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Abstract. Associated with any equifacetal d-simplex, which necessarily
has a vertex transitive isometry group, there is a well-defined partition
of d that counts the number of edges of each possible length incident at a
given vertex. The partition problem asks for a characterization of those
partitions that arise from equifacetal simplices. The partition problem
is resolved by proving that a partition of the number d arises this way
if and only if the number of odd entries in the partition is at most
ι(d + 1), the maximum number of involutions in a finite group of order
d + 1. When n is even the number ι(n) is shown to be n/2 + n2/2− 1,
where n2 denotes the 2-part of n. Those extremal equifacetal d-simplices
for which the number of odd entries of the associated partition is exactly
ι(d + 1) are characterized.

MSC 2000: 52B12 (primary), 52B11, 52B15, 20D60, 51N20 (secondary)
Keywords: equifacetal simplex, isometry group, partition, involution

1. Introduction

An equifacetal d-simplex is a geometric simplex of dimension d in Euclidean space
such that all of its codimension one faces are congruent to one another. The
starting point for the author’s earlier investigation of equifacetal simplices was
the observation that the isometry group of such a simplex is transitive on vertices
[2]. This isometry group also acts on the edges of the simplex and the set of edges
of the simplex of a given length is a union of orbits for this action.
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One may also consider edge-colorings of the complete graph Kd+1 on d + 1
vertices, with the property that its colored-graph automorphism group is transitive
on vertices. Such colored graphs arise from the 1-skeleta of equifacetal simplices,
with edges colored according to their lengths. Moreover, every such edge-coloring
of Kd+1 arises from an equifacetal simplex [2].

Let Sn denote the symmetric group on n symbols. Given any transitive group
G < Sn (where n = d + 1) we obtain a vertex-transitive edge-coloring of Kn

simply by assigning a color to each orbit of edges. Moreover, one obtains a related
equifacetal d-simplex by choosing distinct edge lengths to correspond to each color.
Provided the edge lengths are all close enough to 1, say, then there is an equifacetal
geometric simplex realizing those lengths by [2].

Associated to an equifacetal d-simplex or to a vertex-transitive edge color-
ing of Kd+1 there is a partition π = [d1, d2, . . . , dk] of d, defined as follows: let
c1, c2, . . . , ck be the distinct lengths of edges or colors of edges. Fix a vertex v; then
di denotes the number of edges incident at v and labelled ci. By vertex-transitivity,
the partition is well-defined, independent of the choice of vertex.

The study in [2] led to the problem of characterizing the partitions that arise
from equifacetal d-simplices.

In [2] this partition problem was solved when d is even, in which case it turned
out that a partition arises if and only if each entry di in the partition is even.

The case when d is odd remained more mysterious. It was shown that a
partition with at most one odd entry could be realized. It was shown that more
odd entries could be realized in certain cases. But it was also shown that if the
partition [1, 1, . . . , 1] arises, then d + 1 is a power of 2.

It thus remained to understand the general situation when d is odd.

Below we summarize the main results to be proved in subsequent sections.

For present purposes, we call the number of odd entries in a partition π the oddness
of π and denote it O(π). We denote by ι(n) the maximum number of involutions
in any finite group of order n.

Theorem 1.1. If d is odd and π is a partition of d with oddness O(π) ≤ ι(d+1),
then π is the partition associated with an equifacetal d-simplex.

The short proof is given in Section 3. It thus becomes important to compute the
number ι(n).

Theorem 1.2. For any even positive integer n, the maximum involution number
is given by

ι(n) = n/2 + n2/2− 1

where n2 denotes the 2-part of n.

The proof is given in Section 4. This section is the heart of the paper. We also
explicitly determine in Section 4 all “2-maximal” groups of order n containing
ι(n) involutions, as follows.
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Theorem 1.3. A group of even order n is 2-maximal if and only if it has a Sylow
2-subgroup of exponent 2 and can be expressed as a semidirect product extension
of an abelian normal subgroup of order n/2 by a cyclic group of order 2 acting by
inversion on the normal subgroup.

The main aim of this paper is the following result saying that indeed the max-
imum involution number gives the upper bound on the oddness of the partition
associated with an equifacetal d-simplex when d is odd.

Theorem 1.4. If d is odd and π is the partition associated with an equifacetal
d-simplex, then O(π) ≤ ι(d + 1).

The proof is completed in Section 5. Theorem 1.3 provides the main step in the
proof.

We are also able to characterize the extreme equifacetal d-simplices that realize
the maximum oddness. Recall that a permutation group is said to be regular or
to act regularly if no element besides the identity of the group fixes any point.

Theorem 1.5. If the partition π associated with an equifacetal d-simplex S, d
odd, has maximal oddness O(π) = ι(d + 1), then the isometry group G of S acts
regularly and transitively on the vertices of S.

It follows that such a group is characterized as in Theorem 1.3 above. The proof
is given in Section 6.

1.1. A comment on computation

The approach to the partition problem, as represented by the discussion above,
began with a few tedious by-hand constructions in low dimensions, some of which
were given in [2]. A proposed solution took shape after extensive computer
searches, with the software system GAP [3]. Utilizing the library of transitive
permutation groups, developed by A. Hulpke [4] and included in the GAP distri-
bution, the answer to the partition problem was verified up through degree 30.
Even that was not quite enough to get the general answer straight. Although noth-
ing presented here depends on computer calculations, the results were motivated
and informed by such calculations.

Acknowledgements. Thanks to Russ Lyons and the Indiana University Com-
binatorics Seminar for listening to a preliminary version of these results and for
pointing out a remaining gap between what I had proved could be constructed and
what I had proved could not be constructed. Thanks also to Michael Aschbacher
for correspondence about my questions about involutions in finite groups, affirm-
ing the statement I had found, and for results in his book Finite Group Theory
[1], on which some of the crucial arguments depend.
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2. Edge-colorings and their groups

As discussed above, an equifacetal d-simplex determines a vertex-transitive edge-
coloring of the complete graph Kd+1, and any such vertex-transitive edge-coloring
arises from an equifacetal simplex. Moreover, every vertex-transitive edge-coloring
χ of Kd+1 has an associated group G(χ), the maximal (transitive) subgroup of
Sd+1 that preserves the coloring of the edges.

On the other hand, any transitive group G < Sd+1 gives rise to an edge-
coloring χ(G) where each orbit of edges is colored by a different color.

We say that a vertex-transitive edge-coloring χ′ of Kd+1 refines an edge-
coloring χ if the set of edges of a given χ-color is a union of the sets of edges
of given χ′-colors.

In general it is possible that χ(G(χ)) 6= χ. The most one can say in general is
that χ(G(χ)) refines χ. This would happen if the automorphism group of χ does
not act transitively on the set of edges of a given color. Similarly, in general, one
always has G(χ(G)) ⊇ G, but not necessarily equality. One sees that G(χ(G))
defines a kind of closure operator on the set of transitive groups.

Lemma 2.1. If χ is a vertex-transitive edge-coloring of Kd+1 with partition π,
and χ′ is a second vertex-transitive edge-coloring with partition π′, such that χ′

refines χ, then O(π′) ≥ O(π). �

As a consequence, it suffices to solve the partition problem for edge-colorings that
admit no nontrivial refinement.

Lemma 2.2. If χ is a vertex-transitive edge-coloring of Kd+1 that admits no re-
finement, then its automorphism group G(χ) acts transitively on its set of edges
of any given color. �

These lemmas (whose elementary proofs may safely be omitted) reduce the study
of the partition problem, as represented by the results summarized in Section 1, to
the study of edge-colorings and their partitions arising from transitive permutation
groups. We may focus on the transitive group, rather than the equifacetal simplex
or vertex-transitive edge-coloring. In particular, in the proofs of Theorems 1.4
and 1.5 we may and shall assume the partitions in question arise directly from a
transitive group action.

3. Realization of partitions

Let G be a finite group of order n = d + 1, viewed as a permutation group acting
on itself by left translations. We may identify the vertices of the complete graph
Kd+1 with the elements of G itself and then examine the induced edge-coloring
χ = χ(G). Such an action is regular in the sense that the only group element that
fixes a point is the identity. In a partition, an entry of the form a(k) stands for a
sequence of k’s of length a.
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Lemma 3.1. The partition π associated with a regular transitive group G < Sn

has the form [a(2), b(1)], where n = 2a + b and b is the number of elements of
order 2 in G.

Proof. In the regular case edges [e, g1] and [e, g] lie in the same orbit under G if
and only if gg1 = e. It follows that the valence of the orbit of [e, g] is 1 if and only
if g has order 2, so that g1 = g. Otherwise the only other edge incident at e in the
same orbit as [e, g] is [e, g−1] and the orbit graph containing [e, g] has valence 2. �

Theorem 3.2. If d is odd and π is a partition of d such that O(π) ≤ ι(d + 1),
then there is an equifacetal d-simplex with partition π.

Proof. It suffices to realize a partition of the form [a(1), b(2)] where a = ι(d + 1)
by a corresponding vertex-transitive edge-coloring of Kd+1. For the given partition
can then be realized by appropriately recoloring some different colors to be the
same. Let G be a finite group of order d + 1 with exactly ι(d + 1) involutions.
Then by the preceding lemma, the associated colored graph χ(G) has the required
properties. �

This completes the proof of Theorem 1.1, as stated in the introduction. To make
further progress we need to determine the actual value of the bound ι(d + 1).

4. Groups with maximal number of involutions

We determine the maximum number of involutions in a group of even order n as
stated in Theorem 1.2 and classify the groups of order n that contain the maximal
number of involutions, as stated in Theorem 1.3. This will give the proof of the
oddness bound stated in Theorem 1.4 in the special case of an equifacetal simplex
with regular transitive automorphism group.

4.1. Statement of results

Let I(G) denote the set of involutions, or elements of order 2, in the finite group
G, and let ι(G) denote the cardinality of I(G).

Theorem 4.1. (Main inequality) If G is a finite group of even order , then ι(G) ≤
|G|/2 + |G|2/2− 1.

Theorem 4.2. (Classification) A group G of even order satisfies ι(G) = |G|/2 +
|G|2/2− 1 if and only if its Sylow 2-subgroup is elementary abelian of exponent 2
and G is a semidirect product extension of an abelian group K by an involution
inverting its elements.

The simplest examples of such “2-maximal” groups include the dihedral groups
D2h and D4h, having orders 2h and 4h, and their products with an abelian group
of exponent 2. [Thanks to Michael Aschbacher for the inclusive statement above
that captures some examples I had previously neglected.]
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4.2. Toward a proof of the main inequality

In the end we will prove the main inequality by induction on the order of the
group. But our initial effort will be to describe some of the properties of groups
such that at least half the elements are involutions.

Let G be a finite group of even order n = 2rh, h odd, r ≥ 1. Let S < G be
a Sylow 2-subgroup, of order |S| = 2r. Let S1, . . . , Sk be the set of all distinct
Sylow 2-subgroups, all of order 2r, and all conjugate to one another. By the Sylow
theorems, k|h. Note that |G|/2 + |G|2/2− 1 = 2r−1(h + 1)− 1.

Let N = NG(S) denote the normalizer of S in G. Then [G : N ] = k and
[N : S] = h/k, and both k and n/k are odd.

We approach the main inequality through several special cases of independent
interest, in which often stronger inequalities hold true.

Proposition 4.3. If G is a finite group of even order 2rh, h odd, with Sylow
2-subgroup S and k = [G : NG(S)] satisfies 1 ≤ k < h, then ι(G) ≤ (2r − 1)k ≤
2r−1(h + 1)− 1.

Proof. Since k is a divisor of the odd number h and k < h, then k ≤ h/3. Thus

ι(G) = ι(S1 ∪ · · · ∪ Sk)

≤ (2r − 1)k

= 2rk − k

= 2r−1(2k)− k

≤ 2r−1(h + 1)− 1. �

Corollary 4.4. If G is a finite group with Sylow 2-subgroup S, and ι(G) ≥ |G|/2,
then NG(S) = S. �

The following special case of the main result will be important at a certain point
in the main proof.

Proposition 4.5. Let G = HS be a finite group of order 2rh, h odd, with Sylow
2-subgroup S and normal 2-complement H. Then ι(G) ≤ 2r−1(h + 1)− 1.

Proof. If x ∈ S and y ∈ H, then yx has order ≤ 2 if and only if 1 = yxyx = yyxx2

if and only if yx = y−1 and x2 = 1.

ι(G) =
∑

x∈I(S)

∣∣{y ∈ H : yx = y−1}
∣∣

=
∑
y∈H

∣∣{x ∈ I(S) : yx = y−1}
∣∣

≤
∑
y∈H

∣∣{x ∈ S# : yx = y−1}
∣∣ .
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(Here S# denotes the set of nontrivial elements of S.) Now y = 1 contributes at
most 2r − 1. If y 6= 1, note that y has odd order, so that y 6= y−1. The only
possible x’s in S that contribute are in the isotropy subgroup S{y,y−1} consisting
of all x ∈ S conjugating y to y±1. Moreover, the x’s that conjugate y to y−1

form a coset of the smaller subgroup Sy of elements of S that fix y. Such a coset
contributes at most half the elements of S, namely 2r−1. It follows that

ι(G) ≤ 2r − 1 + 2r−1(h− 1) = 2r−1(h + 1)− 1

as required. �

Lemma 4.6. If G admits a surjection G → Ck to a cyclic group of order k,
k > 2, or a non-split surjection G → C2, then ι(G) < |G|/2.

Proof. If k is odd, then all of I(G) lies in the kernel, which has size |G|/k ≤
|G|/3 < |G|/2. If k = 2 and the surjection is non-split, then, again, all the
involutions lie in the kernel, of size |G|/2. Since the identity element does not lie
in I(G), it follows that ι(G) < |G|/2. If k > 2 is even, then all of I(G) lies in the
kernel of the further projection to Ck/2, which has size 2|G|/k ≤ 2|G|/4 = |G|/2.
Since the identity element does not lie in I(G), we are done. �

Corollary 4.7. If ι(G) ≥ |G|/2, then the abelianization A = G/[G, G] has expo-
nent 2, and the projection of G onto any C2 is a split surjection. �

We will see below that the abelianization is indeed nontrivial in the context of
Corollary 4.7. Counting involutions in a slightly more sophisticated way we have
the following general statement.

Proposition 4.8. If the finite group G has a normal subgroup H, then

ι(G) ≤ ι(G/H)|H|+ ι(H).

Proof. The natural projection G → G/H, denoted by x → x̄, induces a function
I(G) − I(H) → I(G/H). Let yi be a list of image values in I(G/H). For
each index i choose a representative involution xi ∈ I(G). Define a function
I(G) − I(H) → H by x → xx−1

i if x̄ = x̄i. This defines an injective function
I(G)− I(H) → I(G/H)×H. The result follows. �

If the subgroup H ⊂ G is central, then we can do a little better.

Proposition 4.9. If the finite group G has a central subgroup H, then

ι(G) ≤ ι(G/H)(ι(H) + 1) + ι(H).

Proof. The proof proceeds as before. But this time the rule x → xx−1
i (where

x̄ = x̄i) can be checked to define a function I(G)−I(H) → I(H)∪{e}. Thus we
obtain an injective function I(G)− I(H) → I(G/H)× (I(H) ∪ {e}). The result
follows. �

If the extension above is actually a direct product, then the inequality becomes
an equality, i.e., writing Q in place of G/H, ι(Q×H) = (ι(Q) + 1)(ι(H) + 1)− 1.
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Proposition 4.10. Let G be a finite group of even order and k denote the number
of conjugacy classes in G. Then ι(G)2 − ι(G) ≤ (k − 1)|G|.

Proof. Follow the proof of Aschbacher [1], (45.3), up to inequality (b), which
is our desired result. Note that in that proof our ι is m and and our k is his
k + 1, since his k only counts nonidentity conjugacy classes. Note also that the
hypothesis that Z(G) = 1 is not invoked until the paragraph following formula
(b). �

Proposition 4.11. Let G be a finite group and k denote the number of conjugacy
classes in G. Then

k ≤ |G|+ 3 |G/[G, G]|
4

.

Proof. The irreducible complex representations of G are in one-to-one correspon-
dence with the conjugacy classes of elements of G. It is a consequence of the or-
thogonality relations for characters of representations over C that |G| is expressed
as the sum of the squares of the dimensions of the irreducible representations.
The irreducible representations of dimension 1 are in one-to-one correspondence
with the elements of the abelianization G/[G, G]. So we can write

|G| = |G/[G, G]|+
c∑

j=1

n2
j ≥ |G/[G, G]|+ 4c

where the sum is over the conjugacy classes in [G, G]. Each term in the sum is at
least 22 = 4. Thus

c ≤ |G| − |G/[G, G]|
4

and, adding back in as many as |G/[G, G]| conjugacy classes, the total of all
conjugacy classes is

k ≤ |G|+ 3 |G/[G, G]|
4

. �

We have the following extension of result (45.3) of Aschbacher [1].

Proposition 4.12. Let G be a finite group of even order, with trivial center Z(G)
and such that ι(G) ≥ |G|/2. Then G has a normal subgroup of index 2, expressing
G as a semidirect product extension of a normal subgroup K of order |G|/2 by a
cyclic group of order 2.

Proof. Let |G| = 2rh, h odd. Since Z(G) is trivial, G is not a 2-group, and
so h ≥ 3. If h = 3, we can assume r ≥ 2, since both groups of order 6 have a
subgroup of index 2.

Let s = the minimum index of a proper subgroup of G. Applying Aschbacher
[1], (45.3), we have

s ≤ 2

(
|G|
ι(G)

)2

≤ 2

(
2rh

2r−1h

)2

= 8.
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Thus we have 2 ≤ s ≤ 8. We now look more closely at the end of the proof of
(45.3). We set m = ι(G) and n = |G|/ι(G), as in that proof.

s ≤ n(n−m−1)

1−m−1

=

|G|
ι(G)

( |G|
ι(G)

− 1
ι(G)

)

1− 1
ι(G)

=
|G|(|G| − 1)

ι(G)(ι(G)− 1)

≤ 2rh(2rh− 1)

2r−1h(2r−1h− 1)

= 2
2rh− 1

2r−1h− 1

= 4

(
h− 1/2r

h− 1/2r−1

)
< 24/5

At the end we used the observation that the last fraction above involving h is less
than 6/5 provided when h = 3 we have r ≥ 2, as discussed above.

Thus 2 ≤ s ≤ 4.
First suppose s = 2. Let K be a (normal) subgroup of index 2. The extension

1 → K → G → C2 → 1

is a semidirect product by Lemma 0.8.
Now we need to rule out s = 3.
If s = 3 and there is a normal subgroup K with G/K ∼= C3, then ι(G) =

ι(K) ≤ |G|/2, by Lemma 4.6.
Otherwise, if s = 3 then there is a subgroup K of G of index 3 that is

not normal. Left translation on cosets then induces a surjective homomorphism
ρ : G → S3. The preimage of the subgroup of order 3 then provides a subgroup
of G of index 2, as required.

Finally we rule out s = 4. A subgroup of index 4 yields a transitive rep-
resentation in S4. But each such image group has a subgroup of index 2 or 3
and we are reduced to the cases already considered. (If a subgroup of S4 is not
contained in A4, then intersecting with A4 yields a subgroup of index 2. But A4

has a normal Sylow 2-subgroup of index 3. So a subgroup of A4 not contained in
its Sylow 2-subgroup contains a (normal) subgroup of index 3. Finally the Sylow
2-subgroup of A4 is C2 × C2 and yields subgroup of index 2 for any nontrivial
subgroup.) �

When a group is presented as a semidirect product extension of a subgroup by a
cyclic group of order 2, as above, we can give a useful formula for the the number
of involutions.
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Proposition 4.13. Suppose G = KC, a semidirect product of a subgroup K of
index 2 by a cyclic group C of order 2 generated by x. Then

ι(G) = ι(K) + #{y ∈ K : yx = y−1}.

Proof. The elements of order 2, but not in K, have the form yx, y ∈ K. We
compute (yx)2 = yxyx = yyx, which equals e if and only if yx = y−1. �

4.3. The proof of the main inequality

The overall structure of the proof will be by induction on the order of the group.
But the inductive hypothesis will only be used in case the group has nontrivial
center.

4.3.1. The case of nontrivial center

First we isolate the inductive part of the proof of the main inequality, handling
the case of nontrivial center.

Proposition 4.14. Let G be a finite group of even order with nontrivial center
Z = Z(G), such that NG(S) = S where S is a Sylow 2-subgroup. Suppose the
main inequality is true for groups of order < |G|. Then ι(G) ≤ 2r−1(h + 1)− 1.

Proof. Note that in this case the center Z ⊂ NG(S) ⊂ S. In particular, |Z| = 2s

for some s, 1 ≤ s < r. (If s = r, then S would be normal in G.)
Then by induction

ι(G/Z) ≤ 2r−s−1(h + 1)− 1

and so

ι(G) ≤ ι(G) ≤ ι(G/Z)(ι(Z) + 1) + ι(Z) by Proposition 4.9

≤ (2r−s−1(h + 1))− 1)(2s) + (2s − 1)

= 2r−1(h + 1)− 1. �

Continuing with the non-inductive part of the proof of the main inequality, we
may now assume that G has trivial center.

4.3.2. The case of trivial center

Thus we are reduced to giving a proof of the main inequality in the case of trivial
center. In this part we do not invoke induction.

Proposition 4.15. Let G be a finite group of even order, with trivial center.
Then ι(G) ≤ |G|/2 + |G|2/2− 1.
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Proof. Let |G| = 2rh, h odd, so that the required inequality becomes ι(G) ≤
2r−1(h + 1) − 1. We may assume the odd factor h ≥ 3 since the claimed result
is trivial for h = 1. (Of course, any 2-group has nontrivial center.) We may
also assume that ι(G) ≥ |G|/2. Thus we know that the commutator quotient
G/[G, G] ≈ Cα

2 , 1 ≤ α ≤ r, by Corollary 4.7. Moreover, each element of order 2
in the quotient is the image of an element of order 2 in G.

First consider the extreme case when α = r. In this case the commutator
subgroup has odd order h and contains no involutions at all. It also follows that
the surjection G → A = G/[G, G] is split by any choice of Sylow 2-subgroup in
G. Therefore Proposition 4.5 implies that ι(G) ≤ 2r−1(h + 1) − 1, as required.
Henceforth we assume 1 ≤ α ≤ r − 1.

When 1 ≤ α ≤ r−1 we bring together Propositions 4.10 and 4.11 to complete
the proof as follows.

We have

ι(G)2 − ι(G) ≤
(
|G|+ 3 |G/[G, G]|

4
− 1

)
|G|

=

(
|G|
2

)2

+ (3× 2α−2 − 1)|G|.

Thus, completing the square, we have

ι2 − ι ≤
(
|G|
2

+ 3 · 2α−2 − 1

)2

− (3 · 2α−2 − 1)2 ≤
(
|G|
2

+ 3 · 2α−2 − 1

)2

(1)

and

(ι− 1/2)2 ≤
(
|G|
2

+ 3 · 2α−2 − 1

)2

+ 1/4.

We warn the reader that we will eventually have to return and account for the
term (3 · 2α−2 − 1)2 ignored in this inequality. Therefore

ι ≤

√(
|G|
2

+ 3 · 2α−2 − 1

)2

+ 1/4 + 1/2

≤
(
|G|
2

+ 3 · 2α−2 − 1

)
+ 1/2 + 1/2

=
|G|
2

+ 3 · 2α−2

= 2r−1h + 3 · 2α−2

≤ 2r−1h + 2α − 2α−2

≤ 2r−1h + 2r−1 − 2α−2 (since by assumption α ≤ r − 1)

≤ 2r−1h + 2r−1 − 1 (provided α ≥ 2).
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It remains to look more closely at the case α = 1, r > 1. From above we have

ι ≤
(
|G|
2

+ 3 · 2α−2 − 1

)
+ 1/2 + 1/2

=

(
|G|
2

+ 1/2

)
+ 1

= 2r−1h + 3/2

< 2r−1h + 2r−1 − 1 (for r ≥ 3).

Finally we need to examine the case where r = 2 and α = 1. For this we have
to go back further in the analysis and add back in the quantity (3 · 2α−2 − 1)2 we
dropped out before in order to simplify things.

We return to the inequality (1), in which we substitute r = 2 and α = 1.

ι2 − ι ≤
(
|G|
2

+ 3 · 2α−2 − 1

)2

− (3 · 2α−2 − 1)2 = (2h + 1/2)2 − (1/2)2.

Completing the square, we have

ι2 − ι + 1/4 ≤ 4h2 + 2h + 1/4

or
(ι− 1/2)2 ≤ (2h + 1/2)2,

so
ι− 1/2 ≤ 2h + 1/2

or
ι ≤ 2h + 1 = 2(h + 1)− 1.

The proof is complete. �

This also completes the proof of Theorem 1.2 of the introduction and the main
inequality, Theorem 4.1.

4.4. The proof of the classification theorem

Let G be a group such that ι(G) = |G|/2+|G|2/2−1. Call such a group 2-maximal.
Again we let |G| = 2rh, so that ι(G) = 2r−1(h + 1)− 1.

First of all we know that NG(S) = S for any Sylow 2-subgroup, by Corollary
4.4.

4.4.1. The abelian case

If G is abelian, then ι(G) = |G|/2 + |G|2/2 − 1 = |G2| − 1. It follows that G is
an elementary abelian 2-group, and we are done. Henceforth assume that G is
nonabelian.
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4.4.2. The case of nontrivial center

Now suppose the center Z = Z(G) 6= {e}, and G is nonabelian. Then G/Z is
nontrivial, too. Moreover, the center normalizes the Sylow 2-subgroup S, so lies
in S, and so has order a power of 2. We note that G/Z also has even order. For if
|G/Z| were odd, then ι(G) = ι(Z) ≤ |Z|/2+|Z2|/2−1 < |G|/2+|G2|/2−1 = ι(G),
again a contradiction.

Now one can see that both Z and G/Z must also be 2-maximal, as follows.
Examining the proof of Proposition 4.14, note that the inequalities there must be
equalities in the case when G is 2-maximal. From that we see that ι(Z) = 2s − 1
and ι(G/Z) = 2r−s−1(h + 1)− 1, which means Z and G/Z are 2-maximal.

Therefore induction can be applied to G/Z (and to Z). Thus Z is an abelian
group of exponent 2 and there is a normal subgroup H ⊂ G of index 2, containing
the center Z, and an element x ∈ G not in H such that x2 ∈ Z. Moreover, G/Z
has Sylow 2-subgroup of exponent 2 and H/Z is abelian and x acts by inversion
on H/Z. Moreover, we can assume x2 = e in G itself by Corollary 4.7.

To see that G itself has standard form, we still need to show that a Sylow
2-subgroup S ⊂ G is of exponent 2 and we need to see that G/H ≈ C2 acts by
inversion on all of H.

Now

ι(H) ≤ ι(H/Z)(ι(Z) + 1) + ι(Z)

= (2r−s−1 − 1)(2s) + 2s − 1

= 2r−1 − 1.

Next
ι(G) = ι(H) +

∣∣{w ∈ H : wx = x−1}
∣∣ .

Thus
2r−1(h + 1)− 1 ≤ 2r−1 − 1 + #{w ∈ H : wx = x−1}.

Whence ∣∣{w ∈ H : wx = x−1}
∣∣ ≥ 2r−1h.

That is, x inverts all of H. It follows that H is abelian.
Now

ι(G) = ι(H) + |H|,

so that
2r−1(h + 1)− 1 = ι(H) + 2r−1h,

from which it follows that
ι(H) = 2r−1 − 1.

From this it follows that the Sylow 2-subgroup H2 has exponent 2. Thus we
see that a Sylow subgroup for G is a central, split extension of Cr−1

2 by C2,
hence isomorphic to Cr

2 , as required. This completes the case when the center is
nontrivial
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4.4.3. The case of trivial center

In what follows we may therefore assume that Z(G) = {e}. Then the various
inequalities we developed for groups with ι(G) ≥ |G|/2 in Proposition 4.15 must
collapse to equalities. But in most cases this cannot happen because of the strict
inequality in inequality (1) that arose when the term −(3 ·2α−2−1)2 was dropped
out.

Going through the proof of Proposition 4.15, we are thus left to look more
closely at the case α = r and the case α = 1, r = 2.

• The case α = r. The analysis in this case refers back to Proposition 4.5, dealing
with the case of a semidirect product G = HS, with normal 2-complement H.
But an equality here requires that all nontrivial elements of S act by inversion on
H. This forces H to be abelian, and S to be cyclic of order 2, acting on H by
inversion. So G clearly has the required form.

• The case α = 1, r = 2. We have a group G of order |G| = 4h, h odd, with
ι(G) = 2(h+1)−1 = 2h+1. We may assume that Z(G) = {1}, and G/[G, G] ≈ C2

or C2 × C2. Also we may assume that if S < G is a Sylow 2-subgroup, then
NG(S) = S. We may also assume that there is an involution t ∈ G representing
the generator of G/K = C2.

It follows from the Burnside Normal p-Complement Theorem that S has a normal
2-complement, a normal subgroup H of order h and that G = HS, a semidirect
product. (See [1], (39.1).) The precise hypothesis is that the Sylow subgroup be
contained in the center of its normalizer.)

It suffices to prove that one of the three involutions of S acts trivially on H
and that another one (actually both of the others) acts by inversion on H.

We look again at the argument of Proposition 4.5. Note that a given nontrivial
element of H can be inverted by at most two of the three involutions of S, since
any involution is the product of the other two, while all three involutions trivially
invert the identity element e ∈ H.

ι(G) =
∑

x∈I(S)

∣∣{y ∈ H : yx = y−1}
∣∣

=
∑
y∈H

∣∣{x ∈ I(S) : yx = y−1}
∣∣

≤ 2(h− 1) + 3

= 2h + 1.

The assumption that ι(G) = 2h+1 therefore implies that each nontrivial element
of H is inverted by exactly two of the three involutions of S and fixed by the
remaining one.

Note that if an involution t inverts one nontrivial element y ∈ H, then it must
invert them all. Otherwise there is a second nontrivial element x ∈ H fixed by t.
But then xy is neither fixed nor inverted by t.

From this it follows easily that H can be expressed in standard form of a
semidirect product of an abelian group by an involution acting by inversion. �
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5. The oddness bound in the case of a general transitive permutation
group

Here we complete the proof of Theorem 1.4 as stated in the introduction. We are
reduced to showing that the desired inequality holds for the orbit-edge-coloring
associated with a transitive permutation group. The preceding section handles
the case when the permutation group acts regularly. The focus here is on the case
of a nontrivial point stabilizer.

First we set up the necessary, somewhat elaborate, notation for the general
situation.

In the case of a (weakly) primitive transitive group we will prove the stronger
statement thatO(π) ≤ d/3. Then we complete the proof of the main Theorem 1.4,
in general, by showing that the desired inequality holds for (weakly) imprimitive
actions.

5.1. The general set up

Here G < Sd+1 is a transitive subgroup with nontrivial isotropy subgroup H < G
of a point. On the one hand, the bigger the group, the fewer the orbits of edges.
On the other hand the analysis of which edges lie in the same orbit is more
complicated.

We identify the vertices of Kd+1 with the cosets G/H. When are two edges in
the same edge-orbit? We answer this by describing the stabilizer group Stab([g1H,
g2H]) of a general edge [g1H, g2H]. First consider the subgroup of all g ∈ G
fixing both end points. This amounts to the conditions that gg1H = g1H and
gg2H = g2H. This yields the condition g ∈ g1Hg−1

1 ∩ g2Hg−1
2 . This at least

contains the identity element and is a subgroup.
The full stabilizer group is an index 1 or 2 extension allowing for the possibility

of g ∈ G such that gg1H = g2H and gg2H = g1H. This yields the condition
g ∈ g2Hg−1

1 ∩ g1Hg−1
2 .

We conclude that

Stab([g1H, g2H]) =
(
g1Hg−1

1 ∩ g2Hg−1
2

)
∪

(
g2Hg−1

1 ∩ g1Hg−1
2

)
.

Note that Stab([g1H, g2H]) contains

Stab(g1H) ∩ Stab(g2H) = g1Hg−1
1 ∩ g2Hg−1

2

as a subgroup of index 1 or 2, as one sees by noting that the product of any two
elements in the second part of Stab([g1H, g2H]) lies in the first part. Moreover,
the product of an element of the first part with an element of the second part lies
in the second part.

Any edge is in the same orbit as an edge of the form [H, gH]. In the latter
case the formulas above specialize to say that

Stab([H, gH]) =
(
H ∩ gHg−1

)
∪

(
gH ∩Hg−1

)
.
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The number of edges in the orbit of edge [H, gH] is then

Eg =
∣∣G/

[(
H ∩ gHg−1

)
∪

(
gH ∩Hg−1

)]∣∣ .

Standard elementary counting of edge-ends shows that vg(d + 1) = 2Eg where vg

is the common valence of all vertices in the edge-orbit graph. Thus

vg =
2Eg

d + 1
=

2 |G/ [(H ∩ gHg−1) ∪ (gH ∩Hg−1)]|
|G/H|

.

Our goal is to determine for which cosets gH 6= H we have vg odd.
We distinguish four cases for further analysis.

1. g ∈ N(H), gH ∩Hg−1 = ∅.
2. g ∈ N(H), gH ∩Hg−1 6= ∅ (whence Hg−1 = g−1H = gH).

3. g 6∈ N(H), gH ∩Hg−1 = ∅.
4. g 6∈ N(H), gH ∩Hg−1 6= ∅.

In all cases |G / (H ∩ gHg−1)| = |G/H| × |H / (H ∩ gHg−1)| = ns. Also, s = 1
if and only if g ∈ N(H) (cases (1) and (2)). Then

1. vg = 2n/n = 2, even.

2. vg = 2n/2/n = 1, odd.

3. vg = 2ns/n = 2s ≥ 4, even.

4. vg = 2ns/2/n = s ≥ 2, potentially odd.

For future reference we note that the condition in (2) is equivalent to gH repre-
senting an element of order 2 in N(H)/H. The condition in (1) is equivalent to
gH representing an element of order greater than 2 in N(H)/H. It is less clear
how to understand the conditions in (3) and (4).

5.2. The partition problem in the primitive case

A transitive permutation group G is said to be primitive if no nontrivial block
decomposition is preserved. This corresponds to having no subgroup strictly be-
tween the permutation group G and its point stabilizer H. So we may assume
in particular that N(H) = H. (If N(H) = G then H would act trivially; but
we assume our actions are faithful.) For lack of a better name for a transitive
permutation group such that H = N(H), we will call it weakly primitive.

We can give a stronger bound on the oddness in the primitive case.

Proposition 5.1. If d is odd and π is the partition of d associated with a (weakly)
primitive transitive group of degree n = d + 1 that is not regularly transitive, then
Oddness(π) ≤ d/3.

Proof. A weakly primitive transitive group satisfies N(H) = H. It follows that
the valence of an edge orbit containing [e, g] is s or 2s, where s = |H/H ∩ gHg−1|
and that s ≥ 2. The odd valences then are at least 3 and there are at most d/3
of them. �
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5.3. The general partition problem

Consider an arbitrary transitive permutation group G < Sn of degree n = 2rh, h
odd. We assume that r ≥ 1, so that n is even.

Let H denote the stabilizer of one point, and N = N(H) be the normalizer
of H in G. Set [N : H] = p and [G : N ] = q, where n = pq.

If p = 1, then N = H and we have seen that Oddness ≤ (n − 1)/3, and
(n− 1)/3 ≤ 2r−1(h + 1)− 1, since r ≤ 1.

If q = 1, then H is normal in G, and since the action is faithful, we con-
clude that H = {e} and that G must act regularly. From earlier work we have
Oddness ≤ n− h, as required.

Henceforth assume both p ≥ 2 and q ≥ 2.
According to the analysis of elements of order 2 in a group, there are up to

p/2 + p2/2 − 1 terms equal to 1 in the partition associated to G. That leaves
d−p/2−p2/2+1 possible entries that could be partitioned into odd terms of size
at least 3. That is we have at most

pq − p/2− p2/2

3

additional odd terms of size at least 3 in the partition. In particular,

O(G) ≤ p/2 + p2/2− 1 +
pq − p/2− p2/2

3
=

pq + p + p2 − 3

3
.

We have to determine when

pq + p + p2 − 3

3
≤ 2r−1(h + 1)− 1.

Now letting h = pq/2r, our required inequality is equivalent to

pq + p + p2 − 3

3
≤ pq/2 + 2r−1 − 1

or
pq + p + p2 − 3

3
≤ pq + 2r − 2

2
,

which is equivalent to

2pq + 2p + 2p2 − 6 ≤ 3pq + 2r · 3− 6

or
2p + 2p2 ≤ pq + 2r · 3,

which always holds, since 2 ≤ q and p2 ≤ 2r. �
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6. Extremal groups

Define a transitive permutation group G < Sn of even degree n to be extremal if its
associated partition has maximal oddness: O(π) = n/2+n2/2−1 = 2r−1(h+1)−1,
where n = 2rh, h odd and r ≥ 1. We will see after the fact that this is equivalent
to the condition that the associated partition of d = n−1 has the form [a(1), b(2)],
where a = n/2 + n2/2− 1 and b = (n/2− n2/2)/2.

Theorem 6.1. An extremal, regularly transitive group G of even degree is iso-
morphic to one of the following groups: a group with Sylow 2-subgroup of exponent
2 that can be expressed as a split extension of dihedral type of an abelian group by
a cyclic group of order 2 (acting by inversion).

Proof. This is just a re-interpretation of the characterization of 2-maximal groups
given in Theorem 4.2. �

In fact an extremal permutation group must act regularly, as we now show.

Theorem 6.2. Any extremal transitive permutation group of even degree acts
regularly, and hence is one of the groups described for the extremal, regularly
transitive case.

Proof. Assume G < Sn is a transitive group with point stabilizer H < G
nontrivial. We proceed to show that such a group cannot be extremal.

If H = N(H) then we proved that O(G) ≤ d/3 = (n−1)/3. But if (n−1)/3 =
n/2 + n2/2− 1, then 4 = n + 3n2, which cannot happen since n2 ≥ 2.

Now set [N : H] = p and [G : N ] = q, where n = pq. According to the
preceding observation we may assume p > 1.

If q = 1, then H is normal in G, and since the action is faithful, we conclude
that H = {e} and that G must act regularly.

Henceforth assume both p ≥ 2 and q ≥ 2. We aim to show G cannot be
extremal under these assumptions.

We examine the earlier analysis, assuming that all inequalities are equalities.
One concludes that 2p + 2p2 = pq + 2r · 3. But this cannot happen, since 2 ≤ q
and 2p2 ≤ 2r+1 < 2r · 3. �

Corollary 6.3. A transitive permutation group of even degree n, is extremal if
and only if its associated partition of d = n − 1 has the form [a(1), b(2)], where
a = n/2 + n2/2− 1.

Proof. Since the group is extremal, we know that it acts regularly. This implies
that its associated partition has the form [a(1), b(2)], where a is the number of
involutions in the group. Extremality implies the number of involutions is n/2 +
n2/2− 1. �

Note that it follows that, for example, the isometry group of an equifacetal 5-
simplex with partition [1, 1, 3] is the same as that of an equifacetal 5-simplex with
partition [1, 1, 1, 2]. The simplex in the case of the former partition is extremal,
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but then the partition associated with its full isometry group is the latter one.
Moreover, every vertex-transitive coloring of K6 with partition type [1, 1, 3] admits
a refinement of partition type [1, 1, 1, 2].

Remark 1. [Groups of odd degree] The main objects of study in this paper have
been permutation groups of even degree n. Is there is an analogue of the preceding
result that an extremal group acts regularly when n = d+1 is odd instead of even?
In this case the terms in the associated partition of d are necessarily all even. One
might define a transitive permutation group of odd degree to be extremal if its
associated partition has the form [(d/2)2]. However, such an extremal transitive
permutation group of odd degree need not act regularly. For example, both the
cyclic group Cn of order n and the dihedral group D2n of order 2n are naturally
viewed as permutation groups in Sn. But both lead to the same coloring and
partition [2, 2, . . . , 2] when n ≥ 5 and odd. The former is regular and the latter is
not. Are there other, substantially different, examples?
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