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Abstract. For given triangles T = (A,B,C) and D = (X, Y, Z), the
D-Napoleon and D-Torricelli triangles ND(T ) and TD(T ) of a triangle
T = (A,B,C) are the triangles A′B′C ′ and A∗B∗C∗, where ABC ′,
BCA′, CAB′, A∗BC, AB∗C, ABC∗ are similar to D. In this paper
it is shown that the iteration N n

D(T ) either terminates or converges (in
shape) to an equilateral triangle, and that the iteration T n

D (T ) either
terminates or converges to a triangle whose shape depends only on D.
It is also shown that if A◦, B◦, C◦, A}, B}, C} are the centroids of
the triangles ABC ′, BCA′, CAB′, A∗BC, AB∗C, ABC∗, respectively,
then the shape of A◦B◦C◦ depends on both shapes of T and D, while
the shape of A}B}C} depends only on that of D and, unexpectedly,
equals the limiting shape of the iteration T n

D (T ).

Keywords: centroids, (plane of) complex numbers, Fermat-Torricelli
point, generalized Napoleon configuration, generalized Napoleon trian-
gle, generalized Torricelli configuration, generalized Torricelli triangle,
Möbius transformation, shape convergence, shape function, similar tri-
angles, smoothing iteration

1. Introduction

The configuration that arises from erecting equilateral (similarly oriented) tri-
angles (A1, B, C), (A,B1, C), (A,B,C1) on the sides of a given triangle T =
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(A,B,C), as shown in Figure 1, is quite well known as it appears in at least the
following three contexts:

(a-1) It is the configuration that Torricelli used in solving Fermat’s problem re-
garding the point P that minimizes the sum |PA|+ |PB|+ |PC| of distances
from the vertices of triangle T = (A,B,C). Torricelli proved that the lines
AA1, BB1, CC1 are concurrent and that the point P of concurrence (when
no angle of T exceeds 120◦) is the point that solves the problem. The point
P is called the Fermat-Torricelli point of T ; see [3, pp. 21–22], [20], and [1,
Chapter 2].

(a-2) It is the configuration that underlies the celebrated Napoleon’s theorem
stating that the centers of the erected triangles form an equilateral triangle;
see for example [15] and [24].

(a-3) If we set T (A,B,C)=(A1, B1, C1), and apply T to (A1, B1, C1), and so on,
then the sequence T n

D (A,B,C) that we obtain converges in shape, as proved
in [15], to an equilateral triangle.

A

P

CB

B1

A1

C1

Figure 1. A Torricelli (or Napoleon) configuration in which ABC1, BCA1,
CAB1 are equilateral

A generalized configuration that has attracted a great deal of attention is shown
in Figure 2, where the erected triangles (A∗, B, C), (A,B∗, C), (A,B,C∗) are
(directly) similar to another given triangle D = (X,Y, Z). Amazingly, the three
results (1-a), (1-b), (1-c) generalize quite beautifully to this configuration. No
matter what D is, we have the following:

(b-1) The lines AA∗, BB∗, CC∗ are concurrent and the point PD of concurrence is
the point that minimizes the weighted sum α|PA|+ β|PB|+ γ|PC|, where
α, β, γ are the side lengths of D; see [19, §356, Theorem, pp. 222–223], [8],
[31], [30], [2], [4], [9], [10], [11]. The point PD is known as the generalized
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Fermat-Torricelli point of T corresponding to the weights α, β, γ. For this
to be valid, the weights α, β, γ must be realizable as the side lengths of
a triangle (X,Y, Z) and, in addition, the angles X, Y , Z must satisfy the
conditions A+X, B + Y, C + Z < 180◦.

(b-2) The triangle formed by the circumcenters of the erected triangles is similar
to D, and thus is equilateral when D is; see [27], [28], [29], [24].

(b-2’) The triangle D0 formed by the centroids of the erected triangles has a shape
that depends only on D; see (24) of Theorem 6.2.

(b-3) The sequence T n
D (A,B,C) either terminates or converges in shape to a tri-

angle D∞ whose shape depends only on D; see Theorem 6.3.

(b-4) It must come as a pleasant surprise to know that D0 and D∞ (of (b-2’)
and (b-3)) are similar. In fact, each is a triangle whose side lengths are
proportional to xu : yv : zw, where x, y, z are the side lengths of D and
u, v, w are the lengths of the medians of D; see Theorems 6.2, 6.3, and 3.3.

A

CB

PD

X

YZ

B∗

A∗

C∗

Figure 2. The Torricelli configuration, where A∗BC,AB∗C,ABC∗

are similar to XY Z

In view of the above, the special role played by the circumcenter as manifested in
(b-2) is now counterparted by a role of the centroid that, in view of (b-2’), (b-3),
(b-4), is even more special. Also, the relation between the shapes of D0 and D∞
and that of D (as described in (b-4)) seems to be too intricate to be captured
by geometric methods. Thus we do not expect the results above to have purely
geometric proofs.

Another popular configuration arises when the erected triangles (A,B,C ′), (B,C,
A′), (C,A,B′) (and not (A,B,C ′), (A′, B, C), (A,B′, C)) are required to be similar
toD; see Figure 3 where the same T andD of Figure 2 are used. This configuration
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A

CB

B′
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C ′

Figure 3. The Napoleon configuration, where ABC ′, BCA′, CAB′

are similar to XY Z

coincides with the previous one when D is equilateral. In this configuration, we
have the following:

(c-1) The lines AA′, BB′, CC ′ are concurrent if and only if D = (X, Y, Z) is
isosceles at Z, i.e., has ZX = ZY ; see [7, §D.11, p. 101] and [13]. It is
worth mentioning that the point PD of concurrence traces, as D ranges over
all triangles (X, Y, Z) that are isosceles at Z, what is known as the Kiepert
hyperbola; see [19, §357, Theorem, p. 223], [5], [6], and [24].

(c-2) The triangle formed by the centroids of the erected triangles has a shape
that depends on both D and T ; see (13) of Theorem 5.2.

(c-3) If we set ND(A,B,C)=(A′, B′, C ′), and apply ND to (A′, B′, C ′), and so on,
then the sequenceN n

D(A,B,C) that we obtain either terminates or converges
in shape to an equilateral triangle; see Theorem 5.3.

(c-4) ND1 and ND2 commute for all permissible D1 and D2.

The results in (b-3) and (c-3) generalize the results in [15] (where T n
D = N n

D is
investigated for equilateral D), and [14] (where N n

D is investigated for degenerate
D) and they supplement the results in [33] (where N n

D is investigated for general
D). The result in (c-4) is proved in [32] in the special case when D1 and D2 are
isosceles. As for (b-2), (b-2’), and (c-2), they raise the question of what happens
if other centers are considered. This issue awaits further investigation.

Remark 1.1. The Torricelli and Napoleon configurations above do not have di-
rect analogues in higher dimensions since it is not possible to erect similar d-
simplices on the facets of an arbitrary d-simplex even when d = 3. However, some
of the properties of these configurations that are listed above can be reformulated
in such a way that they hold in higher dimensions. This is already done for some
of these properties in [25] and [16], where interesting results are obtained. One
hopes that the same can be done for the remaining properties.
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2. Basic definitions

We adhere to the notation used in [17] and [15]. Thus we identify the Euclidean
plane with the plane C of complex numbers, and we define a triangle to be any
ordered triple (A,B,C) of points in C. A triangle (A,B,C) is said to be degenerate
if A, B, C are collinear, and is said to be trivial if A = B = C. We avoid denoting
a triangle (A,B,C) by ABC and we reserve ABC to stand for the product of the
complex numbers A, B, C. Similarly, we let (A,B) denote the line segment that
joins A and B.

If a triangle (A,B,C) is non-degenerate, then we call it negatively (respec-
tively, positively) oriented if the movement A 7→ B 7→ C 7→ A is clockwise
(respectively, counter-clockwise). If (A,B,C) is degenerate, then we can sim-
ply declare that it does not have a well-defined orientation. However, it may be
convenient to think of a degenerate triangle (A,B,C) as having a copy that is
positively oriented and another copy that is negatively oriented. These two trian-
gles have the same vertex sequence (A,B,C) and are referred to as the positively
and negatively oriented triangles (A,B,C). If needed, one may denote them by
(A,B,C)+ and (A,B,C)−, respectively.

Two non-trivial triangles (A,B,C) and (A′, B′, C ′) are said to be directly
similar or simply similar if they have the same orientation and if

|A−B| : |B − C| : |C − A| = |A′ −B′| : |B′ − C ′| : |C ′ − A′|.

Here |A−B| denotes the length of the line segment (A,B).

3. The shape function φ

A shape function is any function Ψ from the set of non-trivial triangles to the
extended complex plane C∞ = C ∪ {∞} having the property that

Ψ(T ) = Ψ(T ′) ⇐⇒ T and T ′ are similar.

June Lester’s shape function S (introduced and investigated in [21], [22], [23]) is
defined by

S(A,B,C) =
A−B

A− C
,

where the right-hand side is ∞ if C = A 6= B. The shape function φ defined by

φ(A,B,C) =
A+ ζB + ζ2C

A+ ζ2B + ζC
, (1)

where ζ = e2πi/3, was introduced in [15], where it was seen to be more appropriate
for handling the Napoleon transformation. These two shape functions are related
by the linear fractional relations

φ =
1 + ζ2S

ζ2 + S
, S =

ζ2φ− 1

ζ2 − φ
,
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and some of their properties and correspondences between them are given in Ta-
ble 1 in [15]. This table is reproduced, after some minor corrections and additions,
later in this paper. Specifically, corrections are made on rows 2, 4, 5, 6, 7, 9, and
rows 11–16 are added. These are justified by Theorem 3.1 below and by the fact
that

φ(B,C,A) = ζ φ(A,B,C).

For simplicity, triangle (A,B,C) is referred to in the table as triangle ABC.

Remark 3.1. We shall freely use the obvious fact that if f is a shape function
and g is a bijection on the extended complex plane C∞, then the composition gf
is also a shape function. This is true in particular if g is a Möbius transformation.
For properties of Möbius transformations, one may consult [12, Chapter 9], [26,
Chapter III.6], or any book on complex analysis.

1 ABC and UV W S(ABC) = S(UV W ). φ(ABC) = φ(UV W ).
are similar.

2 ABC and UV W S(ABC) = S(UV W ). φ(ABC) φ(UV W ) = 1.
are anti-similar.

3 ABC is degenerate. S(ABC) is real. ‖φ(ABC)‖ = 1.

4 ABC is non-degenerate Im(S) < 0. ‖φ(ABC)‖ < 1.
and positively oriented.

5 ABC is non-degenerate Im(S) > 0. ‖φ(ABC)‖ > 1.
and negatively oriented.

6 A = C. S(ABC) = ∞. φ(ABC) = ζ2.
7 A = B. S(ABC) = 0. φ(ABC) = ζ.
8 B = C. S(ABC) = 1. φ(ABC) = 1.

9 ABC is degenerate with S(ABC) = −1. φ(ABC) = −1.
AB = AC and B 6= C.

10 ABC is equilateral. S(ABC) = −ζ or −ζ2. φ(ABC) = 0 or ∞.

11 AB = BC and ∠ABC = 120◦. S(ABC) = (1− ζ2)/3 or (1− ζ)/3. φ(ABC) = −2ζ2 or −ζ2/2.
12 AB = AC and ∠BAC = 120◦. S(ABC) = ζ or ζ2. φ(ABC) = −2 or −1/2.
13 CA = CB and ∠BCA = 120◦. S(ABC) = 3/(1− ζ) or 3/(1− ζ2). φ(ABC) = −2ζ or −ζ/2.

14 AB = AC. ‖S(ABC)‖ = 1. φ(ABC) is real.
15 BC = BA. ‖S(ABC)‖ = ‖1− S(ABC)‖. φ(ABC)/ζ2 is real.
16 CA = CB. ‖1− S(ABC)‖ = 1. φ(ABC)/ζ is real.

Table 1.

Theorem 3.1. Let φ be the shape function defined in (1), and let (A,B,C) be a
non-trivial triangle. Then

φ(A,B,C) = −ζ2/2 ⇐⇒ ABC is positively oriented and isosceles with
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∠ABC = 120◦

φ(A,B,C) ∈ R ⇐⇒ ABC is isosceles with AB = AC.

Proof. To prove the first statement, apply (1) to the triangle (A,B,C) = (−3, 3,
−i
√

3) = (−3, 3, ζ2 − ζ). This triangle is clearly isosceles with B = 120◦ and
positively oriented.

For the second statement, we may assume A = 0. Then

φ(A,B,C) ∈ R ⇐⇒ ζB + ζ2C

ζ2B + ζC
=
ζ2B + ζC

ζB + ζ2C

⇐⇒ (ζ2 − ζ)BB = (ζ2 − ζ)CC ⇐⇒ ‖B‖ = ‖C‖,

as desired.

Remark 3.2. For a triangle (A,B,C), we define K, L, M by

3K = A+B + C, 3L = A+ ζB + ζ2C, 3M = A+ ζ2B + ζC. (2)

If (A,B,C) is not trivial, then its shape is given by

φ(A,B,C) =
L

M
.

It is also easy to see that

(A,B,C) is trivial (i.e., A = B = C) ⇐⇒ L = M = 0. (3)

The next theorem shows how to calculate the shape φ(A,B,C) from certain linear
dependence relations among A, B, C. It will be used in the next section.

Theorem 3.2. Let (A,B,C) and (α, β, γ) be non-trivial triangles and suppose
that α+ β + γ = 0. Then

φ(α, β, γ) =
−ζ2(α− ζ2β)

α− ζβ

φ(A,B,C) = −φ(α, β, γ) ⇐⇒ αA+ βB + γC = 0.

Here −∞ is understood to be ∞.

Proof.

φ(α, β, γ) =
α+ ζβ + ζ2γ

α+ ζ2β + ζγ
=

α+ ζβ + ζ2(−α− β)

α+ ζ2β + ζ(−α− β)

=
(1− ζ2)α+ (ζ − ζ2)β

(1− ζ)α+ (ζ2 − ζ)β
=
−ζ2α+ ζβ

α− ζβ
=
−ζ2(α− ζ2β)

α− ζβ
,

as claimed in the first statement.
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To prove the second statement, let K, L, M be as in (2). Then

A = K + L+M , B = K + ζ2L+ ζM , C = K + ζL+ ζ2M.

Plugging these in αA+ βB + γC and using α+ β + γ = 0, we obtain

αA+ βB + γC = (α+ ζ2β + ζγ)L+ (α+ ζβ + ζ2γ)M.

If M = L = 0, then we obtain the contradiction A = B = C. If M = 0 and
L 6= 0, i.e., if φ(A,B,C) = ∞, then

αA+ βB + γC = 0 ⇐⇒ (α+ ζ2β + ζγ)L+ (α+ ζβ + ζ2γ)M = 0

⇐⇒ α+ ζ2β + ζγ = 0

⇐⇒ φ(α, β, γ) = ∞.

Thus φ(A,B,C) = ∞⇐⇒ φ(α, β, γ) = ∞. If M 6= 0, then

αA+ βB + γC = 0 ⇐⇒ (α+ ζ2β + ζγ)L+ (α+ ζβ + ζ2γ)M = 0

⇐⇒ L

M
=
−(α+ ζβ + ζ2γ)

α+ ζ2β + ζγ

⇐⇒ φ(A,B,C) = −φ(α, β, γ).

This completes the proof.

Given a triangle D with φ(D) = t, the triangle D∞ with φ(T∞) = t−2 will play a
special role in Section 6. It is the triangle formed by the centroids of the erected
triangles in Figure 2, and it is also the limit of T n

D (T ) for all T . In view of this,
a geometric description of D∞ in terms of D would be desirable. This is done in
Theorem 3.3 below.

Theorem 3.3. Let D and D∞ be triangles with φ(D∞) = (φ(D))−2. If x, y, z
are the side lengths of D, and u, v, w are the lengths of the medians of D (in the
standard order), then the side lengths of D∞ are proportional to xu : yv : zw.

Proof. Let φ(D) = t, and assume that D = (X, Y, Z). Then

φ(D∞) = t−2 =

(
X + ζY + ζ2Z

X + ζ2Y + ζZ

)−2

=
(X2 + 2Y Z) + ζ(Y 2 + 2XZ) + ζ2(Z2 + 2XY )

(X2 + 2Y Z) + ζ2(Y 2 + 2XZ) + ζ(Z2 + 2XY )

= φ(X22Y Z, Y 2 + 2ZX,Z2 + 2XY ).

The first side length of the triangle (X2 +2Y Z, Y 2 +2ZX,Z2 +2XY ) is given by

‖(Z2 + 2XY )− (Y 2 + 2ZX)‖ = 2 ‖Z − Y ‖
∥∥∥∥Z + Y

2
−X

∥∥∥∥ = 2xu.

Similarly for the other sides.
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Corollary 3.1. If x, y, z are the side lengths of a triangle D, and if u, v, w are
the lengths of the medians of D (in the standard order), then there is a triangle
whose side lengths are xu, yv, zw.

In the context of Corollary 3.1, we recall that the existence and construction of a
triangle whose side lengths are u, v, w is quite well known; see for example [19]
and [18].

4. General linear transformations of triangles

Throughout this paper, we let ζ = e2iπ/3. We also define P and R (and record
P−1) as follows:

P =

 1 1 1
1 ζ ζ2

1 ζ2 ζ

 , P−1 =
1

3

 1 1 1
1 ζ2 ζ
1 ζ ζ2

 , R =

 2 0 0
0 −1 0
0 0 −1

 . (4)

Theorem 4.1. Let A, B, C be complex numbers and let

[A′ B′ C ′] = [A B C]M, (5)

where M be a 3 by 3 matrix with complex entries. Let A◦, B◦, C◦, respectively,
be the centroids of triangles (A′, B, C), (A,B′, C), (A,B,C ′). Let K L M

K ′ L′ M ′

K◦ L◦ M◦

 =

 A B C
A′ B′ C ′

A◦ B◦ C◦

 P .

Then

[K ′ L′ M ′] = [K L M ]
(
P−1MP

)
, (6)

3 [K◦ L◦ M◦] = [K L M ]
(
P−1MP +R

)
. (7)

Proof. (6) follows from

[K ′ L′ M ′] = [A′ B′ C ′] P = [A B C] MP
= [A B C] P

(
P−1MP

)
= [K L M ]

(
P−1MP

)
.

For (7), we have

3 [A◦ B◦ C◦] = [A′ +B + C A+B′ + C A+B + C ′]

= [A B C]H + [A′ B′ C ′] , where H =

 0 1 1
1 0 1
1 1 0


= [A B C]H + [A B C]M
= [A B C] (H +M).
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Therefore

3 [K◦ L◦ M◦] = 3 [A◦ B◦ C◦]P
= [A B C] (H +M)P
= [A B C]PP−1(H +M)P
= [A B C]P

(
P−1HP + P−1MP

)
= [K L M ]

(
R+ P−1MP

)
,

as desired.

5. The generalized Napoleon transformation ND

Fix a non-trivial triangle D = (X, Y, Z). For a triangle (A,B,C), we would like to
defineND(A,B,C) to be the triangle (A′, B′, C ′) for which the triangles (A,B,C ′),
(B,C,A′), (C,A,B′) are similar to D = (X, Y, Z); see Figure 3. Theorem 5.1
below shows that we have to restrict ourselves to triangles D = (X, Y, Z) in which
X 6= Y , and to triangles (A,B,C) in which no two vertices coincide. Note that
[15] is concerned with the transformation ND(A,B,C) and its iterations in the
special case when D is equilateral.

Theorem 5.1. Let D = (X, Y, Z), T = (A,B,C) be non-trivial triangles, and let
t = φ(D). Then there exist points A′, B′, C ′ such that the triangles (A,B,C ′),
(B,C,A′), (C,A,B′) are similar to D if and only if

(i) X 6= Y (i.e., t 6= ζ), (8)

(ii) no two vertices of (A,B,C) coincide (i.e., φ(T ) /∈ {1, ζ, ζ2}). (9)

When these conditions hold, A′, B′, C ′ are unique and given by

[A′ B′ C ′] = [A B C]M, M =
1

ζ(t−ζ)

 0 ζ(1−ζt) 1−t
1−t 0 ζ(1−ζt)

ζ(1−ζt) 1−t 0

. (10)

Proof. The case when D is equilateral is trivial and completely studied in [15], as
mentioned earlier. Thus we assume that D is not equilateral, i.e., t /∈ {0,∞}.

Suppose that there exist triangles (A,B,C ′), (B,C,A′), (C,A,B′) that are
similar to D = (X, Y, Z). We are to prove (i) and (ii).

If A = B, then the assumption that (A,B,C ′) is similar to (B,C,A′) would imply
that B = C, leading to the contradiction A = B = C. Thus A 6= B. Similarly,
B 6= C and C 6= A. This proves (ii).

To prove (i), note that if (A,B,C ′) is non-trivial, then

(A,B,C ′) is similar to D ⇐⇒ φ(A,B,C ′) = t

⇐⇒ A+ ζB + ζ2C ′

A+ ζ2B + ζC ′ = t

⇐⇒ ζ(t− ζ)C ′ = (1− t)A+ ζ(1− ζt)B. (11)
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Thus if X = Y , then t = ζ, by row 7 of Table 1, and (1− ζ)A+ ζ(1− ζ2)B = 0.
Therefore A = B, contradicting (ii). Thus X 6= Y . This proves (i).

Conversely, suppose that (i) and (ii) are satisfied. Then t 6= ζ and therefore there
exists C ′ such that ζ(t− ζ)C ′ = (1− t)A+ ζ(1− ζt)B. For this C ′, it follows from
(11) that either (A,B,C ′) is trivial or (A,B,C ′) is similar to (X, Y, Z). By (ii),
(A,B,C ′) is non-trivial and therefore (A,B,C ′) is similar to (X,Y, Z). Similarly
for the other two triangles.

The last statement follows from (11) and analogous statements for A′ and
B′.

Definition 5.1. Let D = (X, Y, Z) be a triangle in which X 6= Y . For any
triangle T = (A,B,C) with pairwise distinct vertices, the D-Napoleon triangle
ND(T ) of T is defined to be the triangle (A′, B′, C ′) where A′, B′, C ′ are as
given in (10). In other words, (A′, B′, C ′) is the triangle for which the triangles
(A,B,C ′), (B,C,A′), (C,A,B′) are similar to D.

Remark 5.1. Let D = (X,Y, Z) be a triangle in which X 6= Y . Theorem 5.2
below expresses φ(ND(T )) in terms of φ(T ) for every triangle T with pairwise
distinct vertices and thus makes the study of the sequence N n

D(T ) a simple matter.
There are, however, some technicalities that must be taken care of first. First,
since φ is not defined for a trivial triangle, we must answer the question of when
ND(T ) is trivial. Secondly, we must answer the question of when two vertices of
ND(T ) coincide since in that case N 2

D(T ) will be undefined. Both questions are
answered in Theorem 5.2.

Theorem 5.2. Let D = (X,Y, Z) be a triangle in which X 6= Y and let T =
(A,B,C) be a triangle in which no two vertices coincide. Let ND(T ) = (A′, B′,
C ′), and let A◦, B◦, C◦ be the centroids of triangles (B,C,A′), (C,A,B′), (A,B,
C ′), respectively. Let t = φ(D). Then

(A′, B′, C ′) is trivial ⇐⇒ (A,B,C) and (X,Y, Z) have the same orientation,

(A,B,C) is equilateral, and (X, Y, Z) is isosceles

with ∠Y ZX = 120◦. (12)

(A◦, B◦, C◦) is trivial ⇐⇒ (A,B,C) and (X,Y, Z) are equilateral and

have the same orientation.

If (A′, B′, C ′) is not trivial, then

φ(A′, B′, C ′) =
−(t+ 2ζ)

2t+ ζ
φ(A,B,C), (13)

and ∥∥∥∥−(t+ 2ζ)

2t+ ζ

∥∥∥∥2

= 1 +
3 (1− ‖t‖2)

‖2t+ ζ‖2
. (14)
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If (A◦, B◦, C◦) is not trivial, then

φ (A◦, B◦, C◦) =
−ζ
t
φ(A,B,C). (15)

In particular,

(A′, B′, C ′) is equilateral ⇐⇒ (A,B,C) is equilateral

or (X, Y, Z) is isosceles with ∠Y ZX = 120◦.

(A◦, B◦, C◦) is equilateral ⇐⇒ (A,B,C) or (X, Y, Z) is equilateral.

Also, two vertices of (A′, B′, C ′) coincide if and only if

φ(A,B,C) =
−ζ i(2t+ ζ)

t+ 2ζ

for some i, where the values i = 0, 1, 2 correspond to B′ = C ′, A′ = B′, C ′ = A′,
respectively.

Proof. Following the notation of Theorem 4.1, we let K L M
K ′ L′ M ′

K◦ L◦ M◦

 =

 A B C
A′ B′ C ′

A◦ B◦ C◦

 P ,

where P is as given in (4). Then using (6), (7), (10), we see that

[K ′ L′ M ′] = [K L M ] Diag

[
1

t+ 2ζ

t− ζ

−(2t+ ζ)

t− ζ

]
, (16)

[K◦ L◦ M◦] = [K L M ] Diag

[
1

ζ

t− ζ

−t
t− ζ

]
, (17)

where Diag[a b c] stands for the diagonal matrix with a, b, c on its main
diagonal. Thus

(A′, B′, C ′) is trivial

⇐⇒ L′ = M ′ = 0 (by (3))

⇐⇒ (t+ 2ζ)L

t− ζ
=

(2t+ ζ)M

t− ζ
= 0

⇐⇒ (t = −2ζ or L = 0) and (t = −ζ/2 or M = 0)

⇐⇒ (L = 0 and t = −ζ/2) or (M = 0 and t = −2ζ)

⇐⇒ (φ(T ) = 0 and φ(D) = −ζ/2) or (φ(T ) = ∞ and φ(D) = −2ζ) ,

as claimed.

Similarly,

(A◦, B◦, C◦) is trivial ⇐⇒ L◦ = M◦ = 0

⇐⇒ ζL

t− ζ
=
−tM
t− ζ

= 0

⇐⇒ (L = 0 or t = ∞) and (M = 0 or t = 0)

⇐⇒ (L = 0 and t = 0) or (M = 0 and t = ∞)

⇐⇒ (φ(T ) = φ(D) = 0) or (φ(T ) = φ(D) = ∞) ,



M. Hajja: Generalized Napoleon and Torricelli Transformations . . . 183

as claimed.
The statement (13) follows from φ(A′, B′, C ′) = L′/M ′ and (16); (15) follows

from φ(A◦, B◦, C◦) = L◦/M◦ and (17); and (14) follows from∥∥∥∥−(t+ 2ζ)

2t+ ζ

∥∥∥∥2

− 1 =
(t+ 2ζ)(t+ 2ζ2)− (2t+ ζ)(2t+ ζ2)

‖2t+ ζ‖2
=

3 (1− ‖t‖2)

‖2t+ ζ‖2
.

The last statement follows from (13) and the facts that B′ = C ′ ⇐⇒ φ(A′, B′, C ′)
= 1, etc.

Remark 5.2. Let us now study separately the case when D = (X, Y, Z) is de-
generate. Since X 6= Y , we may assume that (X,Y, Z) = (0, 1, s) for some real s.
The relation between s and t = φ(D) is given by

t = φ(D) =
ζ + sζ2

ζ2 + sζ
=

sζ + 1

s+ ζ
,

or equivalently

s =
1− tζ

t− ζ
. (18)

Letting ND(A,B,C) = (A′, B′, C ′) be the D-Napoleon triangle of (A,B,C), we
see that A′, B′, C ′ are the points that divide the sides (B,C), (C,A), (A,B) in
the ratio s : 1− s. Thus (A′, B′, C ′) is what is referred to in [14] as the s-medial
triangle of (A,B,C). In other words, ND = Ms, where t = φ(D) and s are related
by (18). The sequence Mn

s (T ) of s-medial triangles is studied in detail in [14].
In particular, we mention the fact that the sequence Mn

s (T ) converges in shape
if and only if T is equilateral or s = 1/2. To see this once more, we use (13)
and (14) and the fact that ‖t‖ = 1 (because D is degenerate) to conclude that
φ (Mn

s (A,B,C)) = cn φ(A,B,C), where

c =
−(t+ 2ζ)

2t+ ζ
.

Since ‖c‖ = 1, it follows that φ (Mn
s (A,B,C)) converges if and only if φ(A,B,C)

= 0, φ(A,B,C) = ∞, or c = 1. Using (18), we see that c = 1 ⇐⇒ t = −ζ ⇐⇒
s = 1/2, as claimed.

In view of the remark above, we can assume thatD is non-degenerate, i.e., ‖t‖ 6= 1.
We can also exclude the exceptional cases mentioned in (12) in Theorem 5.2. We
also mention that when D is equilateral, then we obtain the ordinary (positive
and negative) Napoleon triangles of (A,B,C) studied in [15].

Theorem 5.3. Let D = (X, Y, Z) be a non-degenerate triangle, and let T =
(A,B,C) be a triangle with pairwise distinct vertices.

(i) If D and T have the same orientation with T equilateral and D isosceles
with ∠Y ZX = 120◦, then ND(T ) is trivial.
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(ii) If there exist positive integers j and k such that

φ(T ) = ζj

(
2t+ ζ

−(t+ 2ζ)

)k

, (19)

then the sequence N n
D(T ) terminates at the stage when n is the smallest such

k.

(iii) Otherwise, the sequence N n
D(T ) converges in shape to an equilateral triangle

whose orientation is opposite to that of D.

Proof. To prove (ii), let k be the smallest positive integer satisfying (19). Using
(13), we see that k is the smallest positive integer such that φ

(
N k

D(T )
)
∈ {1, ζ, ζ2},

and N n
D(T ) terminates at n = k.

For (iii), suppose that there is no k such that φ
(
N k

D(T )
)
∈ {1, ζ, ζ2}. Thus the

sequence does not terminate. Using (14), we see that the limit of φ (N n
D(T )), as

n→∞, is ∞ if ‖t‖ < 1 and 0 if ‖t‖ > 1. Thus N n
D(T ) converges to an equilateral

triangle whose orientation is opposite to that of D.

We conclude this section by proving that ND1 and ND2 commute for all feasible
D1 and D2. This was proved in [32, Remark 1, p. 128] in the special case when
D1 and D2 are isosceles.

Theorem 5.4. Let D1 = (X1, Y1, Z1) and D2 = (X2, Y2, Z2) be non-trivial trian-
gles in which X1 6= Y1 and X2 6= Y2. Then ND1 (ND2) = ND2 (ND1).

Proof. Let t1 = φ(D1), t2 = φ(D2), and let M be the matrix given in (10).
Let M1, M2 be obtained from M by replacing t by t1, t2, respectively. Then
ND2(ND1(A,B,C)) = [A B C]M1M2. Direct calculations show that ζ2(t1 −
ζ)(t2 − ζ)M1M2 is the circulant matrix whose first row is [ζ(1 − ζt1)(1 − t2) +
ζ(1− ζt2)(1− t1) (1− t1)(1− t2) ζ2(1− ζt1)(1− ζt2)]. Thus M1M2 = M2M1

and therefore ND2(ND1) = ND1(ND2), as desired.

6. The generalized Torricelli transformation TD

We now turn to the Torricelli transformation TD(T ) shown in Figure 2, and we
study the sequence of iterations T n

D (T ). We see that T n
D (T ) either terminates or

converges, in shape. Unexpectedly, the limiting shape is not that of an equilateral
triangle, but that of a triangle whose shape depends only on that of D.

Our first theorem shows that for T n
D (T ) to be defined, we must restrict ourselves

to triangles D and T in which no two vertices coincide.

Theorem 6.1. Let D = (X, Y, Z) and T = (A,B,C) be non-trivial triangles and
let t = φ(D).

If no two vertices of D coincide (i.e., t /∈ {1, ζ, ζ2}), then there exist points
A∗, B∗, C∗ such that the triangles (A,B,C∗), (A,B∗, C), (A∗, B, C) are similar
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to D if and only if no two vertices of T coincide. In this case, A∗, B∗, C∗ are
unique and given by

[A∗ B∗ C∗] = [A B C] M, M =

 0 −ζ(t−1)
t−ζ2

−ζ2(t−1)
t−ζ

−ζ2(t−ζ2)
t−1

0 −ζ(t−ζ2)
t−ζ

−ζ(t−ζ)
t−1

−ζ2(t−ζ)
t−ζ2 0

 . (20)

If Y = Z, then such points A∗, B∗, C∗ exist if and only if B = C, in which case
B∗ = C∗ = B = C and A∗ is any point different from B = C. Similar statements
hold for the cases Z = X and X = Y .

Proof. Suppose that the vertices of D are distinct, i.e., t /∈ {1, ζ, ζ2}.
If there exist points A∗, B∗, C∗ such that the triangles (A,B,C∗), (A,B∗, C),

(A∗, B, C) are similar to D, then clearly A, B, C must be distinct, and (20) follows
directly from the equations

φ(A,B,C∗) = φ(A,B∗, C) = φ(A∗, B, C) = t

and the definition of φ.
Conversely, if A, B, C are distinct, we define A∗, B∗, C∗ by (20), and we

verify that (A,B,C∗), (A,B∗, C), (A∗, B, C) are similar to D.
The last statement about Y = Z etc. is immediate.

In view of the last statement in Theorem 6.1, we restrict our attention in the next
definition to the cases when each of D and T has distinct vertices.

Definition 6.1. Let D = (X, Y, Z) and T = (A,B,C) be triangles in which no
two vertices coincide. Then the D-Torricelli triangle TD(T ) of T is defined to be
the triangle (A∗, B∗, C∗) whose vertices A∗, B∗, C∗ are as given in (20). In other
words, (A∗, B∗, C∗) is the triangle for which the triangles (A,B,C∗), (A,B∗, C),
(A∗, B, C) are similar to D.

Theorem 6.2. Let D = (X,Y, Z) and T = (A,B,C) be triangles in which no two
vertices coincide. Let TD(T ) = (A∗, B∗, C∗) be the D-Torricelli triangle of T , and
let A}, B}, C} be the centroids of the triangles (A∗, B, C), (A,B∗, C), (A,B,C∗),
respectively. Let T ∗ = (A∗, B∗, C∗) and T} = (A}, B}, C}). Let t = φ(D), and
let ψ be the shape function defined by

ψ =
−t2φ+ 1

φ− t
; (21)

see Remark 3.1. Then (A∗, B∗, C∗) is never trivial and

φ(A∗, B∗, C∗) =
−(t3 + 2)φ(A,B,C) + 3t

(2t3 + 1)− 3t2φ(A,B,C)
, (22)

ψ(A∗, B∗, C∗) =
−1

2
ψ(A,B,C). (23)
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Also, (A}, B}, C}) is trivial if and only if (A,B,C) and (X, Y, Z) are similar, in
which case (A∗, B∗, C∗) = (A,B,C). Otherwise,

φ
(
A}, B}, C}

)
=

1

t2
. (24)

In particular,

(A∗, B∗, C∗) is equilateral ⇐⇒ φ(A,B,C) =
3t

t3 + 2
or

2t3 + 1

3t2
,(

A}, B}, C}
)

is equilateral ⇐⇒ (X, Y, Z) is equilateral.

Proof. We adhere to the notation of Section 3 with the understanding that (i) A′,
B′, C ′, K ′, L′, M ′ are to be replaced by A∗, B∗, C∗, K∗, L∗, M∗, (ii) A◦, B◦, C◦,
K◦, L◦, M◦ are to be replaced by A}, B}, C}, K}, L}, M}, (iii) M is as given
in (20). Then it follows from (6) and (7) by direct calculations of P−1MP and
P−1MP +R that

[K∗ L∗ M∗] (t3 − 1) = [K L M ]

 t3 − 1 0 0
3t t3 + 2 3t2

−3t2 −3t −(2t3 + 1)

(25)

[
K} L} M}

]
(t3 − 1) = [K L M ]

 t3 − 1 0 0
t 1 t2

−t2 −t −t3

 . (26)

Hence

(A∗, B∗, C∗) is trivial ⇐⇒ L∗ = M∗ = 0

⇐⇒ −(t3 + 2)L+ 3tM = (2t3 + 1)M − 3t2L = 0

⇐⇒ L

M
=

3t

t3 + 2
=

2t3 + 1

3t2

=⇒ 3t(3t2) = (t3 + 2)(2t3 + 1)

⇐⇒ t6 − 2t3 + 1 = 0

⇐⇒ t3 = 1

⇐⇒ t ∈ {1, ζ, ζ2},

contradicting the assumption that no two vertices of D coincide. Therefore
(A∗, B∗, C∗) is never trivial.

(22) follows immediately from φ(A∗, B∗, C∗) = L∗/M8 and (25). Also (23)
follows directly from (22) and (21), Also,

(A}, B}, C}) is trivial ⇐⇒ L} = M} = 0

⇐⇒ L− tM = t2(L− tM) = 0

⇐⇒ L− tM = 0

⇐⇒ L

M
= t

⇐⇒ φ(T ) = t.
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Therefore (A}, B}, C}) is trivial if and only if T and D are similar. In this case,
it is clear that (A∗, B∗, C∗) = (A,B,C) and (A}, B}, C}) = (G,G,G), where G is
the centroid of (A,B,C). Otherwise, (24) follows from φ(A}, B}, C}) = L}/M}

and (26).

The last statements follow from (22) and (24).

Remark 6.1. It is worth explaining how ψ in (21) came about. Following the
procedure used in solving a system of two linear difference equations in two vari-

ables, we form the matrix M =

[
t3 + 2 −3t
3t2 −(2t3 + 1)

]
of (22). It is routine to see

that the zeros of the characteristic equation of M are t3 − 1 and −2(t3 − 1). The
corresponding eigenvectors are (−t2, 1) and (1,−t). Thus we introduce the new
shape function ψ defined by (21) and we see that

ψ(A∗, B∗, C∗) =
t3 − 1

−2(t3 − 1)
ψ(A,B,C) =

−1

2
ψ(A,B,C),

as claimed.

The shape function ψ introduced in Theorem 6.2 is useful in deciding whether
the sequence T n

D (T ) converges in shape. Here we note that (23) is valid provided
that φ(A,B,C) /∈ {1, ζ, ζ2}, i.e., ψ(A,B,C) /∈ Ω = {t + 1, ζ(t + ζ), ζ2(t + ζ2)}.
Thus for TD(T ) to be defined, ψ(T ) should not belong to Ω. Similarly, for T 2

D(T )
to be defined, ψ(T ∗) /∈ Ω, i.e., ψ(T ) /∈ −2Ω. Thus, for the sequence T n

D (T ) to be
defined for all n, ψ(T ) must not belong to the set

∞⋃
n=0

{
(−2)n(1 + t), (−2)nζ(t+ ζ), (−2)nζ2(t+ ζ2)

}
.

Equivalently, φ(T ) must not belong to the set

∞⋃
0

{
(−2)nω(t+ ω) + 1

t2 + (−2)nω(t+ ω)
: ω ∈ Ω

}
.

Thus we have proved:

Theorem 6.3. Let D = (X, Y, Z) and T = (A,B,C) be triangles in which no
two vertices coincide. Let t = φ(D), and let ψ be as defined in (21).

(i) If (A,B,C) is similar to D, then T n
D (T ) is identical with (A,B,C) for all

n.

(ii) If there exists a non-negative integer k and an ω ∈ {1, ζ, ζ2} such that

φ(A,B,C) =
(−2)kω(t+ ω) + 1

t2 + (−2)nω(t+ ω)
,

then the sequence T n
D (T ) terminates when n equals the smallest such k.
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(iii) Otherwise, the sequence T n
D (T ) converges in shape to a triangle D∞ with

φ (D∞) =
1

t2
.

With an eye on Theorem 5.4, we conclude this section by mentioning that TD1

and TD2 do not commute, even shape-wise, when D1 and D2 have different shapes.
This follows by using (22) to calculate φ(TD1(TD2(T ))) and φ(TD2(TD1(T ))) and
compare the two results.
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