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Abstract. We discuss the concept of the so-called shadow boundary
belonging to a given direction x of Euclidean n-space Rn lying in the
boundary of a centrally symmetric convex body K. Actually, K can
be considered as the unit ball of a finite dimensional normed linear (=
Minkowski) space. We introduce the notion of the general parameter
spheres of K corresponding to the above direction x and prove that if all
of the non-degenerate general parameter spheres are topological mani-
folds, then the shadow boundary itself becomes a topological manifold
as well. Moreover, using the approximation theorem of cell-like maps
we obtain that all these parameter spheres are homeomorphic to the
(n− 2)-dimensional sphere S(n−2). We also prove that the bisector (i.e.,
the equidistant set with respect to the norm) belonging to the direc-
tion x is homeomorphic to R(n−1) iff all of the non-degenerate general
parameter spheres are (n− 2)-manifolds. This implies that if the bisec-
tor is a homeomorphic copy of R(n−1), then the corresponding shadow
boundary is a topological (n− 2)-sphere.
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1. Introduction

1.1. Notation and terminology

R, Rn, Sn: The real line, the n-dimensional Euclidean space and the n-dimensi-
onal unit sphere, respectively.

bd(K), int(K), cl(K): The boundary, interior and closure of the set K, respec-
tively.

dim(K): The topological (covering) dimension of the set K.

ANR: Absolute neighbourhood retract. (See Section 2 after Lemma 1. )

concepts without definition: connectivity (arcwise, locally), contractibility (local-
ly), manifold, manifold with boundary, retract, compact metric space, in-
verse limit of topological spaces, bonding maps, standard hyperplane.

topological hyperplane: A homeomorphic copy H of the space R(n−1) is a topolog-
ical hyperplane if there is a homeomorphism of Rn onto itself which sends
H onto a standard hyperplane of Rn. We recall such a homeomorphism as
a standard embedding of H into Rn.

topological n-sphere: is a homeomorphic copy of an n-dimensional Euclidean sphe-
re. The embedding of a topological n-sphere S into the unit (n + 1)-sphere
Sn+1 is standard, if S ⊂ Sn+1 and there is a homeomorphism of Sn+1 onto
itself which sends S onto an equator n-sphere of Sn+1.

cellular set, map: The definition can be seen in the Section 2 after Theorem 1.

cell-like set, map: The definition can be seen in the Section 2 before Theorem 1.

near homeomorphism: The definition can be seen in the Section 2 before Theo-
rem 1.

S(K,x): The shadow boundary of the body K in direction x (see at the beginning
of Section 2).

K+, K−: The positive and negative part of bd K, respectively (see in Section 2).

P+, P−: The positive and negative pole of bd(K), respectively (see in Section 2).

longitudinal parameter curve: The two dimensional intersection curve of bd(K)
with a plane through the poles (see in Section 2).

λ0: The smallest value λ for which λK and λK + x are intersecting.

γλ(K,x): the generalized parameter sphere of K corresponding to the direction
x and to the parameter λ ≥ λ0 (see Definition 2 in Section 3).

Hx: The bisector of the vector x. It is the equidistant set belonging to the starting
point and endpoint of the vector x.

px: The orthogonal projection mapping of the space Rn onto a hyperplane or-
thogonal to the vector x.

1.2. Historical remarks and the results

If K is a 0-symmetric, bounded, convex body in the Euclidean n-space Rn (with
fixed origin O) then it defines a norm whose unit ball is K itself (see [12]). Such a
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space is called Minkowski space or normed linear space of finite dimension. Many
results on this topic are collected in the surveys [18], [19] and [16]. In fact, the
norm is a continuous function which is considered (in geometric terminology, as
in [12]) as a gauge function. The metric (the so-called Minkowski metric), i.e.,
the distance of two points induced by this norm, is invariant with respect to
translations.

The unit ball is said to be strictly convex if its boundary contains no line
segment.

In some previous papers on this topic (see [10] and [11]), we examined the
boundary related to the unit ball of the norm and gave two theorems (Theorem
2 and Theorem 4) similar to the characterization of the Euclidean norm investi-
gated by H. Mann, A. C. Woods and P. M. Gruber in [15], [25], [6], [7] and [8],
respectively. We proved that if the unit ball of a Minkowski space is strictly con-
vex, then every bisector (which is the collection of those points of the embedding
Euclidean space which have the same distance, with respect to the norm, to two
given points of the space) is a topological hyperplane (Theorem 2). Example 3 in
[10] showed that strict convexity does not follow from the fact that all bisectors
are topological hyperplanes.

We examined the connection between the shadow boundaries of the unit ball
and the bisectors of the Minkowskian space. We were sure that the following
statement is true:

A bisector is a topological hyperplane if and only if the corresponding shadow
boundary is a topological (n− 2)-dimensional sphere.

However, we proved the conjecture only for the three-dimensional case (Theorem
2 and Theorem 4). We also examined basic properties of the shadow boundary
(Section 2) and defined a useful class of sets – the so-called general parameter
spheres.

In this paper we discuss some further topological observations on shadow bound-
aries and general parameter spheres. We prove that the general parameter spheres
and the shadow boundary are in general not ANRs (see [4] or [21]), but are still
compact metric spaces, containing (n− 2)-dimensional closed, connected subsets
separating the boundary of K. We investigate the manifold case and (using the
approximation theorem of cell-like mappings) prove that the general parameter
spheres and the corresponding shadow boundary are homeomorphic to the (n−2)-
dimensional sphere. A consequence of this result (if the bisector is a homeomorphic
copy of R(n−1) then the shadow boundary is a topological (n − 2)-sphere) yields
the proof of the first direction of the above mentioned conjecture. Two more
questions concerning the same conjecture are left: Is the converse statement true?
Is it possible that in the manifold case the embeddings of the bisector and of the
shadow boundary are not standard ones? In the fourth section we prove that the
embedding of the examined sets (in the manifold case) are always standard ones;
the first question remains open.
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2. Once more on the shadow boundary of the unit ball

There are several well-known properties of the shadow boundary of a convex
body with respect to a given direction in n-space (see in [16]), but there is no
comprehensive list of its topological properties. Of course, shadow boundaries
have been considered frequently in convexity theory. Two interesting results in
context of Baire categories should be mentioned; see [9] and [24]. In [9] the
authors proved that a typical shadow boundary of a convex body under parallel
illumination has infinite (n − 2)-dimensional Hausdorff measure, while having
Hausdorff dimension (n − 2). In [24] it is shown that, in the sense of Baire
categories, most of the n-dimensional convex bodies have infinitely long shadow
boundaries if the light vector comes along one of the (n−2)-dimensional subspaces.

Definition 1. Let K be a centrally symmetric, compact, convex body in n-dimen-
sional Euclidean space En, and let S(n−1) denote the (n − 1)-dimensional unit
sphere in En. For x ∈ S(n−1) the shadow boundary S(K,x) of K in direction
x consists of all those points P in bd(K) for which the line {P + λx : λ ∈ R}
supports K, i.e. it meets K but does not meet the interior of K. The shadow
boundary S(K,x) is sharp if any of the above supporting lines of K intersects K
exactly in the point P . If S(K,x) is not sharp, in general, it may have a sharp
point for which the above uniqueness holds.

To make this paper more self-contained, we list and show some topological prop-
erties of the shadow boundary. (Of course, some of these are well-known facts.)
First we introduce some notation:

K+ := {y ∈ bd(K)| there is τ > 0 such that y − τ · x ∈ int(K)}, (1)

K− := {y ∈ bd(K)| there is τ > 0 such that y + τ · x ∈ int(K)}.

We call the congruent (thus homeomorphic) sets K+ and K− the positive and
negative part of bd(K), respectively. The line passing through the origin and
parallel to the vector x intersects the boundary of K at the points P+ ∈ K+ and
P− ∈ K− showing that the positive and negative part of bd(K) are not empty,
respectively. We call the points P+ and P− the positive and negative pole of K,
respectively. The intersection of bd(K) with a 2-plane containing the poles is
called a longitudinal parameter curve of K.

Statement 1. The shadow boundary decomposes the boundary of K into three
disjoint sets: S(K,x), K+, and K−. S(K,x) is an at least (n − 2)-dimensional
closed (and therefore compact) set in bd(K) which is connected for n ≥ 3, the
sets K+ and K− are homeomorphic copies of R(n−1) giving two arcwise connected
components of their union.
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Proof. The first statement is obvious. Let px be the orthogonal projection of
the embedding space Rn onto a hyperplane orthogonal to the vector x. Since the
orthogonal projection is a contraction then it is continuous (i.e. it is a mapping
of the space). px(K) is a convex body of the image hyperplane. The interior
of px(K) is the image of the sets K+ and K−, respectively and its boundary is
the image of S(K,x). Since px restricting for K+ is a bijection, there exists a
homeomorphism on K+ to R(n−1). Using the same argument for K− we proved
the validity of the first part of the statement on K+ and K−. Of course their
union is open therefore the shadow boundary is closed.

Since R(n−1) is arcwise connected the second part of the statement on K+

follows from the fact that an arc connecting two points of K+ and K− should be
decomposed into two relative open sets by K+ and K−, which is a contradiction.
(Arcwise connectivity of a set implies its connectivity, too.) Thus the shadow
boundary separates the boundary of K. By a theorem of Alexandrov (Theorem
5.12 in Vol. I of [1]) we get that the topological dimension of S(K,x) is at least
(n− 2), as we stated.

We now prove that (for n ≥ 3) the set S(K,x) is connected. Assume that
K1 and K2 are two closed disjoint subsets of the shadow boundary for which
K1 ∪K2 = S(K,x). First we observe that each of the metric segments lying on a
longitudinal parameter curve and parallel to x is a connected subset of S(K,x),
thus its points (by the “basic lemma of connectivity” see Vol. I, p. 13 in [1])
belong either to the set K1 or to the set K2. Let C1 and C2 the sets defined by
the union of those longitudinal parameter curves which intersect the sets K1 and
K2. In this case C1 ∪ C2 = bd(K) and C1 ∩ C2 = {P+, P−} hold. The sets Ci

are closed in bd(K), meaning that the sets Ci \ {P+, P−} give a decomposition of
bd(K)c \ {P+, P−} into disjoint relative closed subsets, too. Since the latter set
is connected it follows that either K1 or K2 is empty. �

In general, the dimension of S(K,x) is (n − 2) or (n − 1). We prove that there
is an (n − 2)-dimensional closed, connected subset of S(K,x) separating bd(K),
too.

Lemma 1. The boundary (frontier) of the closure of the set K+ (denoted by
bd(cl(K+))) is a closed, connected (n−2) dimensional subset of S(K,x) separating
the boundary of K.

Proof. By definition it is closed. Since cl(K+) ⊃ K+ and cl(K+) ∩ K− = ∅ we
have K+ ⊂ cl(K+) ⊂ K+ ∪ S(K,x). On the other hand bd(cl(K+)) ∩ K+ = ∅
(K+ is an open subset of cl(K+)), thus we get that bd(cl(K+)) ⊂ S(K,x).

The separating property follows from the fact that the union of the pairwise
disjoint sets bd(K)\ cl(K+), int(cl(K+)), bd(cl(K+)) fills the boundary of K and
the first two sets are open.

Now the separating property implies (again by the Alexandrov theorem above)
the inequality dim(bd(cl(K+))) ≥ (n− 2). On the other hand a closed connected
set of dimension (n − 1) on bd(K) contains an interior point relative to bd(K)
(see p. 174 in Vol. I of [1]) which contradicts the definition of bd(cl(K+)). �



224 Á. G. Horváth: On Shadow Boundaries of Centrally Symmetric Convex Bodies

Before proving the main statement of this section, we consider three examples
which clearly show the strange attitude of the sets defined above. In the first
example we construct such a centrally symmetric convex body whose shadow
boundary is neither locally connected nor locally contractible. This implies that
the shadow boundary (in general) is not an absolute neighbourhood retract (ANR)
(especially a topological manifold). We recall that the space Y is an ANR if,
whenever it is embedded as a closed subset of a separable metric space, then it is
a retract of some its neighbourhood in that space. An ANR is always a locally
contractible space.

Examples. 1. Consider the following sequence of segments of R3 (with respect to

a fixed orthonormal coordinate system): sn = {(t, 1
n
,
√

n2−1
n

)| − 1 ≤ t ≤ 1}, n ∈ N ,

with limit segment s = {(t, 0, 1)| − 1 ≤ t ≤ 1}. Connect the point (1, 1
n
,
√

n2−1
n

)

with the point (−1, 1
n+1

,

√
(n+1)2−1

n+1
) by an arc, which is the intersection of the

2-plane containing the points and orthogonal to the [x,y]-plane with the cylinder
C := {(t, r, s)| − 1 ≤ t ≤ 1, r2 + s2 = 1, r, s ≥ 0}. The union of these curves
forms a connected, closed set lying on the cylinder C. This set is neither arcwise
nor locally connected; moreover, it is not a locally contractible one. It is easy
to see that if we add this curve to its reflected images with respect to the plane
[x, z], and the resulting union curves we add to its images reflected in the plane
[x, y], finally we have a single centrally symmetric closed curve γ belonging to
the cylinder {(t, r, s)| − 1 ≤ t ≤ 1, r2 + s2 = 1}. The convex hull of γ (similar
to the so-called “topologist’s sine curve”) is a centrally symmetric convex body.
If the direction of the light is parallel to the x-axis, then we have S(K,x) =
bd(cl(K+)) = bd(cl(K−)) = γ. Since it is not locally contractible, it can not be
an ANR.

Figure 1. Shadow boundary which is not a topological manifold
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2. Secondly we refer to Example 1 in the paper [11], which is a presentation of
a shadow boundary as it is shown in Figure 1. This body K is also closed, for
which S(K,x) is an ANR, but not a manifold. The sets bd(cl(K+)) = bd(cl(K−))
coincide with the same metric circle.

3. In this example the sets bd(cl(K+)), bd(cl(K−)) form the common boundary of
the sets S(K,x) and K+, S(K,x) and K−, respectively. They are homeomorphic
to S1 but S(K,x) is neither a 1-manifold nor 2-manifold with boundary. Consider
the regular octahedron as K and let the direction of the light be parallel to an
edge of K. The shadow boundary is the polyhedron containing four faces of K
that are connected to each other either with a common edge (parallel to x) or
with a common vertex. The sharp points of the shadow boundary are these two
vertices. Of course, there is no neighbourhood of this points homeomorphic to a
segment or a plane.

Now we focus to the cases when the above sets are topological manifolds. We
need to recall some useful definitions and theorems on the topic of cell-like map-
pings. There are several good papers on this important chapter of geometric
topology (e.g. [13], [14] or [22]). We follow here the setting up of the paper of
W. J. R. Mitchell and D. Repovs [20].

A non-empty compactum K is said to be cell-like if for some embedding of
K in an ANR M the following property holds: For every neighbourhood U of K
in M , there exists a neighbourhood V such that K ⊂ V ⊂ U and the inclusion
i : V −→ U is nullhomotopic. Given a map (by definition it is a continuous
function) f : X −→ Y , we say that f is cell-like, if for each y ∈ Y the inverse
image f−1(y) is cell-like. We will use the following theorem:

Theorem 1. (Cell-like approximation theorem for manifolds) Let n 6= 3 be a
positive integer. For every cell-like map f : M −→ N between topological n-
manifolds and every ε > 0, there is a homeomorphism h : M −→ N such that
d(f, h) < ε in the sup-norm metric on the space of all continuous maps (so f is a
so-called near homeomorphism).

The long history of this result can be read in [20]. We note that in the 3-
dimensional case there is an analogous approximation theorem for a subset of
the class of cell-like mappings called the class of cellular maps. A set of the man-
ifold M is called cellular, if it is an intersection of a sequence of closed cells Bi of
M with the properties K ⊂ Bi and Bi+1 ⊂ int(Bi). A map is cellular if the inverse
images are cellular sets. Cellularity goes back to the work of M. Brown [2] while
the concept of cell-likeness has been introduced by R. C. Lacher in [13]. The con-
cept of cellularity depends on the embedding of the examined metric space K in
M ; this dependence on embedding was eliminated in the concept of cell-likeness.
In fact, (in the manifold case) every cellular map is a cell-like map, since every
cellular set is a cell-like one. Conversely, if we consider a wild arc in R3 which
has non-simply-connected complement, it is non-cellular set, while the standard
embedding manifestly is cellular in R3, showing that it will be a cell-like set.
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We also remark that a cellular (or cell-like) map (in a general case) is not a
near homeomorphism, since there is a cellular map on S1× [0, 1] to S1 (here [0, 1]
means the unit interval of the real line) which is not a near homeomorphism (if
we have a near homeomorphism between compact metric spaces, then these two
spaces should be homeomorphic to each other).

Now we can prove the main theorem of this section.

Theorem 2. If the shadow boundary S(K,x) is a topological manifold of dimen-
sion (n − 2), then it is homeomorphic to the (n − 2)-sphere S(n−2). If it is an
(n−1)-dimensional manifold with boundary, then it is homeomorphic to the cylin-
der S(n−2) × [0, 1].

Proof. Consider first the projection px (which was defined in the proof of State-
ment 1), and restrict it to the shadow boundary of K parallel to x. It is a cell-like
map because the inverse images are points or segments, respectively. In this way,
by the approximation theorem above we have for n 6= 5 that this restricted map
is a near homeomorphism on S(K,x) to a homeomorphic copy S̃(n−2) of S(n−2),
implying that they are homeomorphic to each other. On the other hand, this
map is also cellular, since the metric segments and points of S(K,x) are cellu-
lar sets in S(K,x). To prove this, let s = p−1

x (v) be a segment in S(K,x) for
some v ∈ S̃(n−2). If now Q ∈ s is a point, consider a metric ball Bε(Q) ⊂ bd(K)
with center Q and radius ε > 0 for which int(Bε(Q))∩S(K,x) is homeomorphic to
R(n−2). Such an ε > 0 surely exists. In fact, Q has a neighbourhood NQ in S(K,x)
homeomorphic to R(n−2). If for every ε we can choose a point Pε ∈ Bε(Q)∩S(K,x)
which does not belong to NQ, then we have a sequence of points (Pε) having the
same property and tending to Q. Since NQ is open in S(K,x), this is impossible.
Thus there is an ε > 0 for which Bε(Q)∩S(K,x) = Bε(Q)∩NQ. This implies that
int(Bε(Q))∩ S(K,x) is an open subset of NQ relative to the topology of S(K,x).
Of course, ε depends on Q, but s is a compact set. Thus there is a finite number
of points Qi and positive real numbers εi, such that for the minimal value ε∗ of
εi’s we have ∪ int(Bε∗(Qi)) ⊃ s. Here ∪ int(Bε∗(Qi)) is the interior of the closed
cell ∪(Bε∗(Qi)). Since Bε(Q)∩S(K,x) = Bε(Q)∩NQ also holds for every ε′ which
is less or equal to ε, we have an infinite sequence of sets of the form ∪(Bε∗(Qi))
the property needed to prove the cellularity of s.

Observe now that if S(K,x) is an (n − 1)-manifold with boundary, then its
boundary has two connected components which are equal to bd(cl(K+)) and
bd(cl(K−)), respectively.

First we can see that bd(cl(K+)) is the set of the common boundary points of
cl(K+) and S(K,x) yielding bd(cl(K+)) ⊂ bd(S(K,x)). (Analogously we have
that bd(cl(K−)) ⊂ bd(S(K,x)).)

Secondly we note that there is no point of int(cl(K+)) belonging to S(K,x).
Indirectly assume that the point P is in int(cl(K+)) ∩ S(K,x). Then

– either one can find a neighbourhood U of P in S(K,x) which is homeo-
morphic to the (n − 1)-dimensional half-space and therefore P is a bound-
ary point of cl(K+) (in U there exists a point Q with a neighbourhood
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V ⊂ S(K,x) homeomorphic to R(n−1) such that Q ∈ V ⊂ U ; this means
that Q is a point of the complement of cl(K+)),

– or there is a neighbourhood U homeomorphic to the space R(n−1) for which
P ∈ U ⊂ S(K,x). In this case P is in the interior of S(K,x) contradicting
the assumption that it is a point of int(cl(K+)).

In this way int(cl(K+)) = K+, and then bd(cl(K+)) = bd(K+) is the common
boundary of K+ and S(K,x). Applying Lemma 1 we obtain that bd(cl(K+)) is
a connected closed subset of the boundary of S(K,x).

Using the fact that bd(cl(K−)) is the image of bd(cl(K+)) by a central pro-
jection, we have a similar result for bd(cl(K−)), too. (It is the common boundary
of K− and S(K,x).) We will prove that the boundary of S(K,x) is the disjoint
union of these two sets.

The relation bd(S(K,x)) ⊂ bd(cl(K−)) ∪ bd(cl(K+)) is obvious. Consider a
point P from the intersection bd(cl(K−))∩bd(cl(K+)). Let U be a neighbourhood
of P in S(K,x). (It is homeomorphic to a half-space of R(n−1).) Let B be a
metric (n − 1)-ball around P with such a sufficiently small radius ε > 0 that
the sets B ∩ U and B \ (B ∩ U) serve as topological images of a closed and the
complementary open half-space of R(n−1), respectively. (Similarly as the proof of
the cellularity property of a segment goes one can show that such an ε > 0 and
ball B exist.) Since B contains points from each of the sets K+ and K−, we
have a contradiction by the separating property of S(K,x). (There is no point of
S(K,x) in the complementary domain B \ (B ∩ U).)

This implies that the boundary of S(K,x) has two connected components
which are the common boundaries of S(K,x) and K+, S(K,x) and K−, respec-
tively. Of course, these sets are also (n−2)-manifolds connected with straight line
segments through all their points. So we have that S(K,x) = bd(cl(K+))× [0, 1]
holds. We still have to prove that in this case bd(cl(K+)) is homeomorphic to
S(n−2), too. Since px on bd(cl(K+)) into S(n−2) is also a cell-like (and cellular)
mapping, bd(cl(K+)) is an (n− 2)-dimensional manifold, and this restricted map
is one to one. The last statement of the theorem follows from Theorem 1, too. �

3. General parameter spheres

We now recall the definition of general parameter spheres (see [11]).

Definition 2. Let
λ0 := sup{t|tK ∩ (tK + x) = ∅}

be the smallest value λ for which λK and λK + x are intersecting. Then the
generalized parameter sphere of K corresponding to the direction x and to the
parameter λ ≥ λ0 is the following set:

γλ(K,x) :=
1

λ
(bd(λK) ∩ bd(λ(K) + x)).

In [11] we mentioned that in general the above sets are not topological spheres of
dimension (n− 2) and are not homeomorphic to each other. E.g., the dimension



228 Á. G. Horváth: On Shadow Boundaries of Centrally Symmetric Convex Bodies

of γλ0(K,x) may be 0, 1, . . . , n− 1, while the topological dimension of γλ(K,x) is
at least (n − 2), because this set divides the surface of K. We remark that the
interiors of the given two caps of the boundary are also homeomorphic to each
other, as in the case of a shadow boundary. In fact, a central projection from 1

λ
x

sending the left half of bd(K) onto the left one of 1
2λ

(bd(λK)+x) is an appropriate
homeomorphism. (The latter set is congruent to the right half of bd(K), since the
body λK∩λK +x is a centrally symmetric one.) We also proved that the shadow
boundary S(K,x) is the limit of the generalized parameter spheres γλ(K,x), with
respect to the Haussdorff metric, when λ tends to infinity.

We have shown (in the proof of Lemma 1 in [11]) that the general parameter
sphere γλ(K,x) is the shadow boundary of the convex body 1

λ
(λK ∩ λK + x).

Thus the statements of the previous section can be adapted to them.
Before presenting our result, we recall a nice theorem of M. Brown on the pro-

jective limit of compact metric spaces and corresponding near homeomorphisms
(see [3] or [23]). The concept of the near homeomorphism of topological manifolds
can be adapted to the case of compact metric spaces, too. A map from X to Y
between compact metric spaces is a near homeomorphism if it is in the closure
of the set of all homeomorphisms from X onto Y , with respect to the sup-norm
metric on the space C(X, Y ) of all maps from X to Y . Here is the announced
theorem.

Theorem 3. (M. Brown) Let (Xn) be an inverse sequence of compact metric
spaces with limit X∞. If all bonding maps Xk −→ Xn are near homeomorphisms,
then so are the limit projections Xk −→ X∞.

The purpose of this section is to examine the manifold case. We prove the following
theorem:

Theorem 4. I. The shadow boundary S(K,x) is an (n−2)-dimensional manifold
if all of the non-degenerate general parameter spheres γλ(K,x) with λ > λ0 are
(n− 2)-dimensional manifolds. Conversely, if S(K,x) is an (n− 2)-dimensional
manifold, then all of the general parameter spheres are ANRs.

II. The shadow boundary S(K,x) is an (n−1)-dimensional manifold with boundary
iff there is a λ for which the general parameter sphere γλ(K,x) is an (n − 1)-
dimensional manifold with boundary.

Before the proof, we give an example showing that we should distinguish the above
two cases.

Example. Consider the union of the six connecting rectangles ±{(r, 1, t)| − 1 ≤
r, t ≤ 1}, ±{(r, s, t)|r+s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1}, ±{(r, s, t)|r−s = 2, 1 ≤ r ≤
2,−1 ≤ t ≤ 1} and the segments ±{(r, 0, 2)| − 3

2
≤ r ≤ 3

2
}. The convex hull K of

this set is a convex polyhedron. If now the vector x is the position vector directed
to the point (4, 0, 0), we have three important values for the parameters of the
generalized parameter spheres. For λ0 = 1 the degenerate sphere γλ0(K,x) is a
segment. For 1 < λ ≤ 5

4
the general parameter spheres γλ(K,x) are homeomorphic
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to S1. In the range 5
4

< λ ≤ 3
2

the general parameter sphere γλ(K,x) is a simplicial
complex containing one or two-dimensional simplices, respectively. (This space
is an ANR, but it is not a topological manifold.) Finally, in the last parameter
domain λ > 3

2
the set γλ(K,x) is homeomorphic to the cylinder S1 × [0, 1]. Since

S(K,x) is the union of six quadrangles, parallel to the x-axis it is also a cylinder.

We also remark that if S(K,x) is an (n− 2)-dimensional manifold, then probably
all of the non-degenerate parameter spheres are the same, too. Unfortunately we
could not prove this statement.

Now we are ready for the proof of Theorem 4.

Proof. First we note that, for every λ0 < λ′ < ∞, S(K,x) can be considered as
the inverse limit space X∞ of the metric spaces Xλ := γλ(K,x) for λ′ < λ. In fact,
by Lemma 1 in [11], if for λ > λ0 the intersection of γλ(K,x) by a longitudinal
parameter curve, say r, is a segment, then r ∩ γµ(K,x) with µ > λ is also a
segment containing the segment r∩γλ(K,x). So in this case the union of the sets
r∩γµ(K,x) is the segment r∩S(K,x). On the other hand we have two possibilities
for r ∩ γλ(K,x) being a point. First, r ∩ S(K,x) is a point, too, meaning that
for all µ > λ, r ∩ γλ(K,x) is also a point. If now r ∩ S(K,x) is a segment, then
we have a value λ′ > λ with the property that if µ > λ′ then r ∩ γµ(K,x) is a
segment, too. In this latter case r ∩ S(K,x) = ∪µ≥λ′{r ∩ γµ(K,x)}. Define now
the left end of a segment parallel to x as the end having the smaller parameter
in the usual parametrization with respect to x (meaning that a general point of a
line parallel to x is written in the form P +τx where P is a point of this line). Let
us define the bonding map pλ,µ for γµ(K,x) to γλ(K,x) (µ > λ) in the following
way:

For a point P of γµ(K,x)

pλ,µ(P ) =


r ∩ γλ(K,x) if r ∩ γλ(K,x) is a point
P if r ∩ γλ(K,x) is a segment and

P ∈ r ∩ γλ(K,x)
the left end of r ∩ γλ(K,x) if P ∈ r ∩ γµ(K,x) \ r ∩ γλ(K,x) .

The continuity of this function (with respect to the relative metric) is obvious and
the inverse (projective) limit space X∞ can be identified with S(K,x) by the limit
mappings pµ (defined in an analogous way from S(K,x) to γµ(K,x) as the above
functions pλ,µ(P )). (Of course, we have the sufficient equality pµ′,µ′′ ◦ pµ′ = pµ′′

for µ′′ > µ′.)
Using Theorems 1 and 3 above, the proof of the first direction of the first

statement is an easy consequence. In fact, if for λ > λ0 the space γλ(K,x) is
an (n − 2)-manifold, then (using Theorem 1) we know that the bonding maps
pµ′,µ′′ : γµ′′(K,x) −→ γµ′(K,x) are near homeomorphisms. By Theorem 3 we
obtain that the limit projections pλ are also near homeomorphisms. This implies
that the space S(K,x) is also an (n− 2) manifold.

Conversely, if now S(K,x) is an (n − 2)-dimensional manifold then it is locally
contractible. By Lemma 1 in [11] this also implies that all general parameter
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spheres are locally contractible manifolds, too. On the other hand, the general
parameter spheres can be considered as compact subsets of R(n−1) meaning that
they are ANRs (see Theorem 8, p. 117 in [5]).

The proof of both parts of the second statement uses Theorem 2. If first
we have a general parameter sphere γλ(K,x) which is an (n − 1)-dimensional
manifold with boundary, then by Theorem 2 it is a cylinder with boundaries
homeomorphic to S(n−2). In this case the shadow boundary contains this general
parameter sphere showing that all point-inverses with respect to px are segments
(with non-zero lengths). On the other hand, the sets bd(K+) ∩ S(K,x) and
bd(K+)∩γλ(K,x) coincide, showing that S(K,x) is a cylinder based on an (n−2)-
manifold homeomorphic to S(n−2). Since bd(K−) ∩ S(K,x) is homeomorphic to
S(n−2) (by central symmetry) and these two sets are disjoint, we get that S(K,x)
is homeomorphic to S(n−2) × [0, 1], as we stated.

Conversely, if S(K,x) is an (n− 1)-manifold with boundary, then it is (by Theo-
rem 2) homeomorphic to S(n−2) × [0, 1]. Since this cylinder is compact, there is a
positive value ε less than or equal to the length of any segment intersected by the
shadow boundary in a longitudinal parameter curve. This fact implies that there
exists a λ < ∞ such that γλ(K,x) ⊂ S(K,x). The intersection γλ(K,x) ∩K+ is
the same as the intersection S(K,x)∩K+, which is one of the two components of
the boundary of S(K,x) homeomorphic to S(n−2). For such a λ it is possible to
find a trivial point-inverse with respect to the map px as we saw it in the example
of this section, but for every λ′ > λ the general parameter sphere γλ′(K,x) is a
cylinder. Using now the fact that it is also the shadow boundary of a centrally
symmetric convex body whose positive part is the set K+, we have proved that it
is also a manifold with boundary homeomorphic to S(n−2) × [0, 1]. �

4. On the bisector and its embedding

In this section we investigate the bisector Hx (which is the set being equidistant
to the starting point and endpoint of the vector x) using the system λγλ(K,x) of
compact metric spaces. Our goal is to prove the following theorem.

Theorem 5. The set Hx is an (n − 1)-dimensional manifold if and only if the
non-degenerate general parameter spheres γλ(K,x) are manifolds of dimension
(n− 2).

Since the neighbourhoods of the point 1
2
x (with respect to Hx) cannot be home-

omorphic to either Rn or a half space, this is the only manifold case for Hx.

Proof. First we prove that if the non-degenerate general parameter spheres γλ(K,
x) are manifolds of dimension (n−2), then Hx is an (n−1)-dimensional manifold.
From Theorem 2 we know that the general parameter spheres are homeomorphic
copies of S(n−2). Let us construct now the bisector Hx as the disjoint union of the
sets λγλ(K,x) for λ ≥ λ0. The set Hx,µ = {λγλ(K,x)|µ ≥ λ ≥ λ0} is obviously
homeomorphic to γλ(K,x) ∪K+ meaning that it is a homeomorphic copy of the
closed (n − 1)-dimensional ball. Thus int(Hx,µ) is homeomorphic to R(n−1) for
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each µ ≥ λ0. Applying now a theorem of M. Brown (see in [23] or [2]) saying
that if a topological space is the union of an increasing sequence of open subsets,
which are homeomorphic to R(n−1), resp., then it is also homeomorphic to R(n−1).
Thus we get the required result.

Conversely, if Hx is homeomorphic to R(n−1), then the projection px : Hx −→
R(n−1) is a cellular map between two manifolds of the same dimension. Thus
it is a near homeomorphism yielding that its restriction to the compact metric
space λγλ(K,x) is a near homeomorphism, too. But its image is the boundary
of a compact, convex (n − 1)-dimensional body, so we get at once that it is a
homeomorphic copy of S(n−2). Hence the general parameter spheres γλ(K,x) are,
for λ > λ0, manifolds of dimension (n− 2), as we stated. �

Corollary. The proof of the first direction of the conjecture follows from The-
orems 2, 4 and 5. In fact, if Hx is a topological hyperplane then each of the
non-degenerate general parameter spheres is a homeomorphic copy of S(n−2) by
Theorem 5 and Theorem 2. So by Theorem 4 we get that the shadow boundary
is also a homeomorphic copy of S(n−2), which is the statement of the mentioned
direction of our conjecture.

On the other hand we could only prove in Theorem 4 that if S(K,x) is a home-
omorphic copy of S(n−2) then the non-degenerate general parameter spheres are
ANRs. Thus the manifold property of the bisector does not immediately follow
from our theorems. Furthermore, in the manifold case we prove only that the
bisector is a homeomorphic copy of R(n−1) which is a weaker property as the re-
quired one. Consequently we have to investigate the question of embedding. In
fact, all the examples in geometric topology aiming a non-standard (wild) embed-
ding of a set into Rn are based on the observation that the connectivity properties
of the complement (with respect to Rn) of the set can change if we apply a home-
omorphism to it. In our case, for example, the complement of the bisector (which
is now a homeomorphic copy of R(n−1)) is the disjoint union of homeomorphic
copies of Rn. It gives the chance that a homeomorphism on Rn to itself exists
sending the bisector to a hyperplane. It is a well-known fact that a manifold
homeomorphic to S(n−1) in Sn is unknotted if and only if the closures of the com-
ponents of its complement are homeomorphic copies of the closed n-cell Bn. This
implies that in the manifold case the embedding of the shadow boundary and
the general parameter spheres are always standard. From this the existence of a
homeomorphism of the boundary of K into itself follows which sends these sets
into a standard (n − 1)-dimensional sphere of bd(K). Considering bisectors, we
have to carry out the proof in a way which is a bit more sophisticated. Let ϕ be
a homeomorphism sending Hx into R(n−1) (which is now a hyperplane H of Rn).
We consider the compactification of the embedding space by an element denoted
by ∞. Extend first the map ϕ to the compact space Hx ∪ {∞} by the condi-
tion ϕ(∞) = ∞. Of course, this extended map gives a homeomorphism between
the sets Hx ∪ {∞} and H ∪ {∞}. Since the closure of the components of the
complement of Hx ∪ {∞} in Rn ∪ {∞} are closed n-cells, the homeomorphism ϕ
can be extended to a homeomorphism Φ : Rn ∪ {∞} −→ Rn ∪ {∞}. Since by
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our method we have that Φ(∞) = ϕ(∞) = ∞ and Φ(Hx) = H, we get that the
bisector is a topological hyperplane as we stated. Thus the following statement
has been proved:

Theorem 6. In the manifold case the embeddings of Hx, S(K,x) and γλ(K,x)
are standard, respectively. This means that if the bisector is homeomorphic to
R(n−1), then it is a topological hyperplane.

Finally we mention the very recent contribution [17] where it is shown that already
radial projections of bisectors in Minkowski spaces have sufficiently interesting
geometric properties yielding many new results, including characterizations of the
Euclidean case.
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