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Abstract. If the n-dimensional unit sphere is covered by finitely many
spherically convex bodies, then the sum of the inradii of these bodies is
at least π. This bound is sharp, and the equality case is characterized.
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1. Introduction

Let Sn be the n-dimensional unit sphere in (n + 1)-dimensional Euclidean space
Rn+1 (n ≥ 2). A spherically convex body is a closed, spherically convex subset K
of Sn with interior points and lying in some closed hemisphere, thus, the intersec-
tion of Sn with an (n + 1)-dimensional closed convex cone of Rn+1 different from
Rn+1. The inradius r(K) of K is the spherical radius of the largest spherical ball
contained in K.
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The purpose of this note is the proof of the following theorem.

Theorem 1. If the spherically convex bodies K1, . . . , Km cover the spherical ball
B of radius r(B) ≥ π/2 in Sn, then

m∑
i=1

r(Ki) ≥ r(B).

For r(B) = π/2 the stronger inequality
∑m

i=1 r(Ki ∩ B) ≥ r(B) holds. Moreover,
equality for r(B) = π or r(B) = π/2 holds if and only if K1, . . . , Km are lunes
with common ridge which have pairwise no common interior points.

Recall that a lune in Sn is the n-dimensional intersection of Sn with two closed
halfspaces of Rn+1 with the origin 0 in their boundaries. The intersection of the
boundaries (or any (n − 1)-dimensional subspace in that intersection, if the two
subspaces are identical) is called ridge of the lune. Evidently, the inradius of a
lune is half the interior angle between the two defining hyperplanes.

The original motivation for Theorem 1 came from Tarski’s plank problem.
It states that if a convex body in Euclidean space is covered by finitely many
slabs, then the sum of their widths is at least the (minimal) width of the body.
The problem was solved by Bang [2], [3]. Several related questions are discussed
in [6] and [5, Section 3.4]. The symmetric case of a more general conjecture
of Bang was proved by Ball [1], who considered coverings of balls by planks in
finite-dimensional Banach spaces (the width of a plank being defined in terms
of the norm). Recently the plank theorem was further strengthened by Kadets
[7] for Hilbert spaces, as follows. Let C be a convex body, i.e., a closed convex
subset with non-empty interior, in the real Hilbert space H (finite- or infinite-
dimensional). Let r(C) denote the supremum of the radii of the balls contained
in C. Planks and their widths are defined with the help of the inner product of
H in the usual way. Thus, if C is a convex body in H and P is a plank of H,
then the width of P is always at least as large as 2r(C ∩ P ). The result of [7]
says that if a convex body B (it suffices to consider balls) of H is covered by the
convex bodies C1, . . . , Cn in H, then

∑n
i=1 r(Ci) ≥

∑n
i=1 r(Ci ∩ B) ≥ r(B). We

note that an independent proof of the 2-dimensional Euclidean case of this result
can be found in [4]. The proofs of [7] and [4] do not generalize neither to Banach
spaces nor to spherical space. While an extension to Banach spaces seems rather
difficult, we noticed thean in spherical space for coverings of large balls an easier
anwer can be given.

Theorem 1 is a consequence of the following result. Here σ denotes spherical
Lebesgue measure on Sn, and σn := σ(Sn).

Theorem 2. If K is a spherically convex body, then

σ(K) ≤ σn

π
r(K).

Equality holds if and only if K is a lune.
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This implies Theorem 1 as follows. If B = Sn, i.e., the spherically convex bodies
K1, . . . , Km cover Sn, then

σn ≤
m∑

i=1

σ(Ki) ≤
σn

π

m∑
i=1

r(Ki),

and the stated inequality follows. In general, when B is different from Sn, let
B′ ⊂ Sn be the spherical ball of radius π − r(B) centered at the point antipodal
to the center of B. As the spherically convex bodies B′, K1, . . . , Km cover Sn, the
inequality just proved shows that

π − r(B) +
m∑

i=1

r(Ki) ≥ π,

and the stated inequality follows. If r(B) = π/2, then K1 ∩ B, . . . , Km ∩ B are
spherically convex bodies and as B′, K1 ∩ B, . . . , Km ∩ B cover Sn , the stronger
inequality follows. The assertion about the equality sign for the case when r(B) =
π or π/2 follows easily.

2. Proof of Theorem 2

We denote the standard scalar product of Rn+1 by 〈·, ·〉, and for u ∈ Sn we write

u⊥ := {x ∈ Rn+1 : 〈u, x〉 = 0}

for the orthogonal complement of lin{u}. For a spherically convex body K, the
polar body is defined by

K∗ := {u ∈ Sn : 〈u, v〉 ≤ 0 for all v ∈ K}.

It is also spherically convex, but need not have interior points. The number

U(K) :=
1

2
σ({u ∈ Sn : u⊥ ∩K 6= ∅})

can be considered as the spherical mean width of K. Obviously, a vector u ∈ Sn

satisfies u ∈ K∗ ∪ (−K∗) if and only if u⊥ does not meet the interior of K, hence

σn − 2σ(K∗) = 2U(K). (1)

It is a basic idea of the following to treat U(K∗) instead of σ(K).
Let K ⊂ Sn be a spherically convex body, and let B be the smallest spherical

ball containing it. We assume that B is not a closed hemisphere (this will be
satisfied later). Let e ∈ Sn be the center of B, let Sn

e := {u ∈ Sn : 〈e, u〉 > 0},
and let Te be the tangent hyperplane to Sn at e. We write En := e⊥. With the
induced scalar product, this is an n-dimensional Euclidean space. Further, we
write Sn−1 := Sn∩En for the unit sphere of this space. The mapping Π : Sn

e → En

is defined as the radial projection from Sn
e to Te, followed by the orthogonal

projection to En.
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Every (n−1)-dimensional great subsphere of Sn which does not contain e can
uniquely be written in the form Su = u⊥ ∩ Sn with u ∈ Sn

e . For u ∈ Sn
e \ {e} the

subspace u⊥ intersects the hyperplane Te in an (n−1)-dimensional affine subspace,
and under orthogonal projection to En this is projected into a hyperplane of En.
Writing

u = τe−
√

1− τ 2 u0, 0 ≤ τ < 1, u0 ∈ Sn−1,

we find that this hyperplane is given by

Π(Su ∩ Sn
e ) = H(u0, t) := {x ∈ En : 〈u0, x〉 = t}

with
t = t(τ) =

τ√
1− τ 2

.

The set K := Π(K) is a compact convex set in En, and B := Π(B) is the smallest
Euclidean ball containing K. The ball B has center 0. Since u⊥ ∩ K 6= ∅ is
equivalent to H(u0, t(τ))∩K 6= ∅, we obtain (noting that σ({u ∈ Sn : e ∈ u⊥}) =
0)

U(K) =

∫
Sne

1{u⊥ ∩K 6= ∅}σ(du)

=

∫
Sn−1

∫ 1

0

1{H(u0, t(τ)) ∩K 6= ∅}(1− τ 2)
n−2

2 dτ µ(du0),

where µ denotes spherical Lebesgue measure on Sn−1. Substituting τ = t/
√

1 + t2,
we obtain

U(K) =

∫
Sn−1

∫ ∞

0

1{H(u0, t) ∩K 6= ∅}(1 + t2)−
n+1

2 dt µ(du0).

We can now state a more general assertion, from which Theorem 2 will follow.
For this, let f : [0,∞) → (0,∞) be a positive continuous function. On the space
H of hyperplanes of En (with its usual topology) we define a Borel measure νf by

νf (A) :=

∫
Sn−1

∫ ∞

0

1{H(u, t) ∈ A}f(t) dt µ(du)

for Borel sets A ⊂ H. Then

Uf (K) :=

∫
H

1{H ∩K 6= ∅} νf (dH)

is the total νf measure of the set of hyperplanes meeting the convex set K ⊂ En,
and

U(K) = Uf (K) for f(t) = (1 + t2)−
n+1

2 .

Proposition. Let B ⊂ En be a ball with center 0, and let K(B) be the set of
nonempty, compact convex sets K ⊂ En for which B is the smallest ball containing
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K. Then, for K ∈ K(B), the value Uf (K) is minimal if and only if K is a
segment.

For a constant function f , in which case Uf is a constant multiple of the mean
width, this result is due to Linhart [8]. We extend Linhart’s proof, but also modify
it, for a reason explained later.

Let K ∈ K(B). Writing h(K, u) := max{〈x, u〉 : x ∈ K} for the support
function of K at u ∈ Sn−1, we have (noting that 0 ∈ K)

Uf (K) =

∫
Sn−1

∫ ∞

0

1{H(u, t) ∩K 6= ∅}f(t) dt µ(du)

=

∫
Sn−1

∫ h(K,u)

0

f(t) dt µ(du) =

∫
Sn−1

F (h(K, u)) µ(du)

with F (s) :=
∫ s

0
f(t) dt.

By a standard compactness and continuity argument, Uf attains a minimum
on K(B), say at K. Since K ∈ K(B), there exists a k-simplex T with vertices
v1, . . . , vk+1 ∈ bd B, for some k ∈ {1, . . . , n}, such that T ⊂ K and T ∈ K(B).
Then K = T , since otherwise there is an open set of hyperplanes of positive
νf measure hitting K but not T , which would imply Uf (T ) < Uf (K). For j =
1, . . . , k + 1 let N(T, vj) denote the normal cone of T at its vertex vj, so that
Sj := N(T, vj) ∩ Sn−1 is the spherical image of vj. For u ∈ Sj we have h(T, u) =
〈vj, u〉 = R cos ϕ, where R is the radius of B and ϕ = ϕ(u) denotes the angle
between vj and u. Let Dj := {u ∈ Sn−1 : 〈u, vj〉 ≥ 0}; then Sj ⊂ Dj. We
write g(ϕ) := F (R cos ϕ) and state a generalization of Linhart’s crucial inequality,
namely

1

µ(Sj)

∫
Sj

g(ϕ(u)) µ(du) ≥ 1

µ(Dj)

∫
Dj

g(ϕ(u)) µ(du) =: C(R, f), (2)

with equality if and only if Sj = Dj. On the right side, C(R, f) denotes a constant
that depends on R and on the function f , but is independent of j. If (2) has been
proved, then it follows that

Uf (K) = Uf (T ) =

∫
Sn−1

F (h(T, u)) µ(du) =
k+1∑
j=1

∫
Sj

F (h(T, u)) µ(du)

≥
k+1∑
j=1

µ(Sj)C(R, f) = µ(Sn−1)C(R, f),

with equality if and only if T is a segment.
To prove (2), we modify the proof given by Linhart, replacing the function

R cos ϕ by the function g(ϕ). Moreover, instead of approximation by step func-
tions, we use an integration argument. The reason for this is that the use of
approximation blurs the equality cases, so that we would not be able to conclude
that the minimum is attained only by segments.
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We fix j ∈ {1, . . . , k + 1} and write ej := vj/R and, for u ∈ Sj,

u = ej cos ϕ + w sin ϕ, 0 ≤ ϕ ≤ π/2, w ∈ W := Sn−1 ∩ e⊥j ,

so that ϕ = ϕ(u) = 〈ej, u〉. For w ∈ W , there is a unique value b = b(w) such
that ej cos ϕ + w sin ϕ ∈ Sj precisely for 0 ≤ ϕ ≤ b. We write J(ϕ) := sinn−2 ϕ
and denote by dw the (n − 2)-dimensional spherical surface area element of the
sphere W at w; then ∫

W

∫ π/2

0

J(ϕ) dϕ dw = µ(Dj).

Using Fubini’s theorem, we can write∫
Sj

g(ϕ(u)) µ(du) =

∫
W

∫ b(w)

0

g(ϕ)J(ϕ) dϕ dw

=

∫ ∞

0

∫
W

∫ b(w)

0

1{t ≤ g(ϕ)}J(ϕ) dϕ dw dt.

Let t ≥ 0 be fixed. With

M(t) :=

∫
W

∫ π/2

0

1{t ≤ g(ϕ)}J(ϕ) dϕ dw

we have
M(t)

µ(Dj)
=

∫ π/2

0
1{t ≤ g(ϕ)}J(ϕ) dϕ∫ π/2

0
J(ϕ) dϕ

≤ 1.

Let A1 := {w ∈ W : g(b(w)) ≥ t} and A2 := {w ∈ W : g(b(w)) < t}. Since
the function F is strictly increasing and cos is strictly decreasing on [0, π/2], the
function g is strictly decreasing. For w ∈ A1 and ϕ ≤ b(w) we have g(ϕ) ≥
g(b(w)) ≥ t, hence 1{t ≤ g(ϕ)} = 1. For w ∈ A2 and ϕ > b(w) we have
g(ϕ) < g(b(w)) < t, hence 1{t ≤ g(ϕ)} = 0. This gives∫

W

∫ b(w)

0

1{t ≤ g(ϕ)}J(ϕ) dϕ dw

=

∫
A1

∫ b(w)

0

J(ϕ) dϕ dw +

∫
A2

∫ π/2

0

1{t ≤ g(ϕ)}J(ϕ) dϕ dw

=

∫
A1

∫ b(w)

0

J(ϕ) dϕ dw +
M(t)

µ(Dj)

∫
A2

∫ π/2

0

J(ϕ) dϕ dw

≥ M(t)

µ(Dj)

∫
W

∫ b(w)

0

J(ϕ) dϕ dw =
M(t)

µ(Dj)
µ(Sj).

Now an integration over t yields the assertion (2). Equality holds if and only if
b(w) = π/2 for all w ∈ W , that is, if Sj = Dj. If this holds for j = 1, . . . , k + 1,
then k = 1, hence K is a segment. This completes the proof of the Proposition.

To deduce the assertion of Theorem 2, we assume that K ⊂ Sn is a spherically
convex body with prescribed inradius r. The smallest spherical ball containing
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the polar body K∗ has radius π/2 − r < π/2. From the Proposition we deduce
that U(K∗) is minimal if and only if Π(K∗) is a segment, hence if and only if K is
a lune. Now it follows from (1) (with K and K∗ interchanged) that the spherical
volume σ(K) is maximal if and only if K is a lune. The spherical volume of a
lune of inradius r is given by (σn/π)r.
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