
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 51 (2010), No. 1, 117-135.

Self-invariant 1-Factorizations of
Complete Graphs and

Finite Bol Loops of Exponent 2

Barbara Baumeister Alexander Stein ∗

Technische Universität Dortmund, Fakultät für Mathematik
44221 Dortmund, Germany

e-mail: baumeist@mi.fu-berlin.de

Fachbereich Mathematik und Informatik, FU Berlin
Arnimallee 3, 14195 Berlin, Germany

1. Introduction

Let Ω be a complete graph on an even number n = 2m of vertices V = V(Ω) =
{ω1, . . . , ωn} and assume thatK = {k1, . . . , kn−1} is a 1-factorization of Ω. Identify
every k ∈ K with the fixed point free involution of Sym(V) which interchanges
the ends of every edge in k and set GK = 〈K〉. Then K is said to be self-invariant
if Kk = K for all k ∈ K. Heiss [13] studied self-invariant 1-factorizations and
conjectured

Conjecture 1.1. [13] If K is a self-invariant 1-factorization, then GK is a 2-
group.

This conjecture holds if and only if some long standing conjecture on Bol loops is
true. We follow the notation and terminology of [2]. A loop is a magma (X, ◦),
that is a set X together with a binary operation ◦ on X, with an identity 1 such
that for every x in X the maps

R(x) : y 7→ y ◦ x and L(x) : y 7→ x ◦ y,
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called right and left translations, are permutations of X. Thus in a loop for every
pair of elements s, t ∈ X there exist unique elements x, y in X such that s ◦ x = t
and y ◦ s = t. Hence one may think of a loop as a group without associative
axiom.

Loops play a role in physics – in particular those which satisfy a weak asso-
ciative axiom, see for instance [23]. A loop X is a right Bol loop if it satisfies the
right Bol Identity (BOL) for all x, y, z in X:

((x ◦ y) ◦ z) ◦ y = x ◦ (((y ◦ z) ◦ y).

This is equivalent to the condition:

R(y)R(z)R(y) = R((y ◦ z) ◦ y) for all y, z ∈ X.

Notice, that it makes no difference whether left or right Bol loops are studied.
We obtain a left Bol loop out of a right one by dualizing it and vice versa, see
[14, p. 2]. In this paper, we consider right Bol loops and call them simply Bol
loops to shorten the notation. For several years Bol loops have been studied by
numerous people, see for instance [7], [9], [10], [22], [19], [20], [13], [2]. A Bol loop
X is said to be of exponent 2 if x ◦ x = 1 for all x ∈ X. If the loop of exponent
2 is a group, then it is an elementary abelian 2-group. It was a widely accepted
opinion, that there is an analogous statement for loops. A normal subloop is the
kernel of a loop homomorphism, and a section of a loop X is the homomorphic
image of a subloop of X. The loop is soluble if there is a series of subloops

X = X0 ≥ X1 ≥ X2 ≥ · · · ≥ 1

such that Xi+1 is normal in Xi and such that the respective sections are abelian
groups. This determines the loop, as the Jordan-Hölder theorem for loops holds
[1]. If X does not possess a non-trivial normal subloop, then X is simple.

Conjecture 1.2. [21] Every finite Bol loop of exponent 2 is soluble.

This implies the following conjecture, in particular.

Conjecture 1.3. [21] If X is a finite simple Bol loop of exponent 2, then X is a
2-group.

Every Bol loop of exponent 2 is a Bruck loop. In a Bol loop, every element x has
an inverse element x−1, for instance see [14]. A Bruck loop (in loop theory also
called K-Loop [16], [14] or in physics gyrocommutative gyrogroup [23], see also
[15, p. 5]), is a Bol loop X which satisfies the automorphic inverse property AIP

(x ◦ y)−1 = x−1 ◦ y−1 for all x, y in X.

Bruck loops of odd order were studied by Glauberman [9], [10]. He generalized
Feit-Thompson’s theorem to Bruck loops of odd order – as well as the group
theoretic theorems such as Cauchy’s, Sylow’s, Lagrange’s and Hall’s theorems.
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Bol loops of exponent 2 behave differently. In this paper we present a coun-
terexample to the second conjecture, see Theorem 1. We call this example the
Aschbacher loop A and prove that the Aschbacher loop is the smallest counterex-
ample which exists, see Theorem 3. Notice, in particular, that A is not a group.
In the next section we recall the equivalence of the Conjectures 1.1 and 1.2. It
is an easy exercise to construct a counterexample to Conjecture 1.1 out of the
Aschbacher loop.

Let X be a counterexample to Conjecture 1.2 which is of minimal size. Then
X is a simple loop. A Bol loop M which also satisfies the identity

x ◦ (y ◦ (x ◦ z)) = ((x ◦ y) ◦ x) ◦ z for all x, y, z ∈ M

is called Moufang loop. Moufang showed that every Moufang loop is di-associative,
meaning every two elements of the loop generate a subgroup. This implies that
a Moufang loop of exponent 2 is abelian. It has been shown by Bruck that every
Moufang loop of exponent 2 is an elementary abelian 2-group [5, VIII (11.1)].

Hence, every finite minimal counterexample is a finite simple Bol loop which
is not a simple Moufang loop. Therefore, the loop A is also an example answering
positively the

Question 1.4. [2, Question 4] Does there exist a finite simple Bol loop which is
not a simple Moufang loop?

Notice that this question has also already been answered by Nagy in [20].
We show the following.

Theorem 1. The Aschbacher loop A constructed in Section 3 is a finite simple
insoluble Bol loop of exponent 2 and the following hold.

(a) |A| = 96.

(b) G := 〈R(x) | x ∈ X〉 is a non-split extension 25·PGL2(5).

(c) Aut(A) ∼= Z5 : Mod16.

This theorem implies

Theorem 2. There exists a self-invariant factorization of the complete graph on
96 vertices such that GK is a non-split extension 25·PGL2(5).

An immediate question is whether A is the smallest example. Our answer is as
follows:

Theorem 3. If B is a finite Bol loop of exponent 2 which is not isomorphic to A
and which is not soluble, then |A| < |B|.

The starting point of the construction of our example was the main theorem of
[2], while the starting point of the work by Aschbacher is what he calls the Baer
correspondence. This is a correspondence between loops and certain triples of
group theoretic data and is as follows [2], [4]:
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Let X be a Bol loop; let

K = {R(x) | x ∈ X}

be the set of right translations of X and let G = 〈K〉 be the subgroup of Sym(X)
generated by K. Then K is a right transversal to the stabilizer H of 1 in G, see
[2, p. 100]. In [2] this triple (G, H, K) is called the envelope of the loop X, and G
the enveloping group of X. In particular, as G acts faithfully on the set of cosets
of H in G, the subgroup H does not contain a non-trivial normal subgroup of G
(i.e. coreG(H) = 1), see also [2, 1.3].

If G is a group, H a subgroup of G and K a transversal to Hg in G for every
g in G which contains the identity 1 ∈ K, then the triple (G, H, K) is called loop
folder [2]. Baer observed that given a loop folder we can construct a loop out of
it by defining a multiplication on K as follows:

k ◦ l = m if Hkl = Hm for all k, l, m in K,

see [4] or [2]. The loop folder (G, H, K) is called a loop envelope if G = 〈K〉
and faithful if coreG(H) = 1. The loop folder constructed above using the right
translations is by definition a faithful loop envelope. The loop to a loop folder is a
Bol loop if and only if K is a twisted subgroup of G, that is if for all the elements
x, y in K also x−1 and xyx are contained in K [2, 6.1 (1)].

Aschbacher denotes by an N -loop, a finite Bol loop of exponent 2 such that
the enveloping group is not a 2-group, but it is a 2-group for every proper subloop.
Heiss showed that the enveloping group of an N -loop is neither soluble nor simple
[13]. This result has been strengthened by Aschbacher considerably:

Theorem 4. [2, Main theorem] Let X be a finite Bol loop of exponent 2 which is
an N-loop. Let (G, H, K) be the envelope of X, J = O2(G) and G? = G/J . Then

(a) G? ∼= PGL2(q), with q = 2n + 1 ≥ 5, H? a Borel subgroup of G?, and K?

consists of the involutions in G? − F ?(G?).

(b) F ?(G) = J .

(c) |K∩J | = n0, |K∩aJ | = n1 for a in K−J , where n0 = n12
n−1 is a 2-power

and |K| = (q + 1)n0 = n12
n(2n−1 + 1).

Notice that the Aschbacher loop is an N -loop with q = 5. It is possible to
construct infinite series of examples out of the Aschbacher loop with q = 5, see
[6] or [19]. It is an open (and difficult) question as to whether there are examples
with q > 5.

Preciseley the same example as ours has also been found by Nagy [19]. Our
construction presented here is completely different from the one given in [19].

Finally notice that as in group theory many interesting questions on loops
can be reduced to questions on simple loops. An example is Lagrange’s theorem,
see Bruck [5]. Recently Lagrange’s theorem was proven for Moufang loops inde-
pendently by various groups of people (see Theorem 5.5 in [12] and the references
therein), based on the classification of simple Moufang loops by Liebeck [17].
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The existence of simple insoluble Bruck loops raises therefore a new challeng-
ing problem:

Is it possible to classify the enveloping groups of the finite simple Bruck loops?

This classification became more feasible as in recent years Aschbacher, Kinyon
and Phillips [3] studied Bruck loops of even order. They showed, that in Bruck
loops elements of odd order commute with elements of 2-power order. Therefore,
the problem of simple Bruck loops reduces to simple Bruck loops with all elements
of 2-power order. The special case of Bol loops of exponent 2 seems to be a natural
starting point for questions on finite simple Bruck loops.

In the next section we provide further notation on loops and recall the equiv-
alence of the Conjectures 1.1 and 1.2. Then in the third section we construct the
Aschbacher Loop A in the wreath product Z4 o Sym(5) ≤ Z4 o Sym(15). Moreover,
we present a simple Bruck loop of exponent 4, which lives in the enveloping group
G of A, see 3.5. In the fourth section we determine the subloops and the auto-
morphism group of A and state some further properties of this loop. Theorem 3
is proven in the last section.

Acknowledgement. We like to thank the referee for many helpful comments.

2. Graphs, Groups and Loops

In this section we recall the notion of a (?)-group which was introduced by Heiss
[13].

Definition 2.1. A finite group G is called a (?)-group with respect to a subgroup
H and a set of involutions I ⊆ G if and only if the following hold.

(?a) G = 〈I〉.
(?b) I is invariant under conjugation.

(?c) G =
⋃

k∈K Hk where K = I ∪ {1}.

Remark 2.2. Note that in the definition of a (?)-group, the condition (?c) may
be replaced by the equivalent condition

(?d) KK ∩H = 1 and |G| = |K||H|,
or equivalently by

(?e) KK ∩H = 1 and G = KH.

We show that self-invariant 1-factorizations as well as finite Bol loops of exponent
2 are related to (?)-groups.

Lemma 2.3. Let I be a self-invariant 1-factorization of the complete undirected
graph Ω = (V , E). Identify I with a set of involutions in Sym(V) as described in
the introduction. Then GI ≤ Sym(V) is a (?)-group with respect to the stabilizer
H of the vertex ω1 ∈ V in GI and the set I of involutions.
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Proof. By definition I is a set of involutions of GI which generate the latter group.
As GI is a subgroup of Sym(V), it is finite. Also (?b) follows immediately from
the definition of a self-invariant 1-factorization.

As I comes from a 1-factorization, the orbit of ω under the action of I is the
whole set V . This implies (?c). �

On the other hand if G is a (?)-group with respect to the subgroup H and the set
of involutions I ⊆ G, then every element k ∈ I corresponds to a 1-factor in the
complete graph Ω with set of vertices the set of cosets of H in G [13]. Therefore,
I corresponds to a self-invariant 1-factorization of Ω and the permutation group
generated by I is G/ coreG(H).

Heiss [13] showed

Lemma 2.4. Conjecture 1.1 holds if and only if every (?)-group is a 2-group.

Now we prove the respective lemma for finite Bol loops of exponent 2.

Lemma 2.5. Let X be a finite Bol loop of exponent 2 and let (G, H, K) be the
envelope of the loop X. Then G is a (?)-group with respect to the subgroup H and
the set I = K − {1}.

Proof. By the definition of G it satisfies condition (?a). As K is a transversal to
H in G, (?c) holds as well.

It remains to show that K−{1} is the union of conjugacy classes of involutions.
As X is a Bol loop, K is a twisted subgroup of G, that is for all the elements x, y
in K also x−1 and xyx are contained in K [2, 6.1 (1)]. Moreover, R(xn) = R(x)n

for all x ∈ X and n ∈ N, see [2, 6.8 (1)]. As X is of exponent 2, for all x in X we
have x ◦ x = 1. Thus R(x)2 = R(x2) = 1 for all x in X which shows that K −{1}
consists of elements of order 2. As xyx is contained in K for all x, y in K, the
latter is closed under conjugation with elements in G. �

The Baer correspondence and 2.5 yield the following characterization of Bol loops.

Proposition 2.6. A loop folder (G, H, K) is the envelope of a Bol loop of ex-
ponent 2 if and only if coreG(H) = 1 and G is a (?)-group with respect to the
subgroup H and the set K − {1}.

Proof. Let G be a (?)-group with respect to the subgroup H and the set K−{1}.
We need showing that K is a twisted subgroup of G. Let x and y be elements in
K. As they are involutions by the definition of a (?)-group, x−1 = x is in K and
moreover, xyx = x−1yx. By conditions (?a) and (?b) x−1yx is in K. �

3. The Aschbacher loop A

Let L be a group isomorphic to the symmetric group Sym(5) ∼= PGL2(5) and let
N = M15, M ∼= Z4, be a homocyclic group of rank 15 and exponent 4. Label the
15 generators of N with the 15 involutions of L′ ∼= Alt(5). This gives a natural
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module action of L on N . We consider N as a ZL-module and write · for the
module action and + for the sum in ZL.

Denote the semidirect product of N with L by W , i.e. W is the wreath product
W = M o L and L is acting as a subgroup of Sym(15) on N = M15.

Consider the Steinberg presentation for L ∼= PGL2(5), see [8],

L = 〈w, y, n | 1 = w5 = y4 = n2, wy = w2, yn = y−1, n = wwnw〉.

For instance w = (1, 2, 3, 4, 5), y = (1, 3, 2, 5), n = (1, 5)(2, 3) satisfy these rela-
tions.

Notice, that B := 〈w, y〉 ∼= Z5 : Z4 is a Borel subgroup of L.

Let v be the generator in N corresponding to the involution y2 and

b1 := v · (1 + w + w2 + w3 + w4),

b2 := v · (w4n(1 + w + w2 + w3 + w4))

and
b3 := v · (w3n(1 + w + w2 + w3 + w4)).

Note that b1, b2, b3 are centralized by w. Moreover, b1 is centralized by y, while b2

and b3 are interchanged by y.

(1) Next we define an L-submodule J in Ω1(N) (the subgroup of N which is
generated by the involutions of N). Set

v1 := (b2b3)
2.

Then v1 is the product of the squares of all generators corresponding to Alt(5)-
involutions outside the Borel 〈w, y〉. Therefore v1 is centralized by w and y and

|L : CL(v1)| = 6 = |L : B|.

This yields that the normal closure J of 〈v1〉 in W is an L-module, which is an
image of the permutation module for L ∼= PGL2(5) of degree 6.

As every Alt(5)-involution fixes two of the 6 points, the sum of all conjugates
of v1 is zero, thus J is at most 5-dimensional. Since there is an orbit of length 6,
the module is the unique 5-dimensional image of the 6-dimensional permutation
module. Therefore, L has three orbits on J#, which are of size 15, 10 and 6.

We introduce some new elements by defining

v2 := vn
1 , v3 := vw

2 , v4 := vw
3 , v5 := vw

4 , v6 := vw
5 .

The permutation action of w, y, n on v1, . . . , v6 is

(v2, v3, v4, v5, v6), (v3, v4, v6, v5) and (v1, v2)(v3, v6),

respectively. The orbit of length 15 consists of the
(
6
2

)
= 15 products of length

2 of the generators, the orbit of length 10 of the
(
6
3

)
= 20 products of length 3

(recall v1v2v3v4v5v6 = 1).

(2) We define y∗ := b1b3y. Then y4
∗ = v1 and |〈w, y∗〉| = 40 as w and b1b3 commute.

(3) Let n∗ = (v · (w3(1 + n− nw) + w4(1− n + 2nw) + 1))n. Then we can verify
the following relations:
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(3a) n2
∗ = v1v2v5.

(3b) (y∗n∗)
2 = v1v2.

(3c) n∗v6v2 = wwn∗w (equivalently (n∗w)3 = 1).

(4) Set
G := 〈w, y∗, n∗〉.

We claim that O2(G) = J = 〈v1, v2, v3, v4, v5〉.
In (2) we saw that v1 is an element in J . As G covers L, we get that J is contained
in O2(G). By evaluating the defining relations for L, which was done in (3), we
see that J = O2(G).

Notice, that (4) implies

(5) |G| = 28 · 3 · 5.

(6) 〈y∗, n∗〉 ∈ Syl2(G):

In 〈y∗, n∗〉 are the elements v1(= y4
∗), v2(= vn∗

1 ), v5(= n2
∗v1v2), v6(= vn∗

5 ), v3(=
vy∗

5 ), v4(= vy∗
3 ), so J ≤ Φ(〈y∗, n∗〉). As 〈y∗, n∗〉 covers 〈y, n〉 ∈ Syl2(L), 〈y∗, n∗〉 ∈

Syl2(G).

(7) The Frattini subgroup Φ(G) of G equals O2(G):

Assume there is some supplement S to O2(G) and let P ∈ Syl2(S). Then
O2(G)P ∈ Syl2(G) and we may assume O2(G)P = 〈y∗, n∗〉. As P < O2(G)P ,
we have O2(G) 6≤ Φ(PO2(G)) = Φ(〈y∗, n∗)〉, contradicting the calculations in (6).
Therefore there is no supplement to O2(G) in G, which implies (7).

(8) There are precisely 80 involutions in G− O2(G). They are all conjugate and
map to transpositions in L ∼= Sym(5). A representative is v1y∗n∗:

Let u ∈ J = O2(G) and consider (un∗)
2 = uunn2

∗. As uun ∈ [J, n], but n2
∗ = v1v2v5

is not in [J, n], the coset Jn∗ does not contain involutions. This yields that the
involutions in G which are not in J map to transpositions in G/J ∼= L ∼= Sym(5).
According to (3b) v1y∗n∗ is an involution in G − J . All the involutions in the
coset Jy∗n∗ are uv1y∗n∗ with u in CJ(yn) = 〈v1v2, v3v4, v1v3v5〉. Hence there are
exactly 23·10 involutions in G− J .

As y2
∗ does not commute with v1y∗n∗ (although y2 commutes with yn), CG(v1

y∗n∗) ∼= 23·Z6. Thus the orbit (v1y∗n∗)
G is of length 24 · 5 and all the involutions

in G−O2(G) are conjugate. Set

K := {1} ∪ {(v1v2)
x | x ∈ G} ∪ {(v1y∗n∗)

y | y ∈ G}

and
H := 〈w, y∗〉.

Lemma 3.1. G is a (?)-group with respect to the subgroup H and the set K−{1}.

Proof. |G : H| = 96 = |K| and K is a normal subset of G which consists beside
the identity of involutions. Clearly, G is generated by K. It remains to show that
K is a transversal to H in G. Hence we need showing that KK ∩ H = {1}. In
the factor group Sym(5) ∼= G/J we see, that the only critical products are of the
following two types:
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A pair of involutions of K which map to the same transposition in L ∼=
Sym(5) and

a pair of involutions of K which map to different but in L ∼= Sym(5)
commuting transpositions.

The product of a pair of the first type is in the centralizer in J of that transposition,
which does not intersect with H ∩ J = 〈v1〉. This is true for the transposition
v1y∗n∗, see the centralizer given in (8). As B acts transitively on the transpositions
in L, this is then true in general.

By conjugation we may assume in the other case, that the transpositions
map to yn and y3n and that one of them is t1 := v1y∗n∗ and the other is in
t2〈v1v2, v3v5, v1v3v4〉 with t2 := v3y

3
∗n∗. A short calculation shows that

CJ(t1) ∩ CJ(t2) = 〈v1v2, v1v4v5〉.

Therefore, it is enough to consider the products (t1t2)
2 = v1v3v6 and (t1v3v5t2)

2 =
v1v4v5: In the other cases we get the same squares. But this reveals, that the
product of any two involutions, which map to different commuting transpositions,
is an element of order 4, which squares into the G-orbit of length 10 in J . As the
elements of order 4 in H square to v1, we get the transversal property of K. �

Remark 3.2. Notice, that Theorem 1.2 of Hall [11] implies that there are invo-
lutions t, r in K − J such that tJ 6= rJ and such that the order of tr is different
from the order of trJ .

Corollary 3.3. A = (K, ◦) where ◦ is as defined in the introduction is a Bol loop
of exponent 2.

Proof. Proposition 2.6 and Lemma 3.1 imply the assertion. �

Lemma 3.4. A is a simple loop.

Proof. Let B be a normal subloop of A. Then G0 := 〈R(x) | x ∈ B〉 is a normal
subgroup of G and if G0 6= G, then G/G0 is a group related to a Bol loop of
exponent 2. If G0 6= 1, then [J, G] ≤ G0. Therefore, G/G0 does not satisfy the
condition (b) of Theorem 4, that is F ∗(G/G0) 6= O2(G/G0). Thus it is therefore
not related to a Bol loop of exponent 2. �

Remark 3.5. If we replace K by

K̃ := {1} ∪ {(v1v2)
x | x ∈ G} ∪ {(y∗n∗)

y | y ∈ O2(G)H}

then (G, H, K̃) is the envelope of a simple Bruck loop of exponent 4 as we checked
on a computer with the help of MAGMA [18].

4. Further properties of the Aschbacher loop

In this section we continue the notation introduced in the previous sections.
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4.1. The subloops of A

Lemma 4.1. F := {x | x ∈ A, R(x) ∈ J} is a subloop isomorphic to the group
Z4

2,

Proof. From the definition of K and the structure of J it is clear, that F is a
subloop isomorphic to [J, G] with loop folder (JH, H,K ∩ J). �

Lemma 4.2. Let x, y ∈ A−F with x ◦ y 6∈ F . Then 〈x, y〉 is not a soluble loop.

Proof. Let t1 := R(x) and t2 := R(y). The ti map to transpositions in Sym(5).
In case they map to the same transposition, t1t2 ∈ J and therefore R(x ◦ y) ∈ J ,
which implies x ◦ y ∈ F .

If t1, t2 map to noncommuting transpositions, the group generated by t1, t2 is
not a 2-group, therefore the loop to 〈x, y〉 cannot be soluble.

If t1, t2 map to commuting transpositions, we have two cases. The product
t1t2 maps to some involution in Alt(5) which is either in B = 〈w, y〉 or not.

Consider the first case. Then t1t2 ∈ JH = 〈R(x) | x ∈ F〉H. As this is the
enveloping group of F , it follows that x ◦ y ∈ F .

In the other case, as R(x)R(y)R(x ◦ y) ∈ H, the element R(x ◦ y) can not
be in K ∩ J . Thus R(x ◦ y) maps to some transposition. This implies that
R(x)R(y)R(x ◦ y) maps to some element of odd sign in B and therefore to some
element of order 4. Checking all the possibilities in Sym(5) when a product of
three transpositions has order 4, we conclude, that R(x), R(x◦y) and R(x◦y), R(y)
map to pairs of noncommuting transpositions. Therefore 〈x, y〉 is insoluble as in
the previous case. �

Lemma 4.3. Let x ∈ A− F . Then the following hold.

(a) Mx := F ∪ (x ◦ F) is a subloop of A of order 32.

(b) (S, H ∩ S, K ∩ S) is a loop folder to Mx with S = NG(P ) ∈ Syl2(G) where
P is the unique Sylow 2-subgroup of JH which is invariant under R(x) (the
right translation to x).

(c) Let y ∈ A− F . Then Mx = My if and only if y ∈Mx.

(d) Mx is non-associative.

(e) The subloops Mx are conjugate under the action of H ≤ Aut(A).

Moreover, the 5 different subloops Mx induce a partition of A − F , the blocks
being the nontrivial cosets of F in A.

Proof. Let t := R(x). Every transposition in L fixes a unique Sylow 2-subgroup of
B, as B acts transitively on the set of transpositions of L with stabilizer of order
2. Therefore every element in K − J is contained in the normalizer of a unique
Sylow 2-subgroup of JH, which is a Sylow 2-subgroup of G.

As 〈w〉 acts transitively on these five Sylow 2-subgroups, we may assume
t ∈ NG(〈J, y∗〉). In this case NG(〈J, y∗〉) = S := 〈y∗, n∗〉 ∈ Syl2(G).
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We claim that |K ∩ S| = 32: S maps to S? ∈ Syl2(G
?), therefore S contains

16 involutions which map to two transpositions. Together with K ∩ J this gives
32 elements. As KK ∩H = 1 we have

(S ∩K)(S ∩K) ∩ 〈y∗〉 = 1.

Notice, that Z(S) = 〈v1v2〉, therefore Z(S) ∩ 〈y∗〉 = 1 and 〈y∗〉 is core free in
S. We conclude, that (S, 〈y∗〉, K ∩ S) is a subloop folder to a soluble subloop.
The involutions of G − J act nontrivially on [J, G], so the subloop cannot be
associative.
As this subloop contains x and F , it contains the subset Mx, which is of size 32,
thus closed under multiplication. In particular F ◦ x = x ◦ F and F is normal in
Mx as it is of index 2.

As H permutes the 2-Sylow-subgroups of JH, it permutes the subloopsMx too. �

Lemma 4.4. Every proper subloop of A is contained in a subloop Mx for some
x ∈ A.

Proof. Let B be a proper subloop of A. If B is insoluble, it contains an N -loop,
whose group of translations is subject to Theorem 4. From the subgroup structure
of G it is clear, that there is no such subgroup which is proper. So B is soluble
and A is an N -loop itself.

The product of every two elements x, y of B, where x and y are not in F , is
in F by Lemma 4.2. This implies that y is contained in x ◦ F , see 4.3. Thus B is
contained in Mx. �

4.2. The automorphism group of A

Lemma 4.5. The element α := b2
2 induces a nontrivial automorphism on G,

which centralizes v1, v2, v3, v4, v5, v6, w and G/J . Moreover we have yα
∗ = y5

∗ =
y∗v1 and nα

∗ = n∗v3v6.

Proof. This follows from calculation in the group W . �

Lemma 4.6. The automorphism group of G is (isomorphic to) G1 := G : 〈α〉.

Proof. Let β be some automorphism of G. Then β acts on the set vG
1 . As G

induces on vG
1 the group PGL2(5) and as PGL2(5) is a self-normalizing subgroup

of Sym(6), an element g ∈ G exists, such that βig centralizes vG
1 where ig denotes

the inner automorphism of g. Therefore, without loss we may assume, that β
centralizes 〈vG

1 〉 = J .
As G/J acts faithfully on J , β acts trivially on G/J . Therefore there exist

vw, vy, vn ∈ J with β(w) = wvw, β(y∗) = y∗vy and β(n∗) = n∗vn. Using the
relations for w, y∗, n∗ from the construction section, we get conditions on vw, vy, vn.
For instance w5 = 1 gives

1 = β(w5) = (wvw)5 = w5vw4+w3+w2+w+1
w ,
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which is
1 = vw4+w3+w2+w+1

w .

The action of w, y∗, n∗ on J provides us with a system of linear equations. Solving
them we get that either β = 1 or β = α. �

The next lemma is a general statement, which we will apply in the proof of 4.9.

Lemma 4.7. If the Bol loop X of exponent 2 to a loop folder (GX , HX , KX) is
insoluble, then HX is not a 2-group.

Proof. As X is insoluble, it contains subloops Y and Z, such that Z/Y is an
N -loop. Therefore there exists a section of HX which is not a 2-group due to
Theorem 4 (a). �

Lemma 4.8. (G1, 〈H, α〉, K) is a faithful loop folder but not a loop envelope.

Proof. The action of α on G is such that H1 := H〈α〉 = 〈H, α〉 and K gives a
loop folder to a Bol loop of exponent 2. (The relation KK ∩H1 = 1 is obvious.)
It is 〈K〉 = G < G1. Therefore, (G1, H1, K) is not a loop envelope. As H1 is core
free in G1, it is a faithful loop folder. �

Lemma 4.9. If (G1, H∗, K∗) is a loop folder to a Bol loop of exponent 2, then
H∗ = H1 and K∗ = K. In particular, the loop is the Aschbacher loop.

Proof. Notice, that every involution in G1−O2(G1) is already contained in G−J :

For t a transposition CO2(G1)(t) = CJ(t), so the number of involutions with the
same image in G1/O2(G1) is 8 as it is in G.

Further, G1 still has no involutions, which map to involutions in L′ ∼= Alt(5),
which can be seen from the structure of H1: Such an involution would invert some
element of order 5, thus normalizes some Sylow-5-subgroup of G1, see [2, 8.1 (1)].
But H1 is the normalizer of a Sylow-5-subgroup, containing no such involutions.

If K∗ ⊆ O2(G1), then H∗ covers G/O2(G1). The only proper such subgroup H∗
is G, but then |K∗| = 2 is impossible. Therefore, all the involutions in G1−O2(G1)
are in K∗ (see (8) of Section 3).

Hence, there are involutions in K∗ whose product is of order divisible by 3.
This implies that H∗ is either a 2-group or a {2, 5}-group, of order at most

2|G|
1 + 80

< 94.

As there are 143 involutions in G〈α〉, we get

|H∗| >
2|G|

1 + 143
> 53.

In particular, |G : H∗| is even, which yields that K∗ contains beside the identity the
unique conjugacy class of involutions of odd length (namely 15). Thus |K∗| ≥ 96
and |H∗| ≤ 80. If H∗ is a {2, 5}-group, it is either 5-closed, so without loss
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H∗ = H1, or 2-closed. The latter case does not produce a loop folder as the
unique subgroup H∗ in question intersects already nontrivially with K∗.
The case of H∗ being a 2-group is impossible by Lemma 4.7, but also by some easy
inspection of G1, as then |K∗| = 120 and no such union of G1-conjugacy classes
of involutions exists. �

Lemma 4.10. The automorphism group of the loop A is of size 80 and it is
induced by H1.

Proof. Let a, b ∈ A and α ∈ Aut(A). Then

aαR(α(b)) = α(a)R(α(b)) = α(a) ◦ α(b) = α(a ◦ b) = α(aR(b)) = aR(b)α,

which gives α−1R(b)α = R(α(b)).
Thus every automorphism of the loop induces an automorphism on the group

G = 〈R(a) | a ∈ A〉 and fixes H, the stabilizer in G of 1 ∈ A. In particular
the subgroup of Sym(A) generated by G and Aut(A) contains G as a normal
subgroup, containing its own centralizer. Therefore Aut(A) is a subgroup of
G : 〈α〉, which contains H1.

In the previous lemma we just proved, that H1 induces automorphisms on A.
A subgroup of G〈α〉 which contains H1 properly is a union of H1-cosets. There-

fore, it contains elements of K−1. The elements of K are the right translations of
A which do not fix the 1-element of A, except in the trivial case. So translations
are almost never automorphisms and H1 is the group of automorphism of A. �

Lemma 4.11. Let X be a finite Bol loop containing a subloop Y isomorphic to
A. Then G ∼= 〈R(x) | x ∈ Y 〉 ≤ 〈R(x) | x ∈ X〉.

Proof. The group generated by {R(x) | x ∈ Y } is a homomorphic image of the
abstract group G0, which is generated by free generators Rx, x ∈ A subject to the
relations R2

x = 1, R1 = 1, R(x◦y)◦x = RxRyRx for x, y ∈ A.
The latter relation expresses the Bol identity. In fact they describe the con-

jugacy action of the elements in K on themselves. Therefore, G0 is a central
extension of G.

We verified using the Todd-Coxeter algorithm on the trivial group, that in
our case G0

∼= G and it is clear, that no proper homomorphic image of G can be
the enveloping group of a subloop of size |A| = 96. �

4.3. The embedding of G into some almost simple groups

First of all we present an embedding of G into GL8(2) by writing down (8 ×
8)GF (2)-matrices for w, y∗ and n∗. Let

W :=


0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

, Y :=


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

,
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N1 :=


0 1 1 1
1 1 0 1
1 0 1 1
1 1 1 0

, N2 :=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

,

E1 :=


1 0 0 0
0 0 1 0
1 1 1 1
0 1 0 0

 and E2 :=


0 1 1 1
1 1 1 1
1 0 1 1
0 0 0 1

.

Then w :=

(
W 0
0 W

)
, y∗ :=

(
Y 0
E1 Y

)
and n∗ :=

(
N1 0
E2 N2

)
defines a

faithful embedding of G = 〈w, y∗, n∗〉 into GL8(2).
Notice, that the two 4-dimensional GF (2)-modules for PΓL2(4) ∼= Sym(5) =
〈w, y, n〉 defined by W, Y, N1 and W, Y, N2, respectively, are not isomorphic. This
yields that G is a subgroup of G̃ as defined in 4.12(g).

The following is known about embeddings of G into almost simple groups and
stated without proof:

Lemma 4.12. (a) The smallest faithful linear GF (2)-representations are of de-
gree 8, and fix no form.

(b) The smallest faithful semilinear GF (4)-representations have degree 6.

(c) The smallest faithful linear k-representations where k is a field of odd or
zero characteristic are of degree 15.

(d) The minimal permutation degree of G is 40.

(e) G embeds into 212·M24 ≤ Fi24 and therefore also into the Monster M . It does
not embed into the simple group Fi′24. The embedding into the BabyMonster
BM is open. The group does not embed into the other sporadic almost simple
groups.

(f) G is not a subgroup of the Dempwolf group.

(g) G embeds into G̃ := 216 : Sym(5) where O2(G̃) is the tensor product of the
two non-isomorphic GF (2)Sym(5)-modules.

5. Proof of Theorem 2

Let B be a loop which is a simple Bol loop of exponent 2 with at most 96 elements
and which is not soluble. We may assume that B is minimal with that condition,
i.e. an N -loop in the language of [2]. Let (G, H, K) be a faithful loop envelope of
B. Then according to Theorem 4 (1) as stated below holds.

(1) G? := G/O2(G) ∼= PGL2(q) and |B| = |K| = n12
n(2n−1 + 1) where n1 =

|K ∩ aO2(G)| with a ∈ K − O2(G) and q = 2n + 1. Moreover, H? is a Borel
subgroup of G? and K? consists of all the involutions in G? which are not in G?′.

(2) q = 5 and n = 2:
There are (q − 1)q/2 involutions in PGL2(q) − PSL2(q). Therefore q ≤ 14, so
q = 5 or q = 9. In case q = 9 there are 36 involutions in G? which are not in
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(G?)′ ∼= PSL2(9). Hence, there is an orbit of G on the set of involutions in G−G′

which is a multiple of 36. As the size of the loop is at most 96, it follows that
this number is 36 or 72. Then these involutions centralize O2(G) or a subgroup
of index 2 in O2(G). The first case is not possible, as CG(O2(G)) is contained
in O2(G) (Theorem 4 (b)). Hence there are 72 involutions and the index of the
centralizer in O2(G) of such an involution in O2(G) is 2. In particular, the product
of every two of these involutions centralize a subgroup of index 4, so its centralizer
has index 4 or less. As PGL2(9) has outer involutions whose product is of order
5, these elements can not act non-trivially on O2(G). Hence, q = 5 and n = 2.

(3) |K| ∈ {24, 48, 96}:
As n = 2, we have |K| = n1 · 12. On the other hand |K| = |G : H| = 2m · 3 for
some m ∈ N.

(4) G acts transitively, but imprimitivily on the set of cosets of H in G with blocks
of imprimitivety {Hk |k ∈ K and Hk ⊆ O2(G)Ha}, a ∈ G. There are 6 blocks,
say B1 ⊆ O2(G)H, B2, . . . , B6, each of size 2n1 and G? ∼= PGL2(5) acts on the set
of blocks in its action of degree 6:
This follows immediately from the fact that H ≤ O2(G)H and that the latter is
a maximal subgroup of G of index 6.

(5) |O2(G) ∩K| = |K ∩ (O2(G)H)| = |B1|:
According to Theorem 4(c) |O2(G) ∩K| = n0 = 2n1, which equals the size of B1

2n1 = |B1| = |K ∩ (O2(G)H)|

by (4).

(6) Let i ∈ {1, . . . , 6} and n and m be elements in Bi. Then there is precisely one
element t in O2(G) ∩K such that nt equals m:
If o ∈ O2(G), we can write o = hk with h ∈ H, k ∈ K as (G, H, K) is a loop
folder. Then ok = h. Using the homomorphism of G onto G/O2(G) ∼= Sym(5)
we see, that this implies k, h ∈ O2(G). Therefore, O2(G) ∩K is a transversal to
H ∩O2(G) in O2(G) and to H in O2(G)H. As O2(G)∩K is a G-normal subset, it
is a transversal to Hg in O2(G)Hg for every g ∈ G. In particular it is a transversal
to a point stabilizer in a block stabilizer to that point.

(7) Let w be an element of order 5 in H. Then w acts non-trivially on B1:
Assume that w is in the kernel M1 of the action of H on B1.

(7.1) [w, O2(G) ∩K] = 1:
Let t be an element in O2(G)∩K. Then w−1twt is in M1. Therefore, the product
twt of the two elements tw and t of K lies in H. This implies that tw = t. Hence,
[w,O2(G) ∩K] = 1.

(7.2) This implies that [〈wG〉, O2(G) ∩ K] = 1. Set L := 〈wG〉. Then, as
G/O2(G) ∼= PGL2(5) ∼= Sym(5), the group L? is isomorphic to Alt(5).

Let y be an element in L which inverts w. Then according to [2, 12.9 (4)] y
is not an involution. We may assume that y is an element whose order is a power
of 2. Then v := y2 is a non-trivial 2-element in O2(G) ∩ L. As G? acts on the
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set of blocks as the group PGL2(5), the element y fixes the block B1, as well as a
further block, say B2.

(7.3) v ∈ M1:
If v fixes a point in B1, then, as [v, O2(G) ∩K] = 1 by choice of y, the statement
(6) implies that v fixes every point in B1 and that v ∈ M1. If v does not fix a
point in B1, then the cycle decomposition of y on B1 contains a cycle of length at
least 4, which contradicts [y, O2(G) ∩K] = 1 and (6). Thus v is in M1.

(7.4) The contradiction. Precisely the same argument as in the last paragraph
yields that v ∈ M2. As w permutes the 5 blocks, B2, . . . , B6, and as [w, v] = 1, it
follows that v is in Mi, for 1 ≤ i ≤ 6. Thus v fixes every element in B1 ∪ · · · ∪B6,
which contradicts the fact that (G, H, K) is a faithful loop envelope, see the
introduction.

(8) H? ∼= Z5 : Z4 acts faithfully on B1 and on K ∩O2(G):
This is an immediate consequence of the nontrivial action of elements of order 5
by (7).

(9) |K| = 96, |B1| = 16 and G induces on B1 a group of type Z4
2 : (Z5 : Z4), acting

transitively on 16 points:
By (6) (O2(G)H, H, K ∩ O2(G)) is a loop folder to a subloop C of B of size |B1|.
As H is core free in G, it acts as group of automorphisms on B. By (8) H has
an element which induces on B1 a nontrivial automorphism of order 5. As C is
proper, it is soluble, thus has a chain of derived subloops with quotients being
elementary abelian.
Nontrivial action of an automorphism of order 5 can only happen in case that
this loop has size 16 and is elementary abelian: If an automorphism is trivial on
both a normal subloop and its quotient and fixes an element outside the normal
subloop, it fixes the entire coset of this element by the automorphism property.
In particular, every non trivial automorphism of order 5 acts on some elementary
abelian section of the loop of order at least 16. From (3) we get |K| = 96 and
|B1| = 16.

Hence O2(G)H induces on B1 at least a group Z4
2 : (Z5 : Z4), where the

subgroup isomorphic to Z4
2 is induced from 〈K ∩O2(G)〉, which is the enveloping

group of C. (6) implies that 〈K ∩O2(G)〉 acts as a transitive normal subgroup of
O2(G)H on B1. Thus the structure of A8 = L4(2) = Aut(Z4

2) and that of O2(G)H
yields the second part of claim (9).

(10) G is either isomorphic to the group of the Aschbacher loop or to its auto-
morphism group:
This result is based on heavy computer calculations. We describe here, which
calculations the computer did and what our conclusions were.

As shown in (9) we can embed G into the full wreath product W of the action
of O2(G)H on a block with G/O2(G) ∼= Sym(5) acting transitively on the 6
blocks. This group is a transitive subgroup of Sym(96) and in this permutation
representation the computer calculated.

By (9) we know, that an element w ∈ G of order 5 fixes exactly one point in
the loop. Calculation inside a Sylow-5-subgroup of W and additional conjugacy
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tests in W show, that all such elements are conjugate in W . So we pick one of
them.

We can calculate CW (w), which is of shape Z2
5×(Z4

2 : (Z5 : Z4)), and NW (〈w〉),
which gets by factor 4 bigger. We determine the conjugacy classes of the cyclic
subgroups 〈y〉 of NW (〈w〉), which are of 2-power order at least 8 and induce on
〈w〉 a group of order 4. There exist two classes of these subgroups, both of order
8. So we found subgroups of G which are isomorphic to Z5 : Z8.

In the next step we calculate all the candidates for NG(〈w〉) up to conjugacy
in N := NW (〈w〉). This is done by the following trick:

We have already a candidate Ni−1, which may be a subgroup of even index
in our candidate. So we pick T ∈ Syl2(Ni−1) and calculate a transversal to
T in NN(T ). For each element x in this transversal we consider 〈Ni−1, x〉 as a
new candidate, provided this group does not contain involutions, which map to
involutions in A5, as by [2, 12.9 (4)] G does not contain such involutions.

From the two initial cyclic candidates for a 2-Sylow of NG(〈w〉) one gets only
two more candidates for NG(〈w〉), which are isomorphic to each other, one new
candidate to each cyclic candidate. The Sylow-2-subgroup of these candidates is
the modular group of size 16.

We have now 4 subgroups of W , which are candidates for subgroups of G
and contain NG(〈w〉). We use the normalizer-transversal-trick as before to look
in the lattice of overgroups in W for candidates of G: In fact we determine all
overgroups Y of our 4 candidates N1, N2, N3, N4 with the following properties:

• NY (〈w〉) = NNi
(〈w〉) and

• O2(Y ) is of index 20 or 120, and either Y = O2(Y )Ni or Y/O2(Y ) ∼= Sym(5).

Given a candidate Y , we pick T ∈ Syl2(Y ), calculate NW (T ) and a transversal
to T in it. For each x in this transversal, we calculate Yx := 〈Y, x〉. Next we
check whether Yx satisfies the conditions above, in which case we keep it as a new
candidate.

In a final step we drop the groups with O2(Y ) of index 20 and keep only those
subgroups Y , which contain a core free subgroup of shape Z5 : Z8 and a conjugacy
class of transpositions of length less or equal to 80. Here we use the fact, that
if Y is the group to a Bol loop folder (Y,HY , KY ), HY contains such a core free
subgroup and KY contains such a conjugacy class of transpositions.

Computer calculations show that there are only the two isomorphism types,
the group to the Aschbacher loop and its automorphism group: Two of the can-
didates, one of shape 5 : 8, the other of shape 5 : Mod16 (containing the first) did
not have any overgroups Y with NY (〈w〉) = NNi

(〈w〉) and |Y : O2(Y )| = 120.
The third candidate of shape 5 : 8 produced 4 conjugate subgroups isomorphic

to the group to the Aschbacher loop, and the final one (of shape 5 : Mod16)
produced 12 conjugate subgroups isomorphic to the automorphism group of the
group to the Aschbacher loop.

(11) The loop is the Aschbacher loop:
This follows from Lemma 4.9 and the structure of the groups in question.
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