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Abstract. In this work, we construct a class of Armendariz rings and
a class of non-Armendariz rings. For this we study the transfer of the
Armendariz property to trivial ring extension and direct product. The
article includes a brief discussion of the scope and precision of our re-
sults.
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1. Introduction

Throughout this paper all rings are assumed to be commutative with identity
elements and all modules are unital.

Let R be a commutative ring. The content C(f) of a polynomial f ∈ R[X] is
the ideal of R generated by all coefficients of f . One of its properties is that C(.) is
semi-multiplicative, that is C(fg) ⊆ C(f)C(g); and a polynomial f ∈ R[X] is said
to be Gaussian over R if C(fg) = C(f)C(g), for every polynomial g ∈ R[X]. A
polynomial f ∈ R[X] is Gaussian provided C(f) is locally principal by [8, Remark
1.1]. A ring R is said a Gaussian ring if C(fg) = C(f)C(g) for any polynomials
f, g with coefficients in R. A domain is Gaussian if and only if it is a Prüfer
domain. See for instance [1], [3], [6], [8].

A ring R is called an Armendariz ring if whenever polynomials f =
m∑

i=0

aiX
i

and g =
n∑

i=0

biX
i ∈ R[X] satisfy fg = 0, we have C(f)C(g) = 0 (that is aibj =

0 for every i and j). It is easy to see that subrings of Armendariz rings are
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also Armendariz. E. Armendariz ([2, Lemma 1]) noted that any reduced ring
(i.e., ring without non-zero nilpotent elements) is an Armendariz ring. Also,
D. D. Anderson and V. Camillo ([1]) show that a ring R is Gaussian if and only if
every homomorphic image of R is Armendariz. See for instance [1], [2], [11], [12].

Let A be a ring, E be an A-module and R := A ∝ E be the set of pairs (a, e)
with pairwise addition and multiplication given by (a, e)(b, f) = (ab, af +be). R is
called the trivial ring extension of A by E. Considerable work has been concerned
with trivial ring extensions. Part of it has been summarized in Glaz’s book [5]
and Huckaba’s book (where R is called the idealization of E by A) [9]. See for
instance [5], [9], [10].

The goal of this work is to exhibit a class of Armendariz rings and a class of
non-Armendariz rings. For this purpose, we study the transfer of the Armendariz
property to trivial ring extension and direct product.

2. Main results

This section develops a result of the transfer of the Armendariz property for a
particular context of trivial ring extensions. And so, we will construct a new class
of Armendariz rings (with zero-divisors).

First, we examine the context of trivial ring extension of a local ring (A, M)
by an A-module E such that ME = 0. Remark that this ring is a total ring by
the proof of [10, Theorem 2.6 (1)].

Theorem 2.1. Let (A, M) be a local ring, E an A-module such that ME = 0,
and let R := A ∝ E be the trivial ring extension of A by E. Then, R is an
Armendariz ring if and only if A is it too.

Proof. If R is an Armendariz ring, then so is A since A is a subring of R.

Conversely, assume that A is an Armendariz ring. Let f =
n∑

i=0

(ai, ei)X
i and

g =
m∑

i=0

(bi, fi)X
i be two polynomials in R[X] such that fg = 0, where n and m

are positive integers. Two cases are then possible.

Case 1. ai /∈ M for some i = 0, . . . , n. In this case, ai is invertible in A and then
(ai, ei) is invertible in R. Hence, CR(f) = R and f is a Gaussian polynomial (by
[8, Remark 1.1]) and so CR(f)CR(g) = CR(fg) = 0 as desired.

Case 2. ai ∈ M for each i = 0, . . . , n. Two cases are then possible:

∗ If there exists bj /∈ M for some j = 0, . . . ,m, then by Case 1, g is a Gaussian
polynomial and then CR(f)CR(g) = CR(fg) = 0 as desired.

∗ If bj ∈ M for each j = 0, . . . ,m, we set the two polynomials of A[X]: fA =
n∑

i=0

aiX
i and gA =

m∑
i=0

biX
i. We have fAgA = 0 since fg = 0. Hence, CA(fA)

CA(gA) = 0 since A is an Armendariz ring. But C(f)C(g) = (CA(fA)CA(gA), 0)
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since ai, bj ∈ M for each i = 0, . . . , n and for each j = 0, . . . ,m and ME = 0.
Therefore, C(f)C(g) = 0 and this completes the proof of Theorem 2.1.

By Theorem 2.1 and since each domain is Armendariz, we have:

Corollary 2.2. Let (A, M) be a local domain, E an A-module such that ME = 0.
Then the trivial ring extension R := A ∝ E of A by E is an Armendariz ring.

Next, we explore the Armendariz property to the trivial ring extension of the form
R := A ∝ B, where A ⊆ B is an extension of domains.

Theorem 2.3. Let A ⊆ B be two domains. Then the trivial ring extension R :=
A ∝ B of A by B is an Armendariz ring.

Proof. Let f =
n∑

i=0

(ai, ei)X
i and g =

m∑
i=0

(bi, fi)X
i be two non-zero polynomials in

R[X] such that fg = 0, where n and m are positive integers. Set fA =
n∑

i=0

aiX
i

and gA =
m∑

i=0

biX
i. We have fAgA = 0 (since fg = 0) and so fA = 0 or gA = 0

(since A is a domain). We can assume that fA = 0, that is ai = 0 for each
i = 0, . . . , n (the case gA = 0 is similar).

Set fB =
m∑

i=0

eiX
i ∈ B[X]. Notice that fB 6= 0 since f 6= 0 and fA = 0. We

have fBgA = 0 ∈ B[X] (since fg = 0) and so gA = 0 (since B is a domain and

fB 6= 0). Therefore, CR(f) =
n∑

i=0

R(0, ei)X
i and CR(g) =

m∑
i=0

R(0, fi)X
i and so

CR(f)CR(f) = 0 as desired.

The next two examples prove that the condition A and B are domains in Theorem
2.3 is necessary even if A is Armendariz and B = A.

Example 2.4. Let K be a field, A = K ∝ K be the trivial ring extension of K
by K, and let R = A ∝ A be the trivial ring extension of A by A. Then:

1) A is an Armendariz ring.

2) R is not an Armendariz ring.

Proof. 1) The ring A is Gaussian by [3, Example 2.3 (1.b)]. In particular, A is an
Armendariz ring.

2) Our aim is to show that R is not Armendariz. Let f = ((0, 1), (0, 0)) +
((0, 0), (1, 0))X and g = ((0, 1), (0, 0)) + ((0, 0), (−1, 0))X be two polynomials
in R[X]. We easily check that fg = 0 and C(f)C(g) = [R((0, 1), (0, 0)) +
R((0, 0), (1, 0))][R((0, 1), (0, 0)) + R((0, 0), (−1, 0))] = R((0, 0), (0, 1)) 6= 0, as de-
sired.
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Example 2.5. Let R := Z/8Z ∝ Z/8Z be the trivial ring extension of Z/8Z by
Z/8Z. Then:

1) Z/8Z is an Armendariz ring by [12, Theorem 2.2].

2) R := Z/8Z ∝ Z/8Z is not an Armendariz ring by [12, Example 3.2].

Now, we will construct a wide class of rings satisfying the Armendariz property.
For this, we study the transfer of this property to direct product.

Theorem 2.6. Let (Ri)i=1,...,n be a family of rings. Then
n∏

i=1

Ri is an Armendariz

ring if and only if so is Ri for each i = 1, . . . , n.

Proof. We will prove the result for i = 1, 2, and the theorem will be established
by induction on n.

Assume that R1 ×R2 is an Armendariz ring. We show that R1 is an Armendariz
ring (it is the same for R2).

Let f =
n∑

i=0

aiX
i and g =

m∑
i=0

biX
i be two polynomials in R1[X] such that

fg = 0, where n and m are positive integers. Set f1 =
n∑

i=0

(ai, 0)X i and g1 =

m∑
i=0

(bi, 0)X i (∈ (R1×R2)[X]). We have f1g1 = (fg, 0) = (0, 0). Hence, CR1×R2(f1)

CR1×R2(g1) = 0 since R1 ×R2 is an Armendariz ring.
But CR1×R2(f1)CR1×R2(g1) = (CR1(f)CR1(g), 0). Therefore, CR1(f)CR1(g) =

0 and this shows that R1 is an Armendariz ring.

Conversely, assume that R1 and R2 are Armendariz rings. Let f =
n∑

i=0

(ai, ei)X
i

and g =
m∑

i=0

(bi, fi)X
i be two polynomials in (R1 × R2)[X] such that fg =

0, where n and m are positive integers. Set f1 =
n∑

i=0

aiX
i ∈ R1[X], f2 =

n∑
i=0

eiX
i ∈ R2[X], g1 =

m∑
i=0

biX
i ∈ R1[X] and g2 =

m∑
i=0

fiX
i ∈ R2[X]. We

have 0 = fg = (f1g1, f2g2) which implies that f1g1 = 0 and f2g2 = 0. Hence
CR1(f1)CR1(g1) = 0 and CR2(f2)CR2(g2) = 0 since R1 and R2 are Armendariz
rings. But CR1×R2(f)CR1×R2(g) = (CR1(f1)CR1(g1), CR2(f2)CR2(g2)). Therefore,
CR1×R2(f)CR1×R2(g) = 0 and this completes the proof of Theorem 2.4.

By Theorem 2.6 and since each domain is Armendariz, we have:

Corollary 2.7. Let (Ri)i=1,...,n be a family of domains. Then
n∏

i=1

Ri is an Armen-

dariz ring.
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Now, we study the localization of Armendariz ring.

Theorem 2.8. Let R be a ring. Then:

1) Assume that R is an Armendariz ring and S is a multiplicative subset of R.
Then S−1R is an Armendariz ring.

2) A ring R is Armendariz if and only if RM is Armendariz for each maximal
ideal M of R.

Proof. 1) Without loss of generality, we may consider the polynomials of the

form S−1f and S−1g where f =
n∑

i=0

aiX
i and g =

m∑
i=0

biX
i ∈ R[X], such

that S−1(f)S−1(g) = 0. Hence, there exists t ∈ S such that tfg = 0 and so
tCR(f)CR(g) = CR(tf)CR(g) = 0 since R is Armendariz. Then we have:

CS−1R(S−1f)CS−1R(S−1g) = S−1(CR(f))S−1(CR(g))

= S−1[CR(f)CR(g)]

= S−1[tCR(f)CR(g)]

= 0.

Therefore, S−1R is an Armendariz ring.

2) If R is Armendariz, then so is RM for each maximal ideal M of R by 1).

Conversely, assume that RM is Armendariz for each maximal ideal M and let
f, g ∈ R[X] such that fg = 0. Then C(fg)M = 0 and so [C(f)C(g)]M(=
C(f)MC(g)M) = 0 for each maximal ideal M since RM is Armendariz. Therefore,
C(f)C(g) = 0 as desired.

By Theorem 2.8 and since each domain is Armendariz, we have:

Corollary 2.9. A locally domain is an Armendariz ring.

Remark 2.10. Let R be a non-Prüfer domain. Then R is an Armendariz ring
which is not Gaussian. Hence, there exists an ideal I of R such that R/I is
not an Armendariz ring by [1]. This shows that the homomorphic image of an
Armendariz ring is not necessarily an Armendariz ring.
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