. Neighborliness

Before stating the neighborliness property we will take another short excursion to
statistics, introducing so called exponential families and their relation to marginal
polytopes.

Let again ∆ denote a simplicial complex. For each x ∈ X we have Ax the
corresponding row of the marginal matrix A∆, as defined in (5). The exponen-
tial family associated to this complex is the parametrized family of probability
measures

RX ⊇ E∆ :=
{
pθ(x) = Z(θ)−1 exp (〈θ, Ax〉) : θ ∈ Rd

}
. (28)

Here, Z(θ) :=
∑

x∈X exp (〈θ, Ax〉) is a normalization, called the partition function.
Like in Section 1, d is the number of rows of A∆. By construction, an exponential
family is an open subset of the simplex of all probability measures on X . In many
applications one is interested in the closure E∆, which is taken with respect to the
usual topology of Rn. The closure of E∆ equals the non-negative part of the toric
variety V (I∆) [8, Theorem 3.2]. By this fact, the Markov basis gives the implicit
equations, cutting out the set E∆. Before stating the main theorem we remind
the reader of the following definition:

Definition 13. A polytope P is called k-neighborly if the convex hull of any k or
less of its vertices is a face of P .

Note that, any l dimensional face, for l < k of a k-neighborly polytope is a simplex.
We can now state our main result in two equivalent formulations:
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Theorem 14. Let g be the minimal cardinality among the non-faces of ∆.

Geometric Formulation: The marginal polytope is (2g−1 − 1)-neighborly.

Probabilistic Formulation: Every distribution p with |supp(p)| < 2g−1 is contained
in E∆.

Proof. The probabilistic formulation is easy to see. Just observe that by The-

orem 5 each monomial appearing in the set of generators
{

pm+ − pm−
: m ∈ M

}
has cardinality of its support bounded from below by 2g−1. Therefore a p with
|supp(p)| < 2g−1 must fulfill the defining equations trivially.

Now, the geometric formulation is due to the well known fact that a set Y ⊆ X
is the support set of some p ∈ E∆ if and only if conv {Ay : y ∈ Y} is a face of the
marginal polytope Q∆. This is a consequence of the fact that the marginals
computed by A∆ form a sufficient statistics for the exponential family E∆. �

Remark. (The bound is sharp) On first sight one would maybe expect a better
neighborliness property in the non-binary cases, for instance if every variable is
ternary. However, one can easily see that the bound is sharp in the sense that
already for the “no-three-way-interaction” model with ternary variables, given by
N = {1, 2, 3} ,Xi = {0, 1, 2} for i = 1, 2, 3 and ∆ = {B ⊆ {1, 2, 3} : |B| ≤ 2}, one
has square-free generators of degree 4. They can easily be computed with 4ti2 [1]
or looked up in the Markov Bases Database [17]. Then a p supported exactly on
the positive support is a counterexample for any improvement of Theorem 14.

Remark. (Maximizing multiinformation) The so called multiinformation is an
entropic quantity which generalizes mutual information to more than two vari-
ables. Denoting H(p) := −

∑
x∈X p(x) log p(x) the entropy of p, and Hi(p) :=

−
∑

x∈Xi
p{i}(x) log p{i}(x) the marginal entropy for i ∈ N , it is defined as

MI(p) :=
∑
i∈N

Hi(p)−H(p). (29)

An interesting problem, considered in [3], is to maximize this function. There
all global maximizer in the binary case are classified giving there support sets,
and the question to construct a low dimensional family containing all maximizer
is raised. It holds that any global maximizer is supported on two elements only.
More generally, by [2, Theorem 3.2] any local maximizer p∗ satisfies

|supp(p∗)| ≤ n + 1. (30)

Let ∆k := {B ⊆ N : |B| ≤ k} denote the uniform simplicial complex of order k,
then it is shown

Corollary 1. (Theorem 3.5 in [3]) All global maximizer of MI are contained in
E∆2.

In view of the bound on the cardinality of the support, this now also follows from
our Theorem 14, and more generally:
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Corollary 2. Any local maximizer of MI is contained in the closure of the uni-
form hierarchical model of order k∗ ≥ log2(n + 2).

Considerations in this direction can be generalized even further when the multi-
information is replaced by the Kullback-Leibler divergence from a general expo-
nential family. See [14] for details.

4. Markov bases of high dimensional models

Finally, in this last section, we will show an example where the moves m
yN\G

G

already constitute the full Markov Basis. Consider again the binary case X =
{0, 1}n. Let G ⊆ N . We denote

∆/G := {B ⊆ N : B 6⊇ G} , (31)

the complex of all sets not containing G. We have seen that the toric ideal for
this complex is generated in degree at least 2|G|−1. In this section we show, that
if ∆ has the structure (31) and the variables are binary, the Markov basis is given
by the moves m

yN\G

G as defined in (16), and therefore I∆/G
is generated in exactly

degree 2|G|−1. As the no-three-way interaction model is of the form (31) it is also
clear that the statement of the following theorem does not hold as soon as the
variables are not binary.

Theorem 15. Let G = [G, N ]. A Markov basis of the binary hierarchical model
given by ∆/G is

M :=
{
m

yN\G

G : yN\G ∈ XN\G
}

. (32)

Proof. We apply the standard technique [4] of reducing the degree of a given
binomial via the moves in M . For convenience we introduce tableau notation [9]
for monomials. In this notation, the monomial pu is represented by listing each
x ∈ X , u(x) times. For example p000p110p

2
111 will be written as the tableau

000
110
111
111

 . (33)

Assume pu−pv ∈ I∆/G
. Without loss of generality we assume that G = {l, . . . , n}.

We can assume that u and v have disjoint supports, otherwise we write pu− pv =
q(pu′ − pv′) and the following argument shows that pu′ − pv′ can be expressed
in terms of the Markov basis. Consider first the case u(00 . . . 0) ≥ 1. Since the
marginals on the n− 1 sets

{1, 2, . . . , n− 1} , {1, 2, . . . , n− 2, n} , . . . , {1, 2, . . . , l − 1, l + 1, . . . , n} (34)
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of u and v coincide, and v(00 . . . 0) = 0 we find that the given binomial has the
form 

00 . . . 0000 . . . 0
. . .
...

. . .
...

−


00 . . . 0100 . . . 0
00 . . . 0010 . . . 0

...
00 . . . 0000 . . . 1

...

 (35)

where the set G is underlined. Applying the same argument in the other direction,
namely that, since u has the same n − 1 marginals on the sets (34) we find that
u(x) > 0 for any x which has exactly two non-zero positions, both lying in G,
formally u(x) > 0 for any x with supp(x) ⊆ G and |supp(x)| = 2. We continue
to find that v(x) > 0 for any x with supp(x) ⊆ G and |supp(x)| = 3. Repeating
this argument we find that pu contains all configurations with zero outside G and
an even number of ones in G. Conversely, pv contains all configurations that are
zero outside G and have an odd number of ones in G. All together, this is exactly
the move m00...0

G . Obviously, in the general case, if in the beginning we would
have started with some other configuration instead of 00 . . . 0, say y, the same
argument leads to the move m

yN\G

G instead. Abbreviating the specific move as m

now, we write pu = Kpm+
and pv = Lpm−

with some monomials K, L and have

pu − pv = Kpm+ − Lpm−
+ Kpm− −Kpm−

= K(pm+ − pm−
)− (L−K)pm−

.
(36)

The degree of L−K is obviously smaller than the degree of pu − pv. Inductively
it follows that pu − pv can be written as a combination of the moves m

yN\G

G . �
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