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Abstract. Let R be a commutative ring with identity and let M be a
torsion free R-module. Several characterizations of distributive modules
are investigated. Indeed, among other equivalent conditions, we prove
that M is distributive if and only if any primal submodule of M is
irreducible, and, if and only if each submodule of M can be represented
as an intersection of irreducible isolated components.
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1. Introduction

Let R be a commutative ring with non-zero identity element and let M be a unital
R-module. Then M is said to be distributive if (K +L)∩N = (K ∩N)+(L∩N),
for all submodules K, L, N of M.

The notion of distributive modules has been studied and developed as a gen-
eralization of Prüfer and Dedekind domains independently by T. M. K. Davison
[3] and W. Stephenson [13]. This leads to the considerable research and results
on the structure of the modules with distributive lattice of submodules in the last
three decades (see for example [1], [4], [5], [6], [14], [15]).

In this paper we will give some new characterizations of distributive modules
motivated in large part by the papers [2], [8], [10], [16]. In Section 2 after giving
some notation, among other things, we characterize torsion free distributive mod-
ules in terms of the irreducibility of certain submodules (Corollary 2.8). Another
main result of this section which we need in Section 3 is Proposition 2.9.

In Section 3 we prove the following theorem:
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Theorem 1.1. Let M be a torsion free R-module. The following statements are
equivalent.

(i) M is a distributive R-module.

(ii) Every primal submodule of M is irreducible.

(iii) For every maximal ideal m, the set Wm(M) is linearly ordered with respect
to inclusion.

(iv) For every maximal ideal m and any x, y ∈ M , Rx(m) and Ry(m) are com-
parable with respect to inclusion.

(v) For each submodule N of M and each maximal ideal m, ER(M/N(m)) (the
injective hull of M/N(m)) is indecomposable.

Also we prove in Theorem 3.7 that a torsion free module M is distributive if and
only if each submodule of M can be represented as an intersection of irreducible
isolated components.

2. Preliminaries

In what follows the notation and terminology is, in general, the same as in [10],
[11].

For two subsets X and Y of M the symbol X :R Y denotes the residual of
X by Y which is defined as usual by X :R Y = {r ∈ R : rY ⊆ X}. Let S be a
multiplicatively closed subset of R. We set X(S) to denote ∪s∈S(X :M s). Then
X(S) is a subset of M containing X. In particular whenever p is a prime ideal
of R and S = R \ p, we will denote X(S) by X(p). Note that y ∈ X(p) if and
only if X :R y * p. We say that the set X is weakly p-primal if X(p) = X. We
will denote the set of all weakly p-primal subsets of M by Wp(M). Thus, for each
Y ⊆ M , Y (p) is in fact the intersection of all elements of Wp(M) containing Y .

We note that whenever Y is a submodule of M , then Y (p) is too, and is
called the isolated p-component of Y in the sense of Krull [9]. Then Y is weakly
p-primal if and only if ZR(M/Y ) ⊆ p, where ZR(M/Y ) denotes the set of all zero
divisors of the factor module M/Y . Moreover when M is torsion free (that is
{x ∈ M : rx = 0 for some non-zero r ∈ R} = {0}), then we have Y (p) = Yp ∩M .

Let N be a submodule of M . An element r ∈ R is said to be non-prime
(resp. prime) relative to N if N ⊂ N :M r (resp. N = N :M r). Hence r ∈ R is
non-prime relative to N if there exists an element m ∈ M \N such that rm ∈ N .
Clearly the set of all non-prime elements relative to N is ZR(M/N).

Following [7] we say that N is a primal submodule of M if ZR(M/N) itself
forms an ideal p called the adjoint ideal of N . In this case we say that N is
p-primal. Since the product of two prime element relative to N is again prime
relative to N ; thus, whenever N is a proper submodule of M , the adjoint ideal is a
prime ideal of R which contains N :R M . This fact shows the analogy between the
primary submodules and primal submodules. Here we note that N is primal if and
only if with two non-prime elements relative to N their difference is a non-prime
relative to N .
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Finally we recall that a submodule N of M is said to be irreducible if for
submodules L1 and L2 of M , N = L1 ∩L2 implies that either N = L1 or N = L2.
A submodule Q of M is primary if for all r ∈ R and x ∈ M \ Q, rx ∈ Q imply
that rnM ⊆ Q for some positive integer n. It is well known that each irreducible
submodule of a module satisfying ascending chain condition is a primary submod-
ule. One of the advantages of primal submodules over primary submodules is in
the fact that the following propositions hold without any chain condition on M
(see [7]).

Proposition 2.1. Any irreducible submodule of M is a primal submodule.

Proof. Let N be an irreducible submodule of M , and r, s be two elements of R
which are non-prime relative to N . Then we have N ⊂ N :M r and N ⊂ N :M s
which give that N ⊂ (N :M r) ∩ (N :M s) = (N :M r − s). Hence the element
r − s is non-prime relative to N and so N is a primal submodule of N .

Proposition 2.2. Every submodule of M is the intersection of primal submodules.

Proof. Since the module M itself, being irreducible, is primal, so the intersection
of all primal submodules of M containing N is non-empty. Hence to prove the
claim it is enough to show that for each m ∈ M\N there exists a primal submodule
P of M containing N such that m ∈ M \ P . Let

∑
= {L : N ⊆ L ⊂ M and

m ∈ M \ L}. Then
∑

is not empty and by Zorn’s lemma it possesses a maximal
element with respect to inclusion, say P . We show that P is a primal submodule
of M . Let r, s be non-prime elements relative to P . Then there exist x, y ∈ M \P
such that rx, sy ∈ P . Now by the maximality of P we have m ∈ P + Rx and
m ∈ P + Ry. This gives that rm ∈ rP + Rrx ⊆ P and sm ∈ sP + Rsy ⊆ P .
Therefore (r − s)m ∈ P and so r − s is non-prime relative to P . Consequently P
is a primal submodule of M .

For convenience of the reader we recall the following two well known lemmas about
distributive modules.

Lemma 2.3. [3] M is a distributive R-module if and only if Mp is a distributive
Rp-module for all prime (maximal) ideals p of R.

Recall that the phrase R is quasi-local means that R has a unique maximal ideal.

Lemma 2.4. [13, 15] Let M be an R-module. Then the following two statements
are equivalent:

(i) M is a distributive R-module.

(ii) (Rx :R y) + (Ry :R x) = R, for all x, y ∈ M .

Furthermore when R is quasi local, then each of them are equivalent to each of the
following:

(iii) The set of all submodules of M is linearly ordered with respect to inclusion.

(iv) The set of all cyclic submodules of M is linearly ordered with respect to
inclusion.
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In the sequel we need some auxiliary results on isolated components. We collect
them in the following.

Lemma 2.5. Let N be a p primal submodule of M . Then

(a) N(p) = N .

(b) For each prime ideal q of R we have N(q) = N if and only if p ⊆ q.

(c) If N(q) is a q-primal submodule for some prime ideal q, then q ⊆ p.

Proof. (a) Since N is p-primal it follows that N(p) ⊆ N . As the opposite inclusion
always holds, the result follows.

(b) One can see that p ⊆ q if and only if N(q) ⊆ N(p), and so the result follows
from (a).

(c) Since N(q) is q-primal, we have q = ∪m∈M\N(q)N(q) :R m. Now let s ∈ q.
Then there exists m ∈ M \N(q) such that sm ∈ N(q). Thus there exists r ∈ R\q

such that srm ∈ N . However rm is not in N , because otherwise rm ∈ N(q), which
yields r ∈ q. So s ∈ ZR(M/N) = p.

Proposition 2.6. The following conditions are equivalent for M .

(a) M is a distributive R-module.

(b) For each proper submodule N of M and each prime (maximal) ideal p of R,
Np is an irreducible submodule of Mp.

Proof. (a)⇒(b). Let N be a proper submodule of M and let p be a prime ideal of
R which contains N :R M . Let Np = Kp∩Lp. By Lemma 2.3, Mp is a distributive
module over the quasi local ring Rp. Therefore by Lemma 2.4, either Lp ⊆ Kp or
Kp ⊆ Lp, i.e. either Np = Lp or Np = Kp. Thus Np is irreducible.

(b)⇒(a). Let p be a prime ideal of R and let U , V be proper submodules of Mp.
Then by [12, Ex. 9.11], there exist submodules K and L of M such that U = Kp
and V = Lp. By assumption Kp ∩Lp is an irreducible submodule of Mp, so either
Kp ⊆ Kp ∩Lp or Lp ⊆ Kp ∩Lp. Consequently either V ⊆ U or U ⊆ V and so the
proper submodules of Mp are linearly ordered. Now it follows by Lemma 2.4 that
M is a distributive R-module.

Proposition 2.7. Let N be a submodule of M and let p be a prime (maximal)
ideal of R. If Np is an irreducible submodule of Mp, then N(p) is an irreducible
submodule of M . Furthermore if M is torsion free the converse is true.

Proof. (⇒) Let N(p) = L ∩ K for some submodules L, K of M . By localizing
at p and using the fact that (N(p))p = Np, we have Np = Lp ∩ Kp. Hence by
assumption either Np = Lp or Np = Kp, which gives that either N(p) = L or
N(p) = K.

Furthermore let U, V be submodules of Mp such that Np = U ∩ V . Then by
[12, Ex. 9.11], there exist submodules L, K of M such that U = Lp and V = Kp.
Hence Np = Lp ∩Kp, which gives that N(p) = Np ∩M = (Lp ∩M)∩ (Kp ∩M) =
L(p) ∩K(p). Thus by assumption we have N(p) = L(p) or N(p) = K(p) and so
by localizing at p, Np = Lp or Np = Kp.
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From the above observations we deduce the following characterization for torsion
free distributive modules.

Corollary 2.8. Assume that M is a torsion free R-module. Then the following
statements are equivalent.

(a) M is a distributive R-module.

(b) For any submodule N of M and for each prime (maximal) ideal p of R,
N(p) is an irreducible submodule of M .

The following proposition which is important for its own will be used in the next
section.

Proposition 2.9. Let N be a finitely generated submodule of M and let p be a
prime ideal of R. Assume that Np 6= 0. Then (pN)(p) is a p-primal submodule of
M .

Proof. We show that ZR(M/(pN)(p)) = p. First let r ∈ ZR(M/(pN)(p)). Then
there exists m ∈ M \ (pN)(p) such that rm ∈ (pN)(p). It follows that (pN :R
m) * p and so there exists t ∈ R \ p such that rtm ∈ pN . Hence rt ∈ p and so
r ∈ p. Consequently ZR(M/(pN)(p)) ⊆ p. In order to prove the other inclusion,
let r ∈ p. Since N is finitely generated and Np 6= 0, using Nakayama’s Lemma
we have (pN)p 6= Np. This gives that (pN)(p) 6= N(p). Since in any case we
have (pN)(p) ⊆ N(p) and N(p) ⊆ (pN)(p) :M r, so (pN)(p) ⊂ (pN)(p) :M r.
This gives that there exists x ∈ M \ (pN)(p) such that rx ∈ (pN)(p). Hence
r ∈ ZR(M/(pN)(p)) and the proof is complete.

In Proposition 2.1 it is proved that any irreducible submodule is a primal sub-
module. As a well known fact irreducible submodules are primary in Noetherian
modules, while a primary submodule need not be irreducible in general. It might
be worth while noticing that for torsion free distributive modules the situation is
just the opposite. With this in mind, in fact we have:

Theorem 2.10. If M is a torsion free distributive R-module, then any primary
submodule is irreducible.

Proof. Let Q be a primary submodule of M and let
√

Q :R M = p. Let Q = K∩L
for some submodule L of M . Localizing in p we have Qp = Kp ∩ Lp. In view of
Lemma 2.3 and Lemma 2.4 the set of all submodules of Mp is linearly ordered, so
that either Qp = Kp or Qp = Lp. Suppose Qp = Kp. We have Kp ∩M = K(p).
Since Q is p-primary one can easily see that Qp ∩M = Q. So K ⊆ K(p) = Q.
Because the converse of this inclusion is obvious, we have Q = K and the result
follows.
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3. Main results

In this section we will give several characterizations of distributive modules in
terms of the primal submodules and the comparability of the isolated components
of cyclic submodules. In particular we prove that the R-module M is distributive
if and only if any proper submodule of M can be represented as an intersection
of irreducible isolated component. We will prove all of these in Theorems 3.6 and
3.7.

Let N be a proper submodule of M . Following [16, p. 72], we define a prime
ideal p of R to be a Krull associated prime of M/N if for every element t ∈ p,
there exists x ∈ M such that t ∈ N :R x ⊆ p. We denote by K(M/N) (resp. by
MaxK(M/N)) the set of all Krull associated primes of M/N (resp. the set of all
maximal members of K(M/N)). A prime ideal p is called weak Bourbaki associated
prime of M/N if it is minimal prime divisor of N :R x for some x ∈ M \N . We
will denote the set of all weak Bourbaki associated primes of M/N by wB(M/N).
It is known that (see for example [11, Lemma 2.15]), the set wB(M/N) is non
empty. The fact that the set K(M/N) is not empty is given in the following.

Lemma 3.1. Let N be a proper submodule of M . Then wB(M/N) ⊆ K(M/N).
A prime ideal q of R is a Krull associated prime of M/N if and only if q is a
set-theoretic union of weak Bourbaki associated primes of M/N .

Proof. Let p ∈ wB(M/N). Then there exists x ∈ M \N such that p is a minimal
prime divisor of N :R x. Now in view of [9, p. 737], (N :R x)(p) is p-primary ideal.
Let s ∈ p. There exists a least positive integer n such that sn ∈ (N :R x)(p), i.e.,
there exists t ∈ R \ p such that sntx ∈ N . From this we have s ∈ N :R sn−1tx.
To prove p ∈ K(M/N), it suffices to show that N :R sn−1tx ⊆ p. If this is not the
case, pick r ∈ N :R sn−1tx with r ∈ R \ p. This gives that sn−1 ∈ (N :R x)(p),
which is impossible because of the minimality of n. Hence N :R sn−1tx ⊆ p and
the claim is proved. It follows that a prime ideal q of R is a Krull associated prime
of M/N if it is a set-theoretic union of weak-Bourbaki associated primes of M/N .
The converse is clear, since r ∈ N :R y ⊆ q implies that r is contained in every
minimal prime of N :R y.

Lemma 3.2. Let N be a proper submodule of M . Then

ZR(M/N) =
⋃

p∈wB(M/N)

p =
⋃

p∈MaxK(M/N)

p.

Proof. We note that ∪p∈MaxK(M/N)p = ∪p∈K(M/N)p. Also from the previous lemma
we have q ∈ K(M/N) if and only if q is a union of elements of wB(M/N). This in
turn, gives that ∪p∈K(M/N)p = ∪p∈wB(M/N)p. Hence the second equality is clear. To
verify the first, let r ∈ ZR(M/N). Then there exists x ∈ M \N such that rx ∈ N .
Let p ∈ wB(M/N) be a minimal prime divisor of N :R x. Then r ∈ N :R x ⊆ p.

In order to prove the opposite inclusion, let p ∈ wB(M/N) and r ∈ p. There
exists x ∈ M \ N such that p is a minimal prime divisor of N :R x and so
N(p) :R x = (N :R x)(p) is a p-primary ideal by [9, p. 737]. This gives that
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rn ∈ N(p) :R x for some positive integer n. Thus srnx ∈ N for some s ∈ R \ p.
Now since N :R x ⊆ p and s ∈ R \ p, so sx is not an element of N . Consequently
rn and so r is an element of ZR(M/N).

Corollary 3.3. Let N be a primal submodule of M with adjoint prime ideal p.
Then p ∈ K(M/N).

Proof. By the previous lemma p = ZR(M/N) = ∪p′∈wB(M/N)p
′ is the set union of

elements of wB(M/N). Hence p ∈ K(M/N) by Lemma 3.1.

Remark 3.4. It should be noted that for each proper submodule N of M ,
N = ∩p∈Spec(R)N(p); that is N is the intersection of its isolated components. This
components in general do not need to be primal. However if we focus our attention
on the isolated components which belongs to the elements MaxK(M/N), then we
have a representation of N such that each component is isolated component and
primal. In fact N = ∩p∈MaxK(M/N)N(p). (To see this let x ∈ M \ N . If q is a
minimal prime divisor of N :R x, then there exists p ∈ MaxK(M/N) such that
q ⊆ p. Hence N :R x ⊆ p and it follows that x is not an element of N(p).
Consequently x is not in ∩p∈MaxK(M/N)N(p) and we conclude the claim).

Now we state and prove the following theorem which is of significance and
will be used in the proof of the main theorem of this paper.

Theorem 3.5. Let N be a proper submodule of M . Then we have N =⋂
p∈MaxK(M/N) N(p), where the isolated components N(p) are primal submodules

with distinct and incomparable adjoint primes p.

Proof. By the above remark it suffices to prove that if p ∈ K(M/N), then the
isolated p-component N(p) of N is p-primal submodule; i.e. ZR(M/N(p)) =
p. It is clear that the elements of R \ p are prime relative to N(p) and hence
ZR(M/N(p)) ⊆ p. To prove the other inclusion let r ∈ p. Since p ∈ K(M/N),
there exists x ∈ M \ N(p) such that r ∈ N(p) :R x ⊆ p. Therefore we have
N(p) ⊂ N(p) :M r and so r ∈ ZR(M/N(p)).

Now we state and prove the main theorem of this section.

Theorem 3.6. Let M be a torsion free R-module. The following statements are
equivalent.

(i) M is a distributive R-module.

(ii) Every primal submodule of M is irreducible.

(iii) For every maximal ideal m, the set Wm(M) is linearly ordered with respect
to inclusion.

(iv) For every maximal ideal m and any x, y ∈ M , Rx(m) and Ry(m) are com-
parable with respect to inclusion.

(v) For each submodule N of M and each maximal ideal m, ER(M/N(m)) (the
injective hull of M/N(m)) is indecomposable.
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Proof. (i)⇒(ii). Let N be a p-primal submodule of M . Then by Corollary 2.8,
N(p) is irreducible. Now it follows by Lemma 2.5(a) that N is irreducible.

(ii)⇒(i). By virtue of Lemma 2.3, it is enough to show that for each maximal
ideal m of R, Mm is a distributive module over the quasi local ring Rm. To do
this, by Lemma 2.4, it suffices to prove that for any x, y ∈ M , either < x/1 >⊆
< y/1 > or < y/1 >⊆< x/1 >. To this end, Let N =< x, y > and Nm 6= 0.
(If Nm = 0, then x/1 = y/1 = 0 and there is nothing to prove.) Then by
Lemma 2.9, (mN)(m) is an m-primal and so by our assumption an irreducible
submodule of M . Hence by Proposition 2.7, (mN)m is an irreducible submodule
of Mm. This gives that Nm/(mN)m as a finite dimensional vector space over the
field Rm/mRm is of dimension one, and therefore is isomorphic to Rm/mRm. So
we have either Nm =< x/1 > +(mN)m or Nm =< y/1 > +(mN)m. Hence by
the Nakayama’s Lemma Nm =< x/1 > or Nm =< y/1 >, which gives that either
< x/1 >⊆< y/1 > or < y/1 >⊆< x/1 > and the result follows.

(iii)⇒(iv) is clear.

(iv)⇒(i). Assume that (i) does not hold. Then, by Lemma 2.4, there exist
x, y ∈ M and a maximal ideal m of R such that (Ry :R x) + (Rx :R y) ⊆ m. It
follows that y ∈ Ry(m) \Rx(m) and x ∈ Rx(m) \Ry(m), contracting to (iv).

(i)⇒(iii). Suppose the contrary; i.e., there exist a maximal ideal m and L, K ∈
Wm(M), such that L * K and K * L. Let x ∈ L \ K and y ∈ K \ L. Our
assumption together with Lemma 2.4, give that there exists r ∈ R such that
rx ∈ K and (1− r)y ∈ L. Since m is a maximal ideal, at least one of the elements
r, 1 − r is not contained in m. If the first possibility is true, it follows that
x ∈ K(m) = K, a contradiction. With the second possibility we come to the
contradiction y ∈ L(m) = L.

(i)⇔(v). We note that a submodule K of M is irreducible if and only if ER(M/K)
is indecomposable. Thus it follows from Corollary 2.8.

The result of the previous theorem gives that for each submodule N of a distribu-
tive module M , the representation of N as an intersection of isolated components
given in Theorem 3.5 is a decomposition of N into irreducible isolated components.
In the next theorem we show that for the torsion free R-modules this condition is
in fact sufficient for M to be distributive.

Theorem 3.7. Let M be a torsion free R-module. The following statements are
equivalent.

(i) M is a distributive R-module.

(ii) For each proper submodule N of M , N =
⋂
p∈MaxK(M/N) N(p) is an irre-

ducible decomposition of N .

Proof. (i)⇒(ii) follows from Theorems 3.5 and 3.6.

(ii)⇒(i). By Lemma 2.3 it is enough to show that for each maximal ideal m of
R the cyclic submodules of Mm are totally ordered. To this end, let x, y ∈ M .
Set N =< x, y >. Then by assumption mN =

⋂
p∈MaxK(M/mN)(mN)(p), is an
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irreducible decomposition of mN . We claim that m ∈ MaxK(M/mN). If this
is not the case, then (mN)(p) = N(p) for all p ∈ MaxK(M/mN). This gives
that mN =

⋂
p∈MaxK(M/mN) N(p) ⊇ N , which is impossible, since N is finitely

generated. Hence m ∈ MaxK(M/mN) and (mN)(m) is an irreducible submodule
of M . Thus by Proposition 2.7, (mN)m is an irreducible submodule of Mm. The
result now follows by the same argument as in the proof of the Theorem 3.6 part
(ii)⇒(i).

References

[1] Barnard, A. D.: Distributive extensions of modules. J. Algebra 70 (1981),
303–315. Zbl 0468.13012−−−−−−−−−−−−

[2] Barnes, W. E.: Primal ideals and isolated components in noncommutative
rings. Trans. Am. Math. Soc. 82(1) (1956), 1–16. Zbl 0070.26701−−−−−−−−−−−−

[3] Davison, T. M. K.: Distributive homomorphisms of rings and modules. J.
Reine Angew. Math. 271 (1974), 28–34. Zbl 0297.13003−−−−−−−−−−−−

[4] Erdogdu, V.: Distributive modules. Can. Math. Bull. 30(2) (1987), 248–254.
Zbl 0591.13007−−−−−−−−−−−−

[5] Erdogdu, V.: The distributive hull of a ring. J. Algebra. 132(2) (1990), 263–
269. Zbl 0705.13002−−−−−−−−−−−−

[6] Erdogdu, V.: Cyclically decomposable distributive modules. Commun. Algebra
25(5) (1997), 1635–1639. Zbl 0876.16001−−−−−−−−−−−−

[7] Fuchs, L.: On primal ideals. Proc. Am. Math. Soc. 1 (1950), 1–6.
Zbl 0041.16501−−−−−−−−−−−−

[8] Fuchs, L.; Heinzer, W.; Olberding, B.: Commutative ideal theory without
finiteness conditions: primal ideals. Trans. Am. Math. Soc. 357 (2005), 2771–
2798. Zbl 1066.13003−−−−−−−−−−−−

[9] Krull, W.: Idealtheorie in Ringen ohne Endlichkeitsbedingung. Math. Ann.
101 (1929), 729–744. JFM 55.0681.01−−−−−−−−−−−−

[10] Kuntz, R.: Associated prime divisors in the sense of Krull. Can. J. Math. 24
(1972), 808–818. Zbl 0256.13003−−−−−−−−−−−−

[11] Larsen, M.; McCarthy, P.: Multiplicative theory of ideals. Academic Press,
New York 1971.

[12] Sharp, R. Y.: Steps in commutative algebra. Cambridge University Press,
2000. Zbl 0969.13001−−−−−−−−−−−−

[13] Stepehenson, W.: Modules whose lattice of submodules is distributive. Proc.
Lond. Math. Soc., III. Ser. 28 (1974), 291–310. Zbl 0294.16003−−−−−−−−−−−−

[14] Tuganbaev, A. A.: Semidistributive modules and rings. Kluwer Academic
Publishers, Dordrecht-Boston-London 1998. Zbl 0909.16001−−−−−−−−−−−−

[15] Tuganbaev, A. A.: Distributive modules and related topics. Gordon and
Breach Science Publishers, Amsterdam 1999. Zbl 0962.16003−−−−−−−−−−−−

http://www.emis.de/MATH-item?0468.13012
http://www.emis.de/MATH-item?0070.26701
http://www.emis.de/MATH-item?0297.13003
http://www.emis.de/MATH-item?0591.13007
http://www.emis.de/MATH-item?0705.13002
http://www.emis.de/MATH-item?0876.16001
http://www.emis.de/MATH-item?0041.16501
http://www.emis.de/MATH-item?1066.13003
http://www.emis.de/cgi-bin/JFM-item?55.0681.01
http://www.emis.de/MATH-item?0256.13003
http://www.emis.de/MATH-item?0969.13001
http://www.emis.de/MATH-item?0294.16003
http://www.emis.de/MATH-item?0909.16001
http://www.emis.de/MATH-item?0962.16003


336 N. Zamani: On Torsion Free Distributive Modules

[16] Underwood, D.: On some uniqueness questions in primary representations
of ideals. J. Math. Kyoto Univ. 9 (1969), 69–94. Zbl 0181.05001−−−−−−−−−−−−

Received October 17, 2007

http://www.emis.de/MATH-item?0181.05001

