CR-Warped Product Submanifolds of Nearly Kaehler Manifolds

Bayram Sahin Rıfat Güneş

Department of Mathematics, Inonu University 44280, Malatya, Turkey e-mail: bsahin@inonu.edu.tr rqunes@inonu.edu.tr

Abstract. In this paper, we study warped product CR-submanifolds of nearly Kaehler manifolds. We extend some results of B. Y. Chen [7] on warped product CR-submanifolds of Kaehler manifolds to warped product CR-submanifolds of nearly Kaehler manifolds. We also give an example for such submanifolds in six dimensional sphere.

MSC 2000: 53C42, 53C40, 53C15

Keywords: CR-submanifold, warped product, nearly Kaehler manifold

1. Introduction

Let (\overline{M}, g) be an almost Hermitian manifold. This means [22] that \overline{M} admits a tensor field J of type (1, 1) on \overline{M} such that, $\forall X, Y \in \Gamma(T\overline{M})$, we have

$$J^{2} = -I, \quad g(X, Y) = g(JX, JY).$$
(1.1)

An almost Hermitian manifold \overline{M} is called nearly Kaehler manifold if

$$(\overline{\nabla}_X J)X = 0, \ \forall X \in \Gamma(T\overline{M}),$$
(1.2)

which is equivalent to

$$(\bar{\nabla}_X J)Y + (\bar{\nabla}_Y J)X = 0, \ \forall X, Y \in \Gamma(T\bar{M}),$$
(1.3)

where $\overline{\nabla}$ is the Levi-Civita connection on \overline{M} . T. Fukami and S. Ishihara [12] proved that there exists a nearly Kaehlerian structure on a six dimensional sphere

0138-4821/93 \$ 2.50 © 2008 Heldermann Verlag

 S^6 by making use of the properties of the Cayley division algebra. This structure is called as the canonical nearly Kaehlerian structure on S^6 . In fact, A. Gray [13] showed that S^6 has some almost complex structures, which are different from the canonical almost complex structures, but nonetheless nearly Kaehlerian.

CR-submanifolds of almost Hermitian manifolds were defined by A. Bejancu [3] as a generalization of complex and totally real submanifolds. A CR-submanifold is called *proper* if it is neither complex nor totally real submanifold. The geometry of CR-submanifolds has been studied in several papers since then. We note that the geometry of CR-submanifolds of nearly Kaehler manifolds has been also studied by several authors, [1], [2], [10], [15], [17], [18], [21].

On the other hand, in [4], R. L. Bishop and B. O'Neill introduced a class of warped product manifolds as follows: Let (B, g_1) and (F, g_2) be two Riemannian manifolds, $f : B \to (0, \infty)$ and $\pi : B \times F \to B$, $\eta : B \times F \to F$ the projection maps given by $\pi(p,q) = p$ and $\eta(p,q) = q$ for every $(p,q) \in B \times F$. The warped product $M = B \times F$ is the manifold $B \times F$ equipped with the Riemannian structure such that

$$g(X,Y) = g_1(\pi_*X,\pi_*Y) + (fo\pi)^2 g_2(\eta_*X,\eta_*Y)$$

for every X and Y of M and * is symbol for the tangent map. The function f is called the warping function of the warped product manifold. In particular, if the warping function is constant, then the manifold M is said to be trivial. Let X, Y be vector fields on B and V, W vector fields on F, then from Lemma 7.3 of [4], we have

$$\nabla_X V = \nabla_V X = \left(\frac{Xf}{f}\right) V \tag{1.4}$$

where ∇ is the Levi-Civita connection on M.

Recently, B. Y. Chen [7], [8] considered warped product CR-submanifolds of Kaehler manifolds and showed that there do not exist warped product CRsubmanifolds in the form $M_{\perp} \times_f M_T$ such that M_T is a holomorphic (complex) submanifold and M_{\perp} is a totally real submanifold of a Kaehler manifold \overline{M} . Then he introduced the notion of CR-warped products of Kaehler manifolds as follows: A submanifold of a Kaehler manifold is called CR-warped product if it is the warped product $M_T \times_f M_{\perp}$ of a holomorphic submanifold M_T and a totally real submanifold M_{\perp} . He also established a sharp relationship between the warping function f of a warped product CR-submanifold $M_T \times_f M_{\perp}$ of a Kaehler manifold \overline{M} and the squared norm of the second fundamental form $\parallel h \parallel^2$. After the papers of B. Y. Chen, CR-warped product submanifolds have been studied in various manifolds [5], [14], [19], [20].

It is known that every Kaehler manifold is a nearly Kaehler but the converse is not true in general. Therefore, the aim of this paper is to extend the concept of CR-warped product submanifolds of Kaehler manifolds to warped product CRsubmanifolds of nearly Kaehler manifolds. Our main results improve some results of B. Y. Chen to CR-warped product submanifolds of nearly Kaehler manifolds. First, we prove that there exist no warped product CR-submanifolds in the form $M_{\perp} \times_f M_T$ such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of a nearly Kaehler manifold M. Then we consider warped product CR-submanifolds in the form $M_T \times_f M_{\perp}$ in a nearly Kaehler manifold \overline{M} and give an example. We prove a characterization theorem and obtain necessary condition for CR-warped product submanifolds to be a CR-product. We obtain a sharp inequality for the squared norm of the second fundamental form in terms of the warping function for CR-warped product submanifolds of nearly Kaehler manifolds.

We note that although the proof of Theorem 4.1 is same as that of Theorem 5.1 in [7], the proof of preparatory lemmas for the proof of Theorem 4.1 is different.

2. Preliminaries

In this section, we will recall the canonical nearly Kaehlerian structure on a 6dimensional unit sphere S^6 . We will also brief some formulas and definitions which will be useful later. Let C be the Cayley division algebra generated by $\{e_o, e_i, (1 \le i \le 7)\}$ over real number field \mathbf{R} and C_+ be the subspace of Cconsisting of all purely imaginary Cayley numbers. We may identify C_+ with a 7dimensional Euclidean space \mathbf{R}^7 with the canonical inner product <, >. A vector cross product for the vectors in $C_+ = \mathbf{R}^7$ is defined by

$$x \wedge y = \langle x, y \rangle e_o + xy, \ x, y \in C_+.$$
 (2.1)

Then the multiplication table is given by the following:

	1	0	e_3	$-e_2$	e_5	$-e_4$	$-e_7$	$-e_6$
	2	$-e_3$	0	e_1	e_6	$-e_7$	$-e_4$	e_5
	3	e_2	$-e_1$	0	$-e_7$	$-e_6$	$-e_5$	e_4
$e_j \wedge e_k =$	4	$-e_5$	$-e_6$	e_7	0	e_1	e_2	$-e_3$
	5	e_4	e_7	e_6	$-e_1$	0	$-e_3$	$-e_2$
	6	$ -e_7$	e_4	$-e_5$	$-e_2$	e_3	0	e_1
	7	e_6	$-e_5$	$-e_4$	e_3	e_2	$-e_1$	0

On $S^{6}(1)$ define a (1, 1) tensor field J by putting

$$J_p X = p \wedge X$$

for $p \in S^6(1)$ and $X \in T_pS^6$. The above almost complex structure J together with the induced Riemannian metric \langle , \rangle on S^6 gives a nearly Kaehlerian structure on S^6 [12]. It is well known that S^6 does not admit any Kaehlerian structures. Let Mbe a Riemannian manifold isometrically immersed in a nearly Kaehler manifold \overline{M} and denote by the same symbol g the Riemannian metric induced on M. Let $\Gamma(TM)$ be the Lie algebra of vector fields in M and $\Gamma(TM^{\perp})$ the set of all vector fields normal to M. Denote by ∇ the Levi-Civita connection of M. Then the Gauss and Weingarten formulas are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{2.2}$$

and

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N \tag{2.3}$$

for any $X, Y \in \Gamma(TM)$ and any $N \in \Gamma(TM^{\perp})$, where ∇^{\perp} is the connection in the normal bundle TM^{\perp} , h is the second fundamental form of M and A_N is the Weingarten endomorphism associated with N. The second fundamental form and the shape operator A are related by

$$g(A_N X, Y) = g(h(X, Y), N).$$
 (2.4)

Let \overline{M} be a nearly Kaehler manifold with complex structure J and M is a Riemannian manifold isometrically immersed in \overline{M} . Then M is called holomorphic (complex) if $J(T_pM) \subset T_pM$, for every $p \in M$, where T_pM denotes the tangent space to M at the point p. M is called totally real if $J(T_pM) \subset T_pM^{\perp}$ for every $p \in M$, where $T_p M^{\perp}$ denotes the normal space to M at the point p. The submanifold M is called a CR-submanifold [3] if there exists a differentiable distribution $D : p \rightarrow D_p \subset T_p M$ such that D is invariant with respect to J and the complementary distribution D^{\perp} is anti-invariant with respect to J. It is clear that holomorphic and totally real submanifolds are CR-submanifolds with $D^{\perp} = \{0\}$ and $D = \{0\}$, respectively. Moreover, every real hypersurface of an almost Hermitian manifold is a CR-submanifold. For a real hypersurface M of an almost Hermitian M with a unit normal vector field ξ , the tangent vector $J\xi$ on M is called a characteristic vector field of M. A unit tangent vector X on M is called a principal vector if X is an eigenvector of the shape operator A_{ξ} , the corresponding eigenvalue is called the principal curvature at X. Let M be a CR-submanifold of a nearly Kaehler manifold, then we have

$$TM = D \oplus D^{\perp}.$$

Hence, we also have

$$TM^{\perp} = JD^{\perp} \oplus \nu,$$

where ν denotes the complementary distribution to JD^{\perp} in the normal bundle of M. We note that ν is also invariant with respect to J. For any $X \in TM$ we write

$$JX = TX + FX, (2.5)$$

where $TX \in \Gamma(D)$ and $FX \in \Gamma(JD^{\perp})$. Similarly, for any vector field normal to M, we put

$$IN = BN + CN, (2.6)$$

where $BN \in \Gamma(D^{\perp})$ and $CN \in \Gamma(\nu)$.

3. Warped products $M_{\perp} \times_f M_T$ in nearly Kaehler manifolds

In this section we consider CR-submanifolds in a nearly Kaehler manifold M which are warped products of the form $M_{\perp} \times_f M_T$ such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of \overline{M} .

Theorem 3.1. Let \overline{M} be a nearly Kaehler manifold. Then there do not exist warped product CR-submanifolds in the form $M = M_{\perp} \times_f M_T$ in \overline{M} such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of \overline{M} .

Proof. Let us suppose that M be a warped product CR-submanifold in the form $M = M_{\perp} \times_f M_T$ in \overline{M} such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of \overline{M} . Then, from (2.2), we have $g(\nabla_X Z, X) = g(\overline{\nabla}_X Z, X)$ for $X \in \Gamma(TM_T)$ and $Z \in \Gamma(TM_{\perp})$. Using (1.4), we get $Z(\ln f)g(X, X) = g(\overline{\nabla}_X Z, X)$. Since D^{\perp} and D are orthogonal, we obtain $Z(\ln f)g(X, X) = -g(Z, \overline{\nabla}_X X)$. Then, from (1.1), we derive $Z(\ln f)g(X, X) = -g(JZ, J\overline{\nabla}_X X)$. Hence, we get $Z(\ln f)g(X, X) = -g(JZ, \overline{\nabla}_X JX - (\overline{\nabla}_X J)X)$. Thus, using (1.2) we obtain

$$Z(\ln f)g(X,X) = -g(JZ,\nabla_X JX).$$

Then, from (2.2), we have

$$Z(\ln f)g(X,X) = -g(JZ,h(X,JX))$$
(3.1)

for $X \in \Gamma(TM_T)$ and $Z \in \Gamma(TM_{\perp})$.

On the other hand, from (2.3), we have

$$g(A_{JZ}X, JX) = -g(\bar{\nabla}_X JZ, JX)$$

for $X \in \Gamma(TM_T)$ and $Z \in \Gamma(TM_{\perp})$. Hence, we get

$$g(A_{JZ}X, JX) = g(JZ, \overline{\nabla}_X JX).$$

Since $\overline{\nabla}$ is torsion free, we have

$$g(A_{JZ}X, JX) = g(JZ, [X, JX] + \overline{\nabla}_{JX}X).$$

Since $[X, JX] \in \Gamma(TM)$ and $JZ \in \Gamma(TM^{\perp})$, we derive

$$g(A_{JZ}X, JX) = g(JZ, \overline{\nabla}_{JX}X).$$

Then, from (1.1), we can write

$$g(A_{JZ}X, JX) = -g(JZ, \overline{\nabla}_{JX}J^2X).$$

Hence, we have

$$g(A_{JZ}X, JX) = -g(JZ, (\bar{\nabla}_{JX}J)JX + J\bar{\nabla}_{JX}JX).$$

Then, from (1.2), we derive

$$g(A_{JZ}X, JX) = -g(JZ, J\overline{\nabla}_{JX}JX).$$

Thus, using the second equation of (1.1), we arrive at

$$g(A_{JZ}X, JX) = -g(Z, \overline{\nabla}_{JX}JX).$$

Then, we get

$$g(A_{JZ}X, JX) = g(\nabla_{JX}Z, JX).$$

Using (2.2) we obtain

 $g(A_{JZ}X, JX) = g(\nabla_{JX}Z, JX).$

Thus, from (1.4) and (2.4,) we have

$$g(h(X, JX), JZ) = Z(\ln f)g(JX, JX).$$

Using (1.1), we arrive at

$$g(h(X, JX), JZ) = Z(\ln f)g(X, X)$$
(3.2)

for $X \in \Gamma(TM_T)$ and $Z \in \Gamma(TM_{\perp})$. Thus, from (3.1) and (3.2), we conclude that

 $2Z(\ln f)g(X,X) = 0.$

Since D is Riemannian, we get

$$Z(\ln f) = 0.$$

This implies that f is constant on M_{\perp} which shows that M is a usual product. Thus proof is complete.

Remark 1. We note that Theorem 3.1 is a generalization of Theorem 3.1 in [7].

4. Warped products $M_T \times_f M_{\perp}$ in nearly Kaehler manifolds

Theorem 3.1 shows that there exist no warped product CR-submanifolds in the form $M = M_{\perp} \times_f M_T$ in \overline{M} such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of \overline{M} . Therefore, in this section, we consider warped product CR-submanifolds in the form $M = M_T \times_f M_{\perp}$ such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of a nearly Kaehler manifold \overline{M} . Follow Chen's definition, we call such warped product CR-submanifolds CR-warped products. Now, we give an example of CR-warped product in S^6 .

Example 1. Consider Sekigawa's example [21] of CR-submanifold in S^6 , which is the image of the mapping of $S^2 \times S^1$ into S^6 :

$$\Psi(y,t) = \Psi((y_2, y_4, y_6), e^{\sqrt{-1}t})$$

= $(y_2 \cos t)e_2 - (y_2 \sin t)e_3 + (y_4 \cos 2t)e_4$
+ $(y_4 \sin 2t)e_5 + (y_6 \cos t)e_6 + (y_6 \sin t)e_7$

where $(y_2, y_4, y_6) \in S^2$ and $e^{\sqrt{-1}t} \in S^1$. Then the tangent bundle TM of submanifold M is given by

$$Z_1 = -y_2 \sin t \, e_2 - y_2 \cos t e_3 - 2y_4 \sin 2t e_4 + 2y_4 \cos 2t e_5 - y_6 \sin t e_6 - y_6 \cos t e_7$$

$$Z_2 = y_6 \cos t \, e_2 - y_6 \sin t e_3 - y_2 \cos t \, e_6 - y_2 \sin t \, e_7$$

$$Z_3 = y_6 \cos 2t \, e_4 + y_6 \sin 2t \, e_5 - y_4 \cos t \, e_6 - y_4 \sin t \, e_7.$$

It is known that M is a CR-submanifold of S^6 such that $D = span\{Z_2, Z_3\}$ and $D^{\perp} = span\{Z_1\}$. Moreover, we can derive that D is integrable. Denoting the integral manifolds of D and D^{\perp} by M_T and M_{\perp} , respectively, then the induced metric tensor is

$$ds^{2} = (y_{6}^{2} + y_{2}^{2})dy_{2}^{2} + y_{2} y_{4}dy_{2} dy_{4} + (y_{6}^{2} + y_{4}^{2})dy_{4}^{2} + (1 + 3y_{4}^{2})dt^{2}$$

= $g_{M_{T}} + (1 + 3y_{4}^{2})g_{M_{\perp}}.$

Thus it follows that M is a CR-warped product submanifold of S^6 with warping function $f = \sqrt{((1+3y_4^2))}$.

Remark 2. We note that H. Hashimoto and K. Mashimo [15] gave a generalization of Sekigawa's example. They also showed that the induced metric of their generalization is a warped product metric (see: [15], Lemma 8). Thus, there are many three dimensional CR-warped product submanifolds in S^6 .

Next we give a characterization for CR-warped products in a nearly Kaehler manifolds. We first need the following lemmas.

Lemma 4.1. Let M be a CR-submanifold of a nearly Kaehler manifold M. Then, the anti-invariant distribution is integrable if and only if

$$g(\nabla_Z X, V) = \frac{1}{2}g(A_{JZ}V + A_{JV}Z, JX)$$
(4.1)

for $Z, V \in \Gamma(D^{\perp})$ and $X \in \Gamma(D)$.

Proof. From (2.2), we have

$$g([Z,V],X) = g(\bar{\nabla}_Z V, X) - g(\nabla_V Z, X)$$

for $Z, V \in \Gamma(D^{\perp})$ and $X \in \Gamma(D)$. Then, using (1.1), we get

$$g([Z,V],X) = g(J\overline{\nabla}_Z V, JX) - g(\nabla_V Z, X).$$

Hence, we derive

$$g([Z,V],X) = g(-(\bar{\nabla}_Z J)V + \bar{\nabla}_Z JV, JX) - g(\nabla_V Z, X).$$

Thus, using (1.3), we obtain

$$g([Z,V],X) = g(\bar{\nabla}_V J)Z, JX) + g(\bar{\nabla}_Z JV, JX) - g(\nabla_V Z, X).$$

Hence, we have

$$g([Z,V],X) = g((\bar{\nabla}_V JZ - J\bar{\nabla}_V Z, JX) + g(\bar{\nabla}_Z JV, JX) - g(\nabla_V Z, X).$$

Then, using (2.2) and (2.3), we obtain

$$g([Z,V],X) = -g(A_{JZ}V + A_{JV}Z,JX) - 2g(\nabla_V Z,X).$$

Then, we have

$$g([Z,V],X) = -g(A_{JZ}V + A_{JV}Z, JX) - 2g([V,Z],X) - 2g(\nabla_Z V,X).$$

Hence we get

$$g([V,Z],X) = 2g(\nabla_Z X, V) - g(A_{JZ}V + A_{JV}Z, JX),$$

which proves our assertion.

Lemma 4.2. Let M be a CR-submanifold of a nearly Kaehler manifold \overline{M} . Then, we have

$$g(\nabla_X Y, Z) = g(JY, A_{JZ}X) - g(JY, \nabla_Z JX) + g(Y, \nabla_Z X)$$

$$(4.2)$$

for $X, Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

Proof. Using (2.2) and (1.1), we have $g(\nabla_X Y, Z) = -g(JY, J\overline{\nabla}_X Z)$ for $X, Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. Hence, we get $g(\nabla_X Y, Z) = -g(JY, \overline{\nabla}_X JZ - (\overline{\nabla}_X J)Z)$. Then, from (1.3), we obtain

$$g(\nabla_X Y, Z) = -g(JY, \overline{\nabla}_X JZ) - g(JY, (\overline{\nabla}_Z J)X).$$

Hence, we get

$$g(\nabla_X Y, Z) = -g(JY, \bar{\nabla}_X JZ) - g(JY, \bar{\nabla}_Z JX - J\bar{\nabla}_Z X).$$

Thus, using (1.1), (2.2) and (2.3) we obtain (4.2).

Lemma 4.3. Let M be a CR-warped product of a nearly Kaehler manifold \overline{M} . Then, we have

$$g(h(X,JY),JZ) = 0 \tag{4.3}$$

and

$$g(h(X,Z),JV)) = -JX(\ln f)g(Z,V)$$
(4.4)

for $X, Y \in \Gamma(TM_T)$ and $Z, V \in \Gamma(TM_{\perp})$.

Proof. From (1.4), we get $g(\nabla_X X, Z) = X(\ln f)g(X, Z) = 0$ for $X \in \Gamma(TM_T)$ and $Z \in \Gamma(TM_{\perp})$. Then, using (2.2) and (1.1), we have $g(J\overline{\nabla}_X X, JZ) = 0$. Hence

$$g(-(\bar{\nabla}_X J)X + \bar{\nabla}_X JX, JZ) = 0.$$

Thus, (1.2) implies

$$g(\bar{\nabla}_X JX, JZ) = 0.$$

Using (2.2), we get

$$g(h(X,JX),JZ) = 0.$$

Then, by polarization for h, we derive

$$g(h(X, JY), JZ) + g(h(Y, JX), Z) = 0.$$

Now, since $M = M_T \times_f M_{\perp}$ is a warped product manifold, D is integrable. Then, from a result of [10], it follows that h(X, JY) = h(JX, Y) for $X, Y \in \Gamma(D)$. Hence, we obtain (4.3).

On the other hand, from (2.3), we get $g(A_{JZ}X, V) = -g(\bar{\nabla}_X JZ, V)$ for $X \in \Gamma(D)$ and $Z, V \in \Gamma(D^{\perp})$. Hence, we have

$$g(A_{JZ}X,V) = -g((\bar{\nabla}_X J)Z + J\bar{\nabla}_X Z,V).$$

Using (1.2), we obtain

$$g(A_{JZ}X,V) = g((\bar{\nabla}_Z J)X,V) - g(J\bar{\nabla}_X Z,V).$$

By direct computations, from (1.1), we derive

$$g(A_{JZ}X,V) = g(\bar{\nabla}_Z JX - J\bar{\nabla}_Z X,V) + g(\bar{\nabla}_X Z, JV).$$

Using, again (1.1), we have

$$g(A_{JZ}X,V) = g(\bar{\nabla}_Z JX,V) + g(\bar{\nabla}_Z X,JV) + g(\bar{\nabla}_X Z,JV).$$

Thus, from (2.2), we get

$$g(A_{JZ}X,V) = g(\nabla_Z JX,V) + g(h(Z,X),JV) + g(h(X,Z),JV).$$

Since h is symmetric, (1.4) and (2.4) imply that

$$g(h(V,X), JZ) = JX(\ln f)g(Z,V) + 2g(h(X,Z), JV)$$
(4.5)

for $X \in \Gamma(D)$ and $Z, V \in \Gamma(D^{\perp})$. Interchanging the role of Z and V, we obtain

$$g(h(Z,X),JV) = JX(\ln f)g(Z,V) + 2g(h(X,V),JZ)$$
(4.6)

Thus from (4.5) and (4.6) we get

$$g(h(X,Z),JV) = -JX(\ln f)g(Z,V).$$

Now, we are ready to prove a characterization theorem for CR-warped products in nearly Kaehler manifolds. But we first recall that we have the following result of S. Hiepko [16], (cf. [11], Remark 2.1):

Let D_1 be a vector subbundle in the tangent bundle of a Riemannian manifold Mand D_2 be its normal bundle. Suppose that the two distributions are involutive. We denote the integral manifolds of D_1 and D_2 by M_1 and M_2 , respectively. Then M is locally isometric to warped product $M_1 \times_f M_2$ if the integral manifold M_1 is totally geodesic and the integral manifold M_2 is an extrinsic sphere, *i.* e, M_2 is a totally umbilical submanifold with parallel mean curvature vector.

Theorem 4.1. A proper CR-submanifold of a nearly Kaehler manifold M is locally CR-warped product if and only if

$$A_{JZ}X = -(JX)(\mu)Z, g(\nabla_Z X, Y) = 0$$

$$(4.7)$$

for some function μ such that $W(\mu) = 0, W \in \Gamma(D^{\perp})$ and

$$2g(\nabla_Z X, V) = g(A_{JZ}V + A_{JV}Z, JX), \qquad (4.8)$$

where $X, Y \in \Gamma(D)$ and $Z, V \in \Gamma(D^{\perp})$.

Proof. If M is a CR-warped product, then, M_T is totally geodesic in M. Thus, $g(\nabla_X Y, Z) = 0$ for $X, Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. Hence, we obtain $g(Y, \nabla_X Z) = 0$. Then from (1.4) we get $g(Y, \nabla_Z X) = 0$ which is the second equation of (4.7). On the other hand, from (4.3), we have g(h(X, JY), JZ) = 0 for $X, Y \in \Gamma(D)$ and $Z, V \in \Gamma(D^{\perp})$. Then, using (2.4), we get $g(A_{JZ}X, JY) = 0$. This implies that $A_{JZ}X \in \Gamma(D^{\perp})$. On the other hand, from (2.4) and (4.4) we have

$$g(A_{JZ}X,V) = -JX(\ln f)g(Z,V)$$

for $X \in \Gamma(D)$ and $Z, V \in \Gamma(D^{\perp})$. Moreover, f is a function on M_T , we have $W(\ln f) = 0$ for $W \in \Gamma(D^{\perp})$. This proves the first equation of (4.7). Furthermore, since A is self-adjoint, from (4.4), we have

$$g(A_{JZ}V, JX) = X(\ln f)g(Z, V).$$

Interchanging the role of Z and V, we get

$$g(A_{JV}Z, JX) = X(\ln f)g(Z, V).$$

Thus, from above two equations, we obtain

$$g(A_{JZ}V + A_{JV}Z, JX) = 2X(\ln f)g(Z, V).$$

Then, using (1.4), we arrive at

$$g(A_{JZ}V + A_{JV}Z, JX) = 2(\nabla_Z X, V)$$

which implies (4.8). Conversely, suppose that M is a CR-submanifold of a nearly Kaehler manifold \overline{M} satisfying (4.7) and (4.8). Then, from (4.2) and (4.7), it follows that D is totally geodesic. (4.8) implies that D^{\perp} is integrable. Let M_{\perp} be a leaf of D^{\perp} . We now denote the second fundamental form of M_{\perp} in M by h_2 . From (4.8), we also have

$$-2g(\nabla_Z V, X) = g(A_{JZ}V + A_{JV}Z, JX)$$

for $X \in \Gamma(D)$ and $Z, V \in \Gamma(D^{\perp})$. Then, since A is self-adjoint, (4.7) implies that

$$-2g(\nabla_Z V, X) = X(\mu)g(Z, V) + X(\mu)g(V, Z).$$

Thus, we obtain

$$g(h_2(Z,V),X) = g(\nabla_Z V,X) = -X(\mu)g(Z,V).$$

This shows that M_{\perp} is totally umbilical in M. Moreover, by direct computations, we get

$$g(\nabla_Z \operatorname{grad} \mu, X) = g(\nabla_Z \operatorname{grad} \mu, X)$$

= $[Zg(\operatorname{grad} \mu, X) - g(\operatorname{grad} \mu, \nabla_Z X)]$
= $[Z(X(\mu)) - [Z, X]\mu - g(\operatorname{grad} \mu, \nabla_X Z)]$
= $[[Z, X]\mu + X(Z(\mu)) - [Z, X]\mu - g(\operatorname{grad} \mu, \nabla_X Z)]$
= $[X(Z(\mu)) - g(\operatorname{grad} \mu, \nabla_X Z)].$

Since $Z(\mu) = 0$, we obtain

$$g(\nabla_Z \operatorname{grad} \mu, \mathbf{X}) = -g(\operatorname{grad} \mu, \nabla_\mathbf{X} \mathbf{Z}).$$

On the other hand, since grad $\mu \in \Gamma(\mathrm{TM}_{\mathrm{T}})$ and M_T is totally geodesic in M, it follows that $\nabla_X Z \in \Gamma(TM_{\perp})$ for $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. Hence $g(\nabla_Z \operatorname{grad} \mu, X) = 0$. Then the spherical condition is also fulfilled, that is M_{\perp} is an extrinsic sphere in M. Thus we conclude that M is a warped product and proof is complete.

We recall that a CR-submanifold is called mixed geodesic [3] if h(X, Z) = 0 for $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. Using (4.4) we have the following:

Corollary 4.1. A mixed totally geodesic CR-warped product $M = M_T \times_f M_{\perp}$ in a nearly Kaehler manifold \overline{M} is a CR-product.

In particular, if $JD^{\perp} = TM^{\perp}$, i. e., M is an anti-holomorphic submanifold of \overline{M} , we have:

Corollary 4.2. An anti-holomorphic warped product submanifold $M = M_T \times_f M_{\perp}$ in a nearly Kaehler manifold \overline{M} is a CR-product if and only if M is mixed totally geodesic.

In the rest of this section, we obtain an inequality for the squared norm of the second fundamental form in terms of the warping function for CR-warped products in a nearly Kaehler manifold. We note that this inequality was proved in [7] for Kaehler case.

Lemma 4.4. Let M be a CR-submanifold of a nearly Kaehler manifold \overline{M} . Then, we have:

$$g(h(Z,Z), JW) = g(h(Z,W), JZ)$$
 (4.9)

for $Z, W \in \Gamma(D^{\perp})$.

Proof. From (2.2), we have $g(h(Z,Z), JW) = g(\overline{\nabla}_Z Z, JW)$ for $Z, W \in \Gamma(D^{\perp})$. Using (1.1), we get $g(h(Z,Z), JW) = -g(J\overline{\nabla}_Z Z, W)$. Hence, we derive

$$g(h(Z,Z),JW) = -g(-(\bar{\nabla}_Z J)Z + \bar{\nabla}_Z JZ,W).$$

Thus, using (1.2) and (2.3), we obtain

$$g(h(Z,Z),JW) = g(A_{JZ}Z,W).$$

Then, from (2.4), we have (4.9).

Theorem 4.2. Let $M = M_T \times_f M_\perp$ be a CR-warped product in a nearly Kaehler manifold \overline{M} . Then we have

(1) The squared norm of the second fundamental form of M satisfies

$$|| h ||^2 \ge 2p || \nabla(\ln f) ||^2,$$
 (4.10)

where $\nabla \ln f$ is the gradient of $\ln f$ and p is the dimension of M_{\perp} .

- (2) If the equality sign of (4.10) holds identically, then M_T is a totally geodesic submanifold and M_{\perp} is a totally umbilical submanifold of \overline{M} . Moreover, M is a minimal submanifold in \overline{M}
- (3) When M is anti-holomorphic and p > 1, the equality sign of (4.10) holds identically if and only if M_{\perp} is totally umbilical submanifold of \overline{M} .
- (4) If M is real hypersurface of M
 (that is p = 1), then the equality sign of (4.10) holds identically if and only if the characteristic vector field Jξ of M is a principal vector field with zero as its principal curvature. Also in this case, the equality sign of (4.10) holds identically if and only if M is a minimal hypersurface in M.

Proof. We take an orthonormal frame $\{e_1, e_{2q}, e_{2q+1}, \ldots, e_m, e_1^* = J(e_{2q+1}), \ldots, e_p^*, e_1, \ldots, e_{2r}\}$ of \overline{M} along M such that $\{e_1, \ldots, e_{2q}\}, \{e_{2q+1}, \ldots, e_m\}$ and $\{e_1, \ldots, e_{2r}\}$ are bases of D, D^{\perp} and ν , respectively. Since

$$|| h ||^{2} = || h(D, D) ||^{2} + || h(D^{\perp}, D^{\perp}) ||^{2} + 2 || h(D^{\perp}, D) ||^{2}.$$

We have

$$\|h\|^{2} = \sum_{k=m+1}^{n} \sum_{i,j=1}^{2q} g(h(e_{i}, e_{j}), \bar{e}_{k})^{2} + \sum_{k=m+1}^{n} \sum_{s,l=1}^{p} g(h(e_{s}, e_{l}), \bar{e}_{k})^{2} + 2\sum_{k=m+1}^{n} \sum_{i=1}^{2q} \sum_{s=1}^{p} g(h(e_{i}, e_{s}), \bar{e}_{k})^{2}$$

where $\{\bar{e}_k\}_{k=1}^n$ is a basis of TM^{\perp} . Then, from the decomposition of normal bundle of a CR-submanifold of a nearly Kaehler manifold, we get

$$\|h\|^{2} = \sum_{k=m+1}^{n} \sum_{i,j=1}^{2q} g(h(e_{i}, e_{j}), \bar{e}_{k})^{2} + \sum_{k=m+1}^{n} \sum_{s,l=1}^{p} g(h(e_{s}, e_{l}), \bar{e}_{k})^{2} + 2\sum_{t,s=1}^{p} \sum_{i=1}^{2q} g(h(e_{i}, e_{s}), Je_{t})^{2} + 2\sum_{l=1}^{2r} \sum_{i=1}^{2q} \sum_{s=1}^{p} g(h(e_{i}, e_{s}), Je_{l})^{2}.$$

Then, from (4.4) we have

$$\|h\|^{2} = \sum_{k=m+1}^{n} \sum_{i,j=1}^{2q} g(h(e_{i}, e_{j}), \bar{e}_{k})^{2} + \sum_{k=m+1}^{n} \sum_{s,l=1}^{p} g(h(e_{s}, e_{l}), \bar{e}_{k})^{2} + 2p \|\nabla(\ln f)\|^{2} + 2\sum_{l=1}^{2r} \sum_{i=1}^{2q} \sum_{s=1}^{p} g(h(e_{i}, e_{s}), Je_{l})^{2}.$$

This proves (4.10). If the equality case of (4.10) holds identically, we obtain

$$h(D,D) = 0, \ h(D^{\perp}, \ D^{\perp}) = 0, \ h(D,D^{\perp}) \subset JD^{\perp}.$$
 (4.11)

Since M_T is totally geodesic in M, the first equation in (4.11) implies that M_T is totally geodesic in \overline{M} . On the other hand, using (2.2) and (1.4) we get

$$h_2(Z, V) = -(\nabla \ln f)g(Z, V)$$
 (4.12)

for $Z, V \in \Gamma(M_{\perp})$. Then, (4.12) and the second equation (4.11) imply that M_{\perp} is totally umbilical in \overline{M} . (4.11) also implies that M is minimal in \overline{M} .

Now suppose that M is an anti-holomorphic warped product in \overline{M} . Then from (4.3) we get

$$h(D,D) = 0. (4.13)$$

Thus, if M_{\perp} is totally umbilical in \overline{M} , we can write

$$\bar{h}(Z,V) = g(Z,V)\bar{H}, \qquad (4.14)$$

for $Z, V \in \Gamma(D^{\perp})$, where \overline{H} is a normal vector field to M_{\perp} . Since

$$\bar{h}(Z,V) = h_2(Z,V) + h(Z,V),$$

(4.14) implies that there is a normal vector field N such that

$$h(Z,V) = g(Z,V)N.$$

Hence, for each unit vector field $V \in \Gamma(D^{\perp})$ and each unit vector field $Z \in \Gamma(D^{\perp})$, perpendicular to V, we derive

$$g(N, JV) = g(h(Z, Z), JV).$$

Then using (4.9) we get

$$g(N, JV) = g(h(Z, V), JZ) = g(Z, V)g(N, JZ) = 0.$$
(4.15)

Since M is anti-holomorphic, (4.15) implies that either p = 1 or

$$h(D^{\perp}, D^{\perp}) = 0.$$
 (4.16)

Then, from (4.4), (4.13) and (4.16), it follows that the equality case holds, when p > 1.

If p = 1, then M is a real hypersurface in \overline{M} . Then, the characteristic vector field $J\xi$ is a principal vector field with zero as its principal curvature if and only if (4.16) holds. Thus, in this case, we also have equality case. If the characteristic vector field $J\xi$ is a principal vector field with zero as its principal curvature, from (4.11) we also know that the condition (4.16) holds if and only if M is minimal in M. The converse is clear. Thus proof is complete.

Remark 3. Thus we show that Theorem 5.1 of [7] is also valid for warped product CR-submanifolds in the form $M_T \times_f M_{\perp}$ in a nearly Kaehler manifold \overline{M} such that M_T is a holomorphic submanifold and M_{\perp} is a totally real submanifold of \overline{M} . It is also clear that Theorem 4.2 is a generalization of Theorem 5.1 in [7].

Acknowledgements. We express our sincere thanks to the referee for many helpful suggestions.

References

 Bashir, M. A.: On the three-dimensional CR-submanifolds of the sixdimensional sphere. Internat. J. Math. Math. Sci. 14(4) (1991), 675–678.
 Zbl 0748.53032

Bashir, M. A.: On CR-submanifolds of the six-dimensional sphere. Internat.
 J. Math. Math. Sci. 18(1) (1995), 201–203.
 Zbl 0828.53049

- [3] Bejancu, A.: *Geometry of CR-Submanifolds*. Kluwer Academic Publishers, Dortrecht 1986. Zbl 0605.53001
- [4] Bishop, R. L.; O' Neill, B.: *Manifolds of Negative Curvature*. Trans. Amer. Math. Soc. **145** (1969), 1–49.
 Zbl 0191.52002
- [5] Bonanzinga, V.; Matsumoto, K.: Warped product CR-submanifold in locally conformal Kaehler Manifold. Periodica Math. Hungar. Mat. 48 (2004), 207– 221.
 Zbl 1104.53049
- [6] Chen, B. Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Leuven 1990.
 Zbl 0716.53006
- [7] Chen, B. Y.: Geometry of warped product CR-submanifolds in Kaehler manifold. Monatsh. Math. 133 (2001), 177–195.
 Zbl 0996.53044
- [8] Chen, B. Y.: Geometry of warped product CR-submanifolds in Kaehler manifolds II. Monatsh. Math. 134 (2001), 103–119.
 Zbl 0996.53045
- Chen, B. Y.: CR-warped products in complex projective spaces with compact holomorphic factor. Monatsh. Math. 141 (2004), 177–186. Zbl 1063.53056
- [10] Deshmukh, S.; Shahid, M. H.; Ali, S.: *CR-submanifolds of a nearly Kaehler manifold. II.* Tamkang J. Math. **17**(4) (1986), 17–27. <u>Zbl 0674.53056</u>
- [11] Dillen, F.; Nölker, S.: Semi-paralellity, multi rotation surfaces and the helix property. J. Reine Angew Math. 435 (1993), 33–63.
 Zbl 0770.53039
- [12] Fukami, T.; Ishihara, S.: Almost Hermitian structures on S⁶. Tohoku Math. J. 7 (1955), 151–156.
 Zbl 0068.36001

- [13] Gray, A.: Vector cross products on manifolds. Trans. Amer. Math. Soc. 141 (1969), 465–504.
 Zbl 0182.24603
- [14] Hasegawa, I.; Mihai, I.: Contact CR-warped product submanifolds in Sasakian Manifolds. Geometriae Dedicata 102 (2003), 143–150.
 Zbl 1066.53103
- [15] Hashimoto, H.; Mashimo, K.: On some 3-dimensional CR submanifolds in S⁶. Nagoya Math. J. **156** (1999), 171–185.
 Zbl 0957.53023
- [16] Hiepko, S.: Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann.
 241 (1979), 209–215. Zbl 0387.53014
- [17] Husain, S. I.; Deshmukh, S.: CR-submanifolds of a nearly Kaehler manifold. Indian J. Pure Appl. Math. 18(11) (1987), 979–990.
 Zbl 0632.53053
- [18] Khan, K. A.; Khan, V. A.; Husain, S. I.: Totally umbilical CR-submanifolds of nearly Kähler manifolds. Geometriae Dedicata 50(1) (1994), 47–51.

Zbl 0805.53053

- [19] Mihai, I.: Contact CR-warped product submanifolds in Sasakian space forms. Geometriae Dedicata 109 (2004), 165–173.
 Zbl 1114.53052
- [20] Munteanu, M. I.: Warped product contact CR-submanifolds of Sasakian space forms. Publ. Math. Debrecen, 66(1-2) (2005), 75-120.
 Zbl 1063.53052
- [21] Sekigawa, K.: Some CR-submanifolds in a 6-dimensional sphere. Tensor (N.S.) 41(1) (1984), 13–20.
 Zbl 0547.53027
- [22] Yano, K.; Kon, M.: Structures on Manifolds. World Scientific, Singapore 1984.
 Zbl 0557.53001

Received March 15, 2007