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Abstract. Loper and Roitman proved that every integral domain sat-
isfies the property “each Gaussian polynomial has locally principal con-
tent”. In this paper, we study this property in a ring with zero-divisors,
and give then a class of such rings which does not satisfying this property
and another class of rings with zero-divisors satisfying this property.
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1. Introduction

Throughout this paper all rings are assumed to be commutative with identity
elements and all modules are unital.

Let R be a commutative ring. We say that an ideal is regular if it contains a
regular element, i.e., a non-zerodivisor element. A ring R is called locally has a
property (P ) if each localisation of R by a maximal ideal of R has the property
(P ).

The content C(f) of a polynomial f ∈ R[X] is the ideal of R generated by all
coefficients of f . One of its properties is that C(.) is semi-multiplicative, that is
C(fg) ⊆ C(f)C(g), and a polynomial f ∈ R[X] is said to be Gaussian over R
if C(fg) = C(f)C(g), for every polynomial g ∈ R[X]. A polynomial f ∈ R[X]
is Gaussian provided C(f) is locally principal by [7, Remark 1.1]. Our guiding
question is the converse of this property, that is “each regular Gaussian polynomial
has locally principal content”. Notice for convenience that the conjecture has a
local character since the Gaussian condition is a local property (i.e., a polynomial
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is Gaussian over a ring R if and only if its image is Gaussian over RM for each
maximal ideal M of R), [12, Lemma 5].
Significant progress has been made on this conjecture. Glaz and Vasconcelos
proved it for normal Noetherian domains [6]. Then Heinzer and Huneke estab-
lished this conjecture over locally approximately Gorenstein rings and over locally
Noetherian domains [7, Theorem 1.5 and Corollary 3.4]. Recently, Loper and Roit-
man established the conjecture for (locally) domains [11, Theorem 4], and then
Lucas extended their result to arbitrary rings by restricting to polynomials with
regular content [12, Theorem 3.6]. Finally, in [1], by using pullbacks, the authors
construct a new class of rings that are not locally domains, nor locally Noethe-
rians, and satisfy this conjecture. Let us note that Heinzer and Huneke, in [7,
Remark 1.6], give an example showing that the conjecture is false in general.

Let A be a ring, E be an A-module and R := A ∝ E be the set of pairs (a, e) with
pairwise addition and multiplication given by (a, e)(b, f) = (ab, af + be). R is
called the trivial ring extension of A by E. Note that a prime (respectively, maxi-
mal) ideal of R has the form P ∝ E (respectively, M ∝ E) where P (respectively,
M) is a prime (respectively, maximal) ideal of A (by [9, Theorem 25.1]).

Considerable work has been concerned with trivial ring extensions. Part of it has
been summarized in Glaz’s book [4] and Huckaba’s book (where R is called the
idealization of E by A) [9].

The goal of this work is to exhibit a class of rings (with zero-divisors) that does
not satisfy the property “each Gaussian polynomial has locally principal content”
and a second class of rings with zero-divisors satisfying this property. For this
purpose, we study the transfer of this property to trivial ring extension and direct
product.

2. Main results

This section develops a result of the transfer of the property “each Gaussian
polynomial has locally principal content” for a particular context of trivial ring
extensions. And so, we will construct a class of rings (with zero-divisors) that does
not satisfy the property “each Gaussian polynomial has locally principal content”.

Theorem 2.1. Let (A, M) be a local ring which is not a field such that M2 = 0
and let R := A ∝ E be the trivial ring extension of A by E, where E is a free
A-module. Then, R does not satisfy the property “each Gaussian polynomial has
locally principal content” in the following cases:

(1) rankA(E) = 1 and M is not principal,

(2) rankA(E) ≥ 2.

Before proving Theorem 2.1, we establish the following Lemma.
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Lemma 2.2. Let (A, M) be a local ring which is not a field such that M2 = 0 and
let R := A ∝ E be the trivial ring extension of A by E, where E is an A-module.
Assume that there exists a, b ∈ E−{0} such that Ma = Mb = 0 and the A-module
generated by {a, b} is not principal. Then, R does not satisfy the property “each
Gaussian polynomial has locally principal content”.

Proof. Under the hypothesis of Lemma 2.2, remark that R is local with maximal
ideal M ∝ E by [9, Theorem 25.1] since (A, M) is local. Let f = (0, a)+(0, b)X ∈
R[X]. Our aim is to show that f is Gaussian and C(f) is not (locally) principal.

We claim that f is Gaussian. Indeed, let g ∈ R[X]. We may assume that
g ∈ (M ∝ E)[X] (since if g /∈ (M ∝ E)[X], then C(g) = R and so C(fg) =
C(f)C(g)). Hence, C(f)C(g) = [R(0, a) + R(0, b)]C(g) ⊆ [R(0, a) + R(0, b)][M ∝
E] = 0 since aM = bM = 0 and so C(fg) = C(f)C(g) = 0 which means that f
is Gaussian.

We claim that C(f) is not principal. Deny. There exists (c, d) ∈ R such that
C(f) := R(0, a) + R(0, b)(= 0 ∝ (Aa + Ab)) = R(c, d) since R is local. Hence,
c = 0 and so Aa + Ab = Ad, a contradiction since the A-module generated by
{a, b} is not principal. Therefore, C(f) is not locally principal and this completes
the proof of Lemma 2.2.

Proof of Theorem 2.1. Let (A, M) be a local ring which is not a field such that
M2 = 0 and let R := A ∝ E be the trivial ring extension of A by E, where E is
a free A-module.

1) Assume that rankA(E) = 1 and M is not principal. We may assume that
E = A. Hence, there exists m1, m2 ∈ M − {0} such that m2 /∈ Am1. Set
f = (m1, 0) + (0, m2)X ∈ R[X]. Our aim is to show that f is Gaussian and C(f)
is not (locally) principal.

We claim that f is a Gaussian polynomial. Let g =
n∑

i=0

(ni, ai)X
i ∈ R[X].

If ni /∈ M for some i = 0, . . . , n, then ni is invertible in A and so (ni, ai) is
invertible in R. Hence, C(g) = R and so g is Gaussian; thus C(fg) = C(f)C(g).

Assume that ni ∈ M for each i = 0, . . . , n. We have fg =
n∑

i=0

(m1, 0)(ni, ai)X
i +

n∑
i=0

(0, m2)(ni, ai)X
i+1 =

n∑
i=0

(0, m1ai)X
i since m1, m2, ni ∈ M and M2 = 0. Hence

C(fg) =
n∑

i=0

R(0, m1ai). On the other hand, C(f)C(g)

= [R(m1, 0) + R(0, m2)][
n∑

i=0

R(ni, ai)] =
n∑

i=0

R(m1, 0)(ni, ai) =
n∑

i=0

R(0, m1ai)

since m1, m2, ni ∈ M and M2 = 0. Hence, C(fg) = C(f)C(g) and so f is
Gaussian.
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We claim that C(f) is not principal (since R is local). Deny. Then C(f)(=
R(m1, 0) + R(0, m2)) = R(n, e) for some n ∈ M and e ∈ A and so (m1, 0) =
(a, b)(n, e) for some (a, b) ∈ R.

If a ∈ M , then m1 = an = 0 since n ∈ M , a contradiction.

If a /∈ M , then a is invertible in A and so (a, b) is invertible in R. Hence,
R(m1, 0) = R(n, e)(= R(m1, 0) + R(0, m2)) and so (0, m2) ∈ R(m1, 0). Therefore,
(0, m2) = (a, b)(0, m1) = (0, am1) and so m2 ∈ Am1, a contradiction. Therefore,
C(f) is not (locally) principal.

2) Now, assume that rankA(E) ≥ 2. Let m ∈ M − {0}, (ei)i∈I be a basis of the
free A-module E, ai = mei ∈ E for i = 1, 2. We have Mai = 0 for each i = 1, 2
since M2 = 0. We claim that the A-module generated by (ai)i=1,2 is not principal.

Assume that the A-module generated by (ai)i=1,2 is principal, that is Aa1 +Aa2 =
Ame1 + Ame2 = Af for some f ∈ E. Hence, f = b1me1 + b2me2 for some bi ∈ A,
where i = 1, 2. But, a1 ∈ Af implies that a1(:= me1) = cf = cb1me1 + cb2me2

for some c ∈ A. Thus, m = cb1m and cb2m = 0 since (ei)i∈I is a basis of the free
A-module E. Therefore, (1 − cb1)m = 0 and so 1 − cb1 ∈ M since (A, M) is a
local ring and m 6= 0. Hence, cb1 /∈ M and so cb1 is invertible; in particular, c is
invertible.

Hence, the equation cb2m = 0 implies that b2m = 0 (as c is invertible) and so
b2 ∈ M (since (A, M) is a local ring and m 6= 0). Hence, f = b1me1 + b2me2 =
b1me1 as b2, m ∈ M and M2 = 0. But a2(:= me2) ∈ Aa1 +Aa2 = Af implies that
me2 = df = db1me1 for some d ∈ A; so m = 0 since (ei)i∈I is a basis of the free
A-module E, a contradiction as m 6= 0.
Therefore, the A-module generated by (ai)i=1,2 is not principal and Lemma 2.2
completes the proof of Theorem 2.1.

Remark 2.3. The hypothesis “M is not principal” in Theorem 2.1(1) is neces-
sary. Indeed, let K be a field considered as a local ring with maximal ideal M = 0.
Hence, R := K ∝ K is a local ring with unique proper ideal R(0, 1)(= 0 ∝ K). So,
R satisfies the property “each Gaussian polynomial has locally principal content”.

The goal of the following result is to construct a second class of rings that does
not satisfy the property “each Gaussian polynomial has locally principal content”.

Proposition 2.4. Let (A, M) be a local ring which is not a Bézout ring such that
M2 = 0. Then A does not satisfy the property “each Gaussian polynomial has
locally principal content”.

Proof. It suffices to show that there exists a polynomial f ∈ A[X] such that C(f)
is not principal since A is local and Gaussian. For that, let’s consider a, b ∈ A
such that the ideal generated by {a, b} is not principal (since A is not a Bézout
ring). Set f = a + bX ∈ A[X]. Therefore, C(f) := aA + bA is not principal and
this completes the proof of Proposition 2.4.

The next result gives a second wide class of rings that does not satisfy the property
“each Gaussian polynomial has locally principal content”.
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Corollary 2.5. Let (A, M) be a local ring which is not a field such that M2 = 0
and let R := A ∝ E, where E is a nonzero A-module such that ME = 0. Then
R does not satisfy the property “each Gaussian polynomial has locally principal
content”.

Proof. Remark that the ring R is local with maximal ideal M ∝ E which satisfies
(M ∝ E)2 = 0 since M2 = 0 and ME = 0. Hence, each polynomial in R is
Gaussian. It remains to show that R is not Bézout by Proposition 2.4 (since
(M ∝ E)2 = 0).
Let a ∈ M − {0} and e ∈ E − {0}. We claim that the ideal I generated by
{(a, 0), (0, e)} is not principal. Deny. Assume that I := R(a, 0)+R(0, e) = R(b, h),
where (b, h) ∈ M ∝ E. We claim that b 6= 0.
Indeed, if b = 0, then (a, 0) ∈ I = R(0, h) which implies that a = 0, a contradic-
tion. Hence b 6= 0.
But (0, e) ∈ I = R(b, h). Hence, (0, e) = (c, l)(b, h) = (cb, ch) for some (c, l) ∈ R
(since b ∈ M). Then, cb = 0 and c ∈ M (since c /∈ M implies that c is invertible
and b = 0, a contradiction). Therefore, e = ch = 0, a contradiction. Then I is
not a principal ideal of R and so R is not a Bézout ring and this completes the
proof of Corollary 2.5.

Now, we will construct a wide class of rings satisfying the property “each Gaussian
polynomial has locally principal content”. For this, we study the transfer of this
property to finite direct products.

Theorem 2.6. Let (Ri)i=1,...,n be a family of rings. Then
n∏

i=1

Ri satisfies the prop-

erty “each Gaussian polynomial has locally principal content” if and only if so does
Ri for each i = 1, . . . , n.

Before proving Theorem 2.6, we establish the following Lemma.

Lemma 2.7. Let R be a ring and, h : R → h(R) be a ring homomorphism, and
f be a Gaussian polynomial in R[X]. Then the homomorphic image of f is a
Gaussian polynomial in h(R)[X].

Proof. Let h : R → h(R) be a ring homomorphism, f be a Gaussian polynomial,

and let g =
n∑

i=0

aiX
i ∈ R[X]. Let’s remark first that,

Ch(R)(h(g)) =
n∑

i=0

h(R)h(ai)

=
n∑

i=0

h(Rai)

= h(
n∑

i=0

Rai)

= h(CR(g)).
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Hence, we have (since f is Gaussian):

Ch(R)(h(f)h(g)) = Ch(R)(h(fg))

= h(CR(fg))

= h(CR(f)CR(g))

= h(CR(f))h(CR(g))

= Ch(R)(h(f))Ch(R)(h(g)).

As desired.

Proof of Theorem 2.6. We will prove the result for i = 1, 2, and the theorem will
be established by induction on n. Let f = (f1, f2) be a Gaussian polynomial in
(R1 × R2)[X], and M be a maximal ideal of R1 × R2. Then M = m1 × R2 or
M = R1 ×m2 where mi ∈ Max (Ri) for i = 1, 2.
We may assume that M = m1 × R2 (the case M = R1 × m2 is similar). We
wish prove that CR1×R2(f)M is principal. But (R1×R2)M is naturally isomorphic
to (R1)m1 and CR1×R2(f)M is isomorphic to C(f1)m1 . Therefore, CR1×R2(f)M is
principal since f1 is supposed Gaussian by Lemma 2.7 and so R1 × R2 satisfies
the property “each Gaussian polynomial has locally principal content”.

Conversely, assume that the polynomial f1 is Gaussian in R1[X] (it is the same
for f2). We easily check that f := (f1, 0) is Gaussian in (R1 × R2)[X]. Let
m1 ∈ Max (R1). Therefore, (CR1×R2(f))m1×R2 is principal since R1 × R2 satisfies
the property “each Gaussian polynomial has locally principal content”. Hence,
(CR1(f1))m1 is principal (since (R1 ×R2)M is naturally isomorphic to (R1)m1 and
CR1×R2(f)M is isomorphic to C(f1)m1), which means that CR1(f1) is locally prin-
cipal and this completes the proof of Theorem 2.6.

Now, we are able to construct a wide class of rings satisfying the property “each
Gaussian polynomial has locally principal content”.

Corollary 2.8. Let (Ri)i=1,...,n be a family of domains. Then
n∏

i=1

Ri satisfies the

property “each Gaussian polynomial has locally principal content”.

Proof. By Theorem 2.5 and since every domain satisfies the property “each Gaus-
sian polynomial has locally principal content” (by [11, Theorem 4]]).
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