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Abstract. In this paper we consider curves related to ovals, which can
uniformly be generated by certain families of secants with respect to an
arbitrary given oval. If e. g. the generating secants connect the points of
contact of parallel tangents of the given oval then they envelop a curve,
which contains information about the oval analogously to its evolute for
example. Those curves are treated in different context in [2] and [6] too.
In this article several properties can be treated into detail and extended
respectively. In particular with help of this curve a global property to
any evolutoide of the given oval can be shown, which is invariant under
(regular) affine transformations. It generalizes a corresponding result
about the evolute of the oval, see [2].
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1. Introduction

Curves related to ovals have been studied in many papers by mathematicians
and engineers, too. Many questions were initiated by technical problems and
have applications in engineering respectively. For example the study of isoptic
curves is associated to cam mechanisms. As is generally known those curves are
the loci, where the contour of the given oval is seen under fixed angle measure.
Generalizations of isoptic curves are well-known: for example dually defined curves
are generated by families of chords of equal length with respect to the given oval.
They seem to be of some interest in current research too, see [4].
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On the other hand in context to the generation of these curves by secants it
seems to be natural to consider curves generated by a one-parameter family of
certain secants with respect to an oval k. There exist numerous classical examples
of it, in particular the evolute e associated to an oval k generated as envelope by
the family of curve normals of k. As is generally known the definition of an evolute
e can be generalized onto evolutoides eα, if the normals of k are replaced by a
one-parameter set of lines intersecting k isogonally. The constant angle (measure)
of the intersection of the oriented line and the tangent in a point of k is denoted
by α. For example those one-parameter sets of certain lines occur as ground view
of horizontal tangents at points P ∈ k of surfaces of constant slop, where k is
itself a curve of constant slop.

In different context curves related to ovals are treated in [2]. The so-called
minimal curve of a given oval k is defined as locus of certain centers Z at secants
s, which connect the points of contact of parallel tangents of k. In a point Z the
curvature of a certain convex curve kZ related to k is stationary (with respect to
Z ∈ s) and has an absolute minimum. It is shown in [2] that the set of points Z
can be generated as envelope of the family {s}.

However the minimal curve might have further properties in context to the
given oval k and its evolutoides eα: in this article several properties can be treated
into detail and extended respectively. In particular with help of this curve a global
property to any evolutoide of the given oval can be shown, which is invariant under
(regular) affine transformations. It generalizes a corresponding result about the
evolute of the oval, see [2]. Finally when placing the emphasis on geometric optic
minimal curves admit a generation by certain secants s with respect to an oval k.

2. Definition of a midenvelope

Let k be an oval in the Euclidean plane E2, that is a C2-smooth strictly con-
vex curve. Using a Cartesian coordinate system the curve k has non vanishing
curvature κ. Without loss of generality the origin O of the coordinate system
can be chosen as an inner point of the edge k. Then k is enveloped of all sup-
porting (tangent) lines x cos t + y sin t − p(t) = 0 whereby the support function1

p : [0, 2π) → R+. Using complex numbers the oval k is parametrized by

z(t) = p(t)eit + ṗ(t)ieit, z(t) ∈ C1 (1)

whereby t ∈ [0, 2π) ⊂ R. The dot in (1) stands for the derivation with respect to
the real parameter t.

From the definition of k follows that for every t ∈ [0, 2π) there exists a unique
value t+π, so that the distinct supporting lines l(t) and l(t+π) with respect to k
are parallel.2 The points of contact are denoted by z(t) and z(t + π) respectively.
Hence for t ∈ [0, 2π) the oriented line s(t) belonging to the ordered pair (z(t), z(t+
π)) is well defined. In the following we investigate the family of secants s(t)

1Sometimes the support function is defined over the Gaussian image of a curve, see e. g. [1].
2More precisely it should be denoted (t + π) (mod 2π) instead of t + π.
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through z(t) and z(t+π) for all t. Those secants can be geometrically interpreted
as lines intersecting the (tangents of the) curve k in complementary angles α(t)
and α(t + π). But notice the measure of α(t) changes generally when changing t.

Definition 1. Let k be an oval parametrized by (1). Then the family of oriented
lines s(t) belonging to the ordered pairs (z(t), z(t + π)) of k for t ∈ [0, 2π) deter-
mines a set of common points and a curve c respectively, which is the envelope of
this family of certain secants of k. They should be named shortly diameters s(t)
and midenvelope c with respect to k.3

Example 1. As is generally known the family of diameters s(t) with respect to
a curve k of constant width are the double normals of k. Hence the midenvelope
c is the evolute of k. In particular if k is a circle then c coincides with the center
of k, s(t) are diameters of k.

To compute the equation for the midenvelope c and investigate respectively wheth-
er c contains common points of the diameters s(t) we first have to compute the
equation of s(t) as the line connecting two distinct points z(t) and z(t + π) of k.
Using the notation in (1) we obtain

0 =
(
a(t) sin t + ȧ(t) cos t

)
x +

(
−a(t) cos t + ȧ(t) sin t

)
y − b(t) (2)

with a(t) = p(t) + p(t + π) and b(t) = p(t)ṗ(t + π)− ṗ(t)p(t + π). As a necessary
condition that c is an envelope with respect to {s(t)}, we solve the linear equation
system given by (2) and the subsequent equation (3), which is determined by
derivation of left and right hand side of (2) with respect to t.

0 = cos t
(
a(t) + ä(t)

)
x + sin t

(
a(t) + ä(t)

)
y − ḃ(t). (3)

Obviously (2) and (3) do not change if t is replaced by t+π, hence the solutions at
t and t + π coincide. If b(t) = 0 then the linear equation system is homogeneous.
Since the radius of curvature of the oval k is greater than 0 for any t, furthermore
evidently a(t) 6= 0, the unique solution of the homogeneous linear equation system
is determined by zc = 0.4 It is easy to verify that b(t) = 0 if and only if the
function f : [0, π) → R+ with t 7→ p(t)/p(t + π) has a local extremum and
a point of inflection with horizontal stationery tangent at t respectively or is
constant. Therefore the condition b(t) = 0 for every t ∈ [0, 2π) admits a geometric
interpretation with respect to the given oval: k is then centrally symmetric. In
this case the family of diameters s(t) is a pencil of lines through zc = 0.

Generaly the solution of the linear equation system given by (2) and (3) gives
a parametrization of c. We excluded the case the solution zc is fixed for every

3The pairs (l(t), l(t + π)) of parallel supporting lines, the family of diameters s(t) and the
midenvelope c are affine geometric properties. They are studied in different context in [2] too.
With respect to the definition in [2] we will use different names for s(t) and c.

4The radius r of curvature is determined by the support function, thus r = p(t) + p̈(t) > 0,
see e. g. [5].
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t ∈ [0, 2π) and equivalent, k is a centrally symmetric oval respectively.5 Using
complex numbers we get

zc(t) =
(
a(a + ä)

)−1(
aḃeit + (ȧḃ− b(a + ä))ieit

)
(t) (4)

where t ∈ [0, t) (mod π). Obviously the denominator in (4) cannot vanish in
[0, 2π).

To obtain a proposition, when a midenvelope c is regular at t, we consider
the tangent vector to c at t. Equivalent to the zero tangent vector the condition
|żc(t)| = 0 is fulfilled. Provided that k is an oval we get

0 =
(
(a + ä)(ab− ȧḃ + ab̈ + bä)− aḃ(ȧ + ˙̈a)

)
(t) (5)

and replacing a and b and their derivations by the support function p

0 =
(
p(t + π) + p̈(t + π)

)(
ṗ(t) + ˙̈p(t)

)
−

(
ṗ(t + π) + ˙̈p(t + π)

)(
p(t) + p̈(t)

)
. (6)

Note the functions a, b and the support function p in (5) and (6) respectively
are assumed to be of class C3. Evidently the second condition is geometrically
interpreted by the curvature radii of k at t and t+π: as noticed before the radius
of curvature of k at t is given by r := p(t) + p̈(t), hence the midenvelope c with
respect to k is singular at t if and only if the function g : [0, π) → R+ with
t 7→ r(t)/r(t + π) has a local extremum and a point of inflection with horizontal
stationery tangent at t respectively or is constant.

Proposition 1. Let k be an arbitrary oval parametrized by (1) and c the miden-
velope with respect to k parametrized by (4). Furthermore the support function p
in (1) is of class C3. Then c is singular at t (mod π) if and only if (6) is fulfilled
and the function g : [0, π) → R+ with t 7→ r(t)/r(t + π) has a local extremum
and a point of inflection with horizontal stationary tangent at t respectively or is
constant.

Example 2. Obviously for centrally symmetric ovals r(t)/r(t + π) = 1 for every
t ∈ [0, 2π). The midenvelope c is determined by the center of k and therefore
singular at any t (mod π).

Example 3. The midenvelope c belonging to a curve k of constant width is de-
termined by its evolute e. Therefore a(t) = p(t)+p(t+π) = r(t)+r(t+π) = const.
It is easy to verify, if k is different from a circle, the function g : [0, π) → R+ has
local extrema exactly at those t, where r(t) is extremal too. This is not surprising,
because the evolute of a smooth curve with nonvanishing curvature is generally
singular at those t, at which k has vertices.

As is generally known the curvature of a smooth plane curve, which is parametriz-
ed by z : I → C with z(I) ∈ C2(I), can be computed by

κ(t) =
¯̇z(t)z̈(t)− ż(t)¯̈z(t)

2i|ż(t)|3
. (7)

5In the case of a fixed solution we easily get b(t) = 0 for all t ∈ [0, 2π) by changing the
coordinate system.
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Using (4) and (5) the curvature of the midenvelope c with respect to an oval k
can be computed with reference to a, b and their derivations by

κc(t) =
a4(a + ä)4b(

a2 + ȧ2
) 3

2
(
(a + ä)(ab− ȧḃ + ab̈ + bä)− aḃ(ȧ + ˙̈a)

)2
(t) . (8)

It easily can be verified the expression
(
a2 + ȧ2

) 1
2 (t) in (8) admits an geometric

interpretation as the length of the secant segment between z(t) and z(t + π). For
a strictly convex smooth curve k it never vanishes.

3. Relation to the evolute of k

As shown in Section 2 the midenvelope c with respect to an oval k coincides with
the evolute e of k, if and only if k is a curve of constant width. In general the
points of c and e at t and t+π respectively are different from each other. It seems
natural to ask whether they have a certain position to each other, compare also
[2].

Let k be an oval parametrized by (1). Using complex numbers the evolute e
of k can be described by equation

ze(t) = ṗ(t)ieit − p̈(t)eit. (9)

We ask whether the points ze(t), ze(t + π) and zc(t) are collinear. Therefore
we compute an equation of the (oriented) line g belonging to the (ordered) pair
(ze(t), ze(t + π)) and verify a condition when g contains zc(t). Using the notation
in (9) we obtain

ze(t + π) = −ṗ(t + π)ieit + p̈(t + π)eit (10)

and further an equation of g(t)

0 =
(
ȧ(t) cos t− ä(t) sin t

)
x +

(
ȧ(t) sin t + ä(t) cos t

)
y − d(t) (11)

with d(t) = ṗ(t)p̈(t + π) − p̈(t)ṗ(t + π). Obviously (11) does not change if t is
replaced by t + π. Hence the solutions at t and t + π coincide. Furthermore g(t)
is undefined at t if and only if ze(t) and ze(t + π) coincide. Using (11) we obtain
ȧ = 0 and ä = 0. In particular these conditions are fulfilled if the width of k (with
respect to a certain direction) is stationary.

Verifying a condition, when g(t) contains zc(t) using the representations (11)
and (4), we obtain a global property of c with respect to an arbitrary oval k.

Proposition 2. Let k be an oval and e its evolute with parameter representa-
tions (1) and (9) respectively. Furthermore the midenvelope c with respect to k is
parametrized by (4). If ze(t) and ze(t + π) at t ∈ [0, π) are different from each
other the connecting line g(t) is well defined and contains the associated point
zc(t), i.e. the points ze(t), ze(t + π) and zc(t) are collinear. Otherwise those three
points coincide at t ∈ [0, π).6

6Proposition 2 is similarly elaborated in [2]. With regard to a consistent argumentation and
an extension of Proposition 2 for example we have decided to note it down.
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The coincidence of the points ze(t), ze(t + π) and zc(t) in Proposition 2 can easily
verified: If ze(t) = ze(t + π) or equivalent ȧ = 0 and ä = 0, then the diameter
s(t) is a double normal of k at t and the width of k is stationary. Hence the point
zc(t) coincide with ze(t) = ze(t + π), compare Example 1.

Corollary 3. If the points ze(t), ze(t + π) and zc(t) are collinear (and do not
coincide) at t ∈ [0, π) then zc(t) divides the line segments given by ze(t) and
ze(t + π) as well as z(t) and z(t + π) at the same ratio r(t)/r(t + π) of the
curvature radii of k at t and t + π.7 Otherwise if those three points coincide at
t ∈ [0, π) then the statement is evidently true for the line segment given by z(t)
and z(t + π).

Note Corollary 3 can be verified using the theorem on intersecting lines: Let k be
an oval parametrized by (1). Then the normals n(t) and n(t + π) to k at t and
t + π are parallel to each other. If ze(t) and ze(t + π) do not coincide the line g(t)
connecting ze(t) and ze(t + π) contains zc(t) by Proposition 2. The points z(t),
z(t + π) and zc(t) are collinear by Definition 1. Certainly g(t) is different from
s(t).

As a conclusion of Proposition 2 and Corollary 3 we get a global property on
the locus of a midenvelope c with respect to an arbitrary oval k.

Corollary 4. Let k be an oval parametrized by (1), further c the midenvelope
with respect to k parametrized by (4). Since k is a closed strictly convex curve,
furthermore the curvature κ > 0, the midenvelope c with respect to k lies in the
interior of k.

4. Evolutoides

Let k be an oval and c the midenvelope with respect to k. According to [8] the
envelope eα of a one-parameter set of oriented lines lα(t), which isogonally intersect
k, is called evolutoide. The constant angle measure ](l(t), lα(t)) of intersection at
any t ∈ [0, 2π) is denoted by α. In the cases α = 0 and α = π

2
we speak of k and

its evolute e respectively. Since for these curves the lines s(t) and g(t) connecting
z(t), z(t + π) and ze(t), ze(t + π) both contain zc(t) at every t ∈ [0, π), it seems
natural to ask whether for α ∈ [0, π) (α 6= 0, π

2
) exist evolutoides eα of k with the

same property with respect to c.
First we compute a parametrization of the evolutoides eα taking the same

methods used in Section 2. Using the representation in (1) we obtain an equation
for the line lα(t)

0 = x cos(t− α) + y sin(t− α)−
(
p(t) cos α− ṗ(t) sin α

)
(12)

where t ∈ [0, 2π) and α is fixed. As a necessary condition that eα is an envelope
with respect to {lα(t)}, we solve the linear equation system given by (12) and

7More precisely zc(t) divide the line segments at their interior.
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the subsequent equation (13), which is determined by derivation of left and right
hand side of (12) with respect to t.

0 = −x sin (t− α) + y cos (t− α)−
(
ṗ(t) cos α− p̈(t) sin α

)
(13)

The solution of the equation system generally gives a parametrization of the evo-
lutoides eα. Using complex numbers we obtain

ze(t, α) = p(t)ei(t−α) cos α + ṗ(t)ieit − p̈(t)iei(t−α) sin α. (14)

Obviously, the parametrization (14) describes the oval k and its evolute e respec-
tively if and only if α = 0 and α = π

2
respectively, compare (1) and (9). Therefore

the lines connecting ze(t, 0), ze(t + π, 0) and ze(t,
π
2
), ze(t + π, π

2
) are determined

by s(t) and g(t), further both contain zc(t).
Now we ask whether for α ∈ [0, π) (α 6= 0, π

2
) exist evolutoides eα of k with

the same property with respect to c. Therefore we compute an equation of the
line g(t, α) connecting the points ze(t, α) and ze(t + π, α). g(t, α) is well defined
as long as those points differ from each other. Using the notation as before we get

0 =
(
a(t) sin (t− α) cos α + ȧ(t) cos t− ä(t) cos (t− α) sin α

)
x

−
(
a(t) cos (t− α) cos α− ȧ(t) sin t + ä(t) sin (t− α) sin α

)
y

−
(
b(t) cos2 α− ḃ(t) cos α sin α + d(t) sin2 α

)
.

(15)

With help of the previous equation we can specify a condition, whether the points
ze(t, α), ze(t+π, α) and zc(t) are collinear: For a chosen α ∈ [0, π) the line g(t, α)
connecting ze(t, α) and ze(t+π, α) contains zc(t) if and only if the parametrization
(4) of c fulfills (15) at t. Based on this condition we obtain an generalization of
Proposition 2.

Proposition 5. Let k be an oval and c its midenvelope parametrized by (1) and
(4) respectively. Furthermore the family of evolutoides eα with respect to k is de-
noted by {eα|α ∈ [0, π)}. Any eα admits a parametrization by (14). If ze(t, α) and
ze(t + π, α) at t ∈ [0, π) are different from each other, the connecting line g(t, α)
is well defined and contains the associated point zc(t), i.e. the points ze(t, α),
ze(t + π, α) and zc(t) are collinear.

Note the points ze(t, α) and ze(t + π, α) coincide if and only if |ze(t, α) − ze(t +
π, α)| = 0. Using (14) we obtain

0 = a2(t) cos2 α + ȧ2(t) + ä2(t) sin2 α− 2a(t)ȧ(t) sin α− 2ȧ(t)ä(t) cos α (16)

which is evidently fulfilled if the width of k is stationary and α = π
2
, compare

Examples 1 and 3.
In the case the points ze(t, α), ze(t + π, α) and zc(t) are collinear (and do

not coincide) we obtain a generalization of Corollary 3, which analogously can be
verified.
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Corollary 6. If the points ze(t, α), ze(t + π, α) and zc(t) are collinear (and do
not coincide) at t ∈ [0, π) then zc(t) divides the line segments given by ze(t, α)
and ze(t + π, α) as well as z(t) and z(t + π) at the same ratio r(t)/r(t + π) of the
curvature radii of k at t and t + π.

Verifying Corollary 6 the case g(t, α) = g(t+π, α) = s(t) has to be considered for
its own: It is a matter of common knowledge for a continuous motion of a moving
2-frame along a plane curve k ∈ C2 that the instantaneous center of this motion
coincides with the center of curvature with respect to k, see [7]. Furthermore the
normal of a kinematically generated curve at t contains the instantaneous center
at t. Referring to the current corollary the locus of any points ze(t, α) at t with
α ∈ [0, π) is a circle with diameter [z(t), ze(t)]. Hence the statement in Corollary 6
evidently continues to be valid if g(t, α) = g(t+π, α) = s(t), because the functions
α → |ze(t, α)− zc(t)| and α → |ze(t + π, α)− zc(t)| are continuous.

�
�

� �

�
� �

�

�

�

Figure 1. Midenvelope c and evolutoide eα with respect to an oval k

Example 4. In Figure 1 a given oval k and its midenvelope c are depicted. The
support function p of k is given by p(t) := cos (nt) + m with n = 2l + 1, l ∈ Z+,
further m ∈ R+ and m > n2 − 1, see [3]. Obviously a(t) := p(t) + p(t + π) = 2m
at any t ∈ [0, 2π) and therefore k is a curve of constant width: c and the evolute e
of k coincide. Further on the evolutoide e(α0) and the loci of points {ze(t0, α)|α ∈
[0, π)} and {ze(t0 + π, α)|α ∈ [0, π)} are depicted too. The figure visualizes the
statements in Proposition 5 and Corollary 6.

5. Conclusion

As conclusions of Proposition 5 and Corollary 6 we can give geometric interpre-
tations on the points of the midenvelope c with respect to corresponding points
of any evolutoide eα of an arbitrary oval k.
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Since the connecting lines of zc(t) and ze(t, α) at t are contained in a pencil
with carrier zc(t), furthermore the induced ratios equal r(t)/r(t + π) at any α ∈
[0, π), we can treat all corresponding points ze(t, α), ze(t + π, α) as preimage and
image respectively of a dilatation σ(t) given by the center zc(t) and the fixed
ratio r(t)/r(t + π). In particular the point z(t), its tangent l(t) and center of
curvature ze(t) of k at t are mapped by σ(t) onto z(t + π), l(t + π) and ze(t + π)
respectively. Hence kσ(t) is in 2nd order contact to k in z(t + π). Furthermore any
pair

(
ze(t, α), lα(t)

)
with α ∈ [0, π) is mapped onto

(
ze(t+π, α), lα(t+π)

)
by σ(t).

When t passes through [0, 2π) the midenvelope c can therefore be treated
as the locus of all centers of dilatations σ(t) as described before. Note there
are evidently alternative ways to define contact with respect to k at arbitrary
(t1, t2) ∈ [0, 2π) × [0, 2π) by similarities. Otherwise the pairs (t1, t2) = (t, t + π)
with t ∈ [0, π) and therefore c are geometrically determined by k. In particular
for central symmetric ovals the midenvelope c is given by the center of symmetry,
compare Example 2. In addition in case of an ellipse k the evolutoides eα are
affine parastroides, hence central symmetric (with centre c), see [8].

With help of the midenvelope c we can finally simplify the construction of
evolutoides eα with respect to an oval k.
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