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Abstract. In this paper, we study warped product CR-submanifolds
of nearly Kaehler manifolds. We extend some results of B. Y. Chen [7]
on warped product CR-submanifolds of Kaehler manifolds to warped
product CR-submanifolds of nearly Kaehler manifolds. We also give an
example for such submanifolds in six dimensional sphere.
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1. Introduction

Let (M̄, g) be an almost Hermitian manifold. This means [22] that M̄ admits a
tensor field J of type (1, 1) on M̄ such that, ∀X, Y ∈ Γ(TM̄), we have

J2 = −I, g(X, Y ) = g(JX, JY ). (1.1)

An almost Hermitian manifold M̄ is called nearly Kaehler manifold if

(∇̄XJ)X = 0, ∀X ∈ Γ(TM̄), (1.2)

which is equivalent to

(∇̄XJ)Y + (∇̄Y J)X = 0, ∀X, Y ∈ Γ(TM̄), (1.3)

where ∇̄ is the Levi-Civita connection on M̄ . T. Fukami and S. Ishihara [12]
proved that there exists a nearly Kaehlerian structure on a six dimensional sphere
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384 B. S. ahin, R. Günes.: CR-Warped Product Submanifolds . . .

S6 by making use of the properties of the Cayley division algebra. This structure
is called as the canonical nearly Kaehlerian structure on S6. In fact, A. Gray [13]
showed that S6 has some almost complex structures, which are different from the
canonical almost complex structures, but nonetheless nearly Kaehlerian.

CR-submanifolds of almost Hermitian manifolds were defined by A. Bejancu [3] as
a generalization of complex and totally real submanifolds. A CR-submanifold is
called proper if it is neither complex nor totally real submanifold. The geometry of
CR-submanifolds has been studied in several papers since then. We note that the
geometry of CR-submanifolds of nearly Kaehler manifolds has been also studied
by several authors, [1], [2], [10], [15], [17], [18], [21].

On the other hand, in [4], R. L. Bishop and B. O’Neill introduced a class of
warped product manifolds as follows: Let (B, g1) and (F, g2) be two Riemannian
manifolds, f : B → (0,∞) and π : B×F → B, η : B×F → F the projection maps
given by π(p, q) = p and η(p, q) = q for every (p, q) ∈ B×F . The warped product
M = B ×F is the manifold B ×F equipped with the Riemannian structure such
that

g(X, Y ) = g1(π∗X, π∗Y ) + (foπ)2g2(η∗X, η∗Y )

for every X and Y of M and ∗ is symbol for the tangent map. The function f is
called the warping function of the warped product manifold. In particular, if the
warping function is constant, then the manifold M is said to be trivial. Let X, Y
be vector fields on B and V, W vector fields on F , then from Lemma 7.3 of [4],
we have

∇XV = ∇V X = (
Xf

f
)V (1.4)

where ∇ is the Levi-Civita connection on M .
Recently, B. Y. Chen [7], [8] considered warped product CR-submanifolds

of Kaehler manifolds and showed that there do not exist warped product CR-
submanifolds in the form M⊥ ×f MT such that MT is a holomorphic (complex)
submanifold and M⊥ is a totally real submanifold of a Kaehler manifold M̄ . Then
he introduced the notion of CR-warped products of Kaehler manifolds as follows:
A submanifold of a Kaehler manifold is called CR-warped product if it is the
warped product MT ×f M⊥ of a holomorphic submanifold MT and a totally real
submanifold M⊥. He also established a sharp relationship between the warping
function f of a warped product CR-submanifold MT ×f M⊥ of a Kaehler manifold
M̄ and the squared norm of the second fundamental form ‖ h ‖2. After the
papers of B. Y. Chen, CR-warped product submanifolds have been studied in
various manifolds [5], [14], [19], [20].

It is known that every Kaehler manifold is a nearly Kaehler but the converse
is not true in general. Therefore, the aim of this paper is to extend the concept of
CR-warped product submanifolds of Kaehler manifolds to warped product CR-
submanifolds of nearly Kaehler manifolds. Our main results improve some results
of B. Y. Chen to CR-warped product submanifolds of nearly Kaehler manifolds.
First, we prove that there exist no warped product CR-submanifolds in the form
M⊥ ×f MT such that M⊥ is a totally real submanifold and MT is a holomorphic
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submanifold of a nearly Kaehler manifold M̄ . Then we consider warped product
CR-submanifolds in the form MT ×f M⊥ in a nearly Kaehler manifold M̄ and
give an example. We prove a characterization theorem and obtain necessary con-
dition for CR-warped product submanifolds to be a CR-product. We obtain a
sharp inequality for the squared norm of the second fundamental form in terms
of the warping function for CR-warped product submanifolds of nearly Kaehler
manifolds.

We note that although the proof of Theorem 4.1 is same as that of Theorem
5.1 in [7], the proof of preparatory lemmas for the proof of Theorem 4.1 is different.

2. Preliminaries

In this section, we will recall the canonical nearly Kaehlerian structure on a 6-
dimensional unit sphere S6. We will also brief some formulas and definitions
which will be useful later. Let C be the Cayley division algebra generated by
{eo, ei, (1 ≤ i ≤ 7)} over real number field R and C+ be the subspace of C
consisting of all purely imaginary Cayley numbers. We may identify C+ with a 7-
dimensional Euclidean space R7 with the canonical inner product <,>. A vector
cross product for the vectors in C+ = R7 is defined by

x ∧ y =< x, y > eo + xy, x, y ∈ C+. (2.1)

Then the multiplication table is given by the following:

1 0 e3 −e2 e5 −e4 −e7 −e6

2 −e3 0 e1 e6 −e7 −e4 e5

3 e2 −e1 0 −e7 −e6 −e5 e4

ej ∧ ek = 4 −e5 −e6 e7 0 e1 e2 −e3

5 e4 e7 e6 −e1 0 −e3 −e2

6 −e7 e4 −e5 −e2 e3 0 e1

7 e6 −e5 −e4 e3 e2 −e1 0

On S6(1) define a (1, 1) tensor field J by putting

JpX = p ∧X

for p ∈ S6(1) and X ∈ TpS
6. The above almost complex structure J together with

the induced Riemannian metric <,> on S6 gives a nearly Kaehlerian structure on
S6 [12]. It is well known that S6 does not admit any Kaehlerian structures. Let M
be a Riemannian manifold isometrically immersed in a nearly Kaehler manifold
M̄ and denote by the same symbol g the Riemannian metric induced on M . Let
Γ(TM) be the Lie algebra of vector fields in M and Γ(TM⊥) the set of all vector
fields normal to M . Denote by ∇ the Levi-Civita connection of M . Then the
Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h(X, Y ) (2.2)
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and
∇̄XN = −ANX +∇⊥

XN (2.3)

for any X, Y ∈ Γ(TM) and any N ∈ Γ(TM⊥), where ∇⊥ is the connection in
the normal bundle TM⊥, h is the second fundamental form of M and AN is the
Weingarten endomorphism associated with N . The second fundamental form and
the shape operator A are related by

g(ANX, Y ) = g(h(X, Y ), N). (2.4)

Let M̄ be a nearly Kaehler manifold with complex structure J and M is a Rie-
mannian manifold isometrically immersed in M̄ . Then M is called holomorphic
(complex) if J(TpM) ⊂ TpM , for every p ∈ M , where TpM denotes the tangent
space to M at the point p. M is called totally real if J(TpM) ⊂ TpM

⊥ for ev-
ery p ∈ M , where TpM

⊥ denotes the normal space to M at the point p. The
submanifold M is called a CR-submanifold [3] if there exists a differentiable dis-
tribution D : p → Dp ⊂ TpM such that D is invariant with respect to J
and the complementary distribution D⊥ is anti-invariant with respect to J . It is
clear that holomorphic and totally real submanifolds are CR-submanifolds with
D⊥ = {0} and D = {0}, respectively. Moreover, every real hypersurface of an
almost Hermitian manifold is a CR-submanifold. For a real hypersurface M of
an almost Hermitian M̄ with a unit normal vector field ξ, the tangent vector Jξ
on M is called a characteristic vector field of M . A unit tangent vector X on
M is called a principal vector if X is an eigenvector of the shape operator Aξ,
the corresponding eigenvalue is called the principal curvature at X. Let M be a
CR-submanifold of a nearly Kaehler manifold, then we have

TM = D ⊕D⊥.

Hence, we also have
TM⊥ = JD⊥ ⊕ ν,

where ν denotes the complementary distribution to JD⊥ in the normal bundle of
M . We note that ν is also invariant with respect to J . For any X ∈ TM we write

JX = TX + FX, (2.5)

where TX ∈ Γ(D) and FX ∈ Γ(JD⊥). Similarly, for any vector field normal to
M , we put

JN = BN + CN, (2.6)

where BN ∈ Γ(D⊥) and CN ∈ Γ(ν).

3. Warped products M⊥ ×f MT in nearly Kaehler manifolds

In this section we consider CR-submanifolds in a nearly Kaehler manifold M̄
which are warped products of the form M⊥ ×f MT such that M⊥ is a totally real
submanifold and MT is a holomorphic submanifold of M̄ .
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Theorem 3.1. Let M̄ be a nearly Kaehler manifold. Then there do not exist
warped product CR-submanifolds in the form M = M⊥×f MT in M̄ such that M⊥
is a totally real submanifold and MT is a holomorphic submanifold of M̄ .

Proof. Let us suppose that M be a warped product CR-submanifold in the form
M = M⊥×f MT in M̄ such that M⊥ is a totally real submanifold and MT is a holo-
morphic submanifold of M̄ . Then, from (2.2), we have g(∇XZ,X) = g(∇̄XZ,X)
for X ∈ Γ(TMT ) and Z ∈ Γ(TM⊥). Using (1.4), we get Z(ln f)g(X, X) =
g(∇̄XZ,X). Since D⊥ and D are orthogonal, we obtain Z(ln f)g(X, X) = −g(Z,
∇̄XX). Then, from (1.1), we derive Z(ln f)g(X, X) = −g(JZ, J∇̄XX). Hence,
we get Z(ln f)g(X, X) = −g(JZ, ∇̄XJX−(∇̄XJ)X). Thus, using (1.2) we obtain

Z(ln f)g(X, X) = −g(JZ, ∇̄XJX).

Then, from (2.2), we have

Z(ln f)g(X, X) = −g(JZ, h(X, JX)) (3.1)

for X ∈ Γ(TMT ) and Z ∈ Γ(TM⊥).
On the other hand, from (2.3), we have

g(AJZX, JX) = −g(∇̄XJZ, JX)

for X ∈ Γ(TMT ) and Z ∈ Γ(TM⊥). Hence, we get

g(AJZX, JX) = g(JZ, ∇̄XJX).

Since ∇̄ is torsion free, we have

g(AJZX, JX) = g(JZ, [X, JX] + ∇̄JXX).

Since [X, JX] ∈ Γ(TM) and JZ ∈ Γ(TM⊥), we derive

g(AJZX, JX) = g(JZ, ∇̄JXX).

Then, from (1.1), we can write

g(AJZX, JX) = −g(JZ, ∇̄JXJ2X).

Hence, we have

g(AJZX, JX) = −g(JZ, (∇̄JXJ)JX + J∇̄JXJX).

Then, from (1.2), we derive

g(AJZX, JX) = −g(JZ, J∇̄JXJX).

Thus, using the second equation of (1.1), we arrive at

g(AJZX, JX) = −g(Z, ∇̄JXJX).
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Then, we get
g(AJZX, JX) = g(∇̄JXZ, JX).

Using (2.2) we obtain

g(AJZX, JX) = g(∇JXZ, JX).

Thus, from (1.4) and (2.4, ) we have

g(h(X, JX), JZ) = Z(ln f)g(JX, JX).

Using (1.1), we arrive at

g(h(X, JX), JZ) = Z(ln f)g(X, X) (3.2)

for X ∈ Γ(TMT ) and Z ∈ Γ(TM⊥). Thus, from (3.1) and (3.2), we conclude that

2Z(ln f)g(X, X) = 0.

Since D is Riemannian, we get

Z(ln f) = 0.

This implies that f is constant on M⊥ which shows that M is a usual product.
Thus proof is complete.

Remark 1. We note that Theorem 3.1 is a generalization of Theorem 3.1 in [7].

4. Warped products MT ×f M⊥ in nearly Kaehler manifolds

Theorem 3.1 shows that there exist no warped product CR-submanifolds in the
form M = M⊥×f MT in M̄ such that M⊥ is a totally real submanifold and MT is
a holomorphic submanifold of M̄ . Therefore, in this section, we consider warped
product CR-submanifolds in the form M = MT ×f M⊥ such that M⊥ is a totally
real submanifold and MT is a holomorphic submanifold of a nearly Kaehler man-
ifold M̄ . Follow Chen’s definition, we call such warped product CR-submanifolds
CR-warped products. Now, we give an example of CR-warped product in S6.

Example 1. Consider Sekigawa’s example [21] of CR-submanifold in S6, which
is the image of the mapping of S2 × S1 into S6:

Ψ(y, t) = Ψ((y2, y4, y6), e
√
−1t)

= (y2 cos t)e2 − (y2 sin t)e3 + (y4 cos 2t)e4

+(y4 sin 2t)e5 + (y6 cos t)e6 + (y6 sin t)e7

where (y2, y4, y6) ∈ S2 and e
√
−1t ∈ S1. Then the tangent bundle TM of subman-

ifold M is given by

Z1 = −y2 sin t e2 − y2 cos te3 − 2y4 sin 2te4 + 2y4 cos 2te5 − y6 sin te6 − y6 cos te7

Z2 = y6 cos t e2 − y6 sin te3 − y2 cos t e6 − y2 sin t e7

Z3 = y6 cos 2t e4 + y6 sin 2t e5 − y4 cos t e6 − y4 sin t e7.
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It is known that M is a CR-submanifold of S6 such that D = span{Z2, Z3} and
D⊥ = span{Z1}. Moreover, we can derive that D is integrable. Denoting the
integral manifolds of D and D⊥by MT and M⊥, respectively, then the induced
metric tensor is

ds2 = (y2
6 + y2

2)dy2
2 + y2 y4dy2 dy4 + (y2

6 + y2
4)dy2

4 + (1 + 3y2
4)dt2

= gMT
+ (1 + 3y2

4)gM⊥ .

Thus it follows that M is a CR-warped product submanifold of S6 with warping
function f =

√
((1 + 3y2

4)).

Remark 2. We note that H. Hashimoto and K. Mashimo [15] gave a generaliza-
tion of Sekigawa’s example. They also showed that the induced metric of their
generalization is a warped product metric (see: [15], Lemma 8). Thus, there are
many three dimensional CR-warped product submanifolds in S6.

Next we give a characterization for CR-warped products in a nearly Kaehler man-
ifolds. We first need the following lemmas.

Lemma 4.1. Let M be a CR-submanifold of a nearly Kaehler manifold M̄ . Then,
the anti-invariant distribution is integrable if and only if

g(∇ZX, V ) =
1

2
g(AJZV + AJV Z, JX) (4.1)

for Z, V ∈ Γ(D⊥) and X ∈ Γ(D).

Proof. From (2.2), we have

g([Z, V ], X) = g(∇̄ZV, X)− g(∇V Z,X)

for Z, V ∈ Γ(D⊥) and X ∈ Γ(D). Then, using (1.1), we get

g([Z, V ], X) = g(J∇̄ZV, JX)− g(∇V Z,X).

Hence, we derive

g([Z, V ], X) = g(−(∇̄ZJ)V + ∇̄ZJV, JX)− g(∇V Z,X).

Thus, using (1.3), we obtain

g([Z, V ], X) = g(∇̄V J)Z, JX) + g(∇̄ZJV, JX)− g(∇V Z,X).

Hence, we have

g([Z, V ], X) = g((∇̄V JZ − J∇̄V Z, JX) + g(∇̄ZJV, JX)− g(∇V Z,X).

Then, using (2.2) and (2.3), we obtain

g([Z, V ], X) = −g(AJZV + AJV Z, JX)− 2g(∇V Z,X).
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Then, we have

g([Z, V ], X) = −g(AJZV + AJV Z, JX)− 2g([V, Z], X)− 2g(∇ZV, X).

Hence we get

g([V, Z], X) = 2g(∇ZX,V )− g(AJZV + AJV Z, JX),

which proves our assertion.

Lemma 4.2. Let M be a CR-submanifold of a nearly Kaehler manifold M̄ . Then,
we have

g(∇XY, Z) = g(JY, AJZX)− g(JY,∇ZJX) + g(Y,∇ZX) (4.2)

for X, Y ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof. Using (2.2) and (1.1), we have g(∇XY, Z) = −g(JY, J∇̄XZ) for X, Y ∈
Γ(D) and Z ∈ Γ(D⊥). Hence, we get g(∇XY, Z) = −g(JY, ∇̄XJZ − (∇̄XJ)Z).
Then, from (1.3), we obtain

g(∇XY, Z) = −g(JY, ∇̄XJZ)− g(JY, (∇̄ZJ)X).

Hence, we get

g(∇XY, Z) = −g(JY, ∇̄XJZ)− g(JY, ∇̄ZJX − J∇̄ZX).

Thus, using (1.1), (2.2) and (2.3) we obtain (4.2).

Lemma 4.3. Let M be a CR-warped product of a nearly Kaehler manifold M̄ .
Then, we have

g(h(X, JY ), JZ) = 0 (4.3)

and
g(h(X, Z), JV )) = −JX(ln f)g(Z, V ) (4.4)

for X, Y ∈ Γ(TMT ) and Z, V ∈ Γ(TM⊥).

Proof. From (1.4), we get g(∇XX, Z) = X(ln f)g(X, Z) = 0 for X ∈ Γ(TMT ) and
Z ∈ Γ(TM⊥). Then, using (2.2) and (1.1), we have g(J∇̄XX, JZ) = 0. Hence

g(−(∇̄XJ)X + ∇̄XJX, JZ) = 0.

Thus, (1.2) implies
g(∇̄XJX, JZ) = 0.

Using (2.2), we get
g(h(X, JX), JZ) = 0.

Then, by polarization for h, we derive

g(h(X, JY ), JZ) + g(h(Y, JX), Z) = 0.
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Now, since M = MT ×f M⊥ is a warped product manifold, D is integrable. Then,
from a result of [10], it follows that h(X, JY ) = h(JX, Y ) for X, Y ∈ Γ(D).
Hence, we obtain (4.3).

On the other hand, from (2.3), we get g(AJZX, V ) = −g(∇̄XJZ, V ) for X ∈
Γ(D) and Z, V ∈ Γ(D⊥). Hence, we have

g(AJZX, V ) = −g((∇̄XJ)Z + J∇̄XZ, V ).

Using (1.2), we obtain

g(AJZX, V ) = g((∇̄ZJ)X, V )− g(J∇̄XZ, V ).

By direct computations, from (1.1), we derive

g(AJZX, V ) = g(∇̄ZJX − J∇̄ZX,V ) + g(∇̄XZ, JV ).

Using, again (1.1), we have

g(AJZX, V ) = g(∇̄ZJX, V ) + g(∇̄ZX, JV ) + g(∇̄XZ, JV ).

Thus, from (2.2), we get

g(AJZX, V ) = g(∇ZJX, V ) + g(h(Z,X), JV ) + g(h(X, Z), JV ).

Since h is symmetric, (1.4) and (2.4) imply that

g(h(V, X), JZ) = JX(ln f)g(Z, V ) + 2g(h(X, Z), JV ) (4.5)

for X ∈ Γ(D) and Z, V ∈ Γ(D⊥). Interchanging the role of Z and V , we obtain

g(h(Z,X), JV ) = JX(ln f)g(Z, V ) + 2g(h(X, V ), JZ) (4.6)

Thus from (4.5) and (4.6) we get

g(h(X, Z), JV ) = −JX(ln f)g(Z, V ).

Now, we are ready to prove a characterization theorem for CR-warped products
in nearly Kaehler manifolds. But we first recall that we have the following result
of S. Hiepko [16], (cf. [11], Remark 2.1):

Let D1 be a vector subbundle in the tangent bundle of a Riemannian manifold M
and D2 be its normal bundle. Suppose that the two distributions are involutive.
We denote the integral manifolds of D1 and D2 by M1 and M2, respectively. Then
M is locally isometric to warped product M1 ×f M2 if the integral manifold M1 is
totally geodesic and the integral manifold M2 is an extrinsic sphere, i. e, M2 is a
totally umbilical submanifold with parallel mean curvature vector.

Theorem 4.1. A proper CR-submanifold of a nearly Kaehler manifold M̄ is
locally CR-warped product if and only if

AJZX = −(JX)(µ)Z, g(∇ZX, Y ) = 0 (4.7)
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for some function µ such that W (µ) = 0, W ∈ Γ(D⊥) and

2g(∇ZX,V ) = g(AJZV + AJV Z, JX), (4.8)

where X, Y ∈ Γ(D) and Z, V ∈ Γ(D⊥).

Proof. If M is a CR-warped product, then, MT is totally geodesic in M . Thus,
g(∇XY, Z) = 0 for X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). Hence, we obtain g(Y,∇XZ) =
0. Then from (1.4) we get g(Y,∇ZX) = 0 which is the second equation of (4.7).
On the other hand, from (4.3), we have g(h(X, JY ), JZ) = 0 for X, Y ∈ Γ(D)
and Z, V ∈ Γ(D⊥). Then, using (2.4), we get g(AJZX, JY ) = 0. This implies
that AJZX ∈ Γ(D⊥). On the other hand, from (2.4) and (4.4) we have

g(AJZX, V ) = −JX(ln f)g(Z, V )

for X ∈ Γ(D) and Z, V ∈ Γ(D⊥). Moreover, f is a function on MT , we have
W (ln f) = 0 for W ∈ Γ(D⊥). This proves the first equation of (4.7). Furthermore,
since A is self-adjoint, from (4.4), we have

g(AJZV, JX) = X(ln f)g(Z, V ).

Interchanging the role of Z and V , we get

g(AJV Z, JX) = X(ln f)g(Z, V ).

Thus, from above two equations, we obtain

g(AJZV + AJV Z, JX) = 2X(ln f)g(Z, V ).

Then, using (1.4), we arrive at

g(AJZV + AJV Z, JX) = 2(∇ZX,V )

which implies (4.8). Conversely, suppose that M is a CR-submanifold of a nearly
Kaehler manifold M̄ satisfying (4.7) and (4.8). Then, from (4.2) and (4.7), it
follows that D is totally geodesic. (4.8) implies that D⊥ is integrable. Let M⊥ be
a leaf of D⊥. We now denote the second fundamental form of M⊥ in M by h2.
From (4.8), we also have

−2g(∇ZV, X) = g(AJZV + AJV Z, JX)

for X ∈ Γ(D) and Z, V ∈ Γ(D⊥). Then, since A is self-adjoint, (4.7) implies that

−2g(∇ZV, X) = X(µ)g(Z, V ) + X(µ)g(V, Z).

Thus, we obtain

g(h2(Z, V ), X) = g(∇ZV, X) = −X(µ)g(Z, V ).
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This shows that M⊥ is totally umbilical in M . Moreover, by direct computations,
we get

g(∇Z grad µ, X) = g(∇Z grad µ, X)

= [Zg(grad µ, X)− g(grad µ,∇ZX)]

= [Z(X(µ))− [Z,X]µ− g(grad µ,∇XZ)]

= [[Z,X]µ + X(Z(µ))− [Z,X]µ− g(grad µ,∇XZ)]

= [X(Z(µ))− g(grad µ,∇XZ)].

Since Z(µ) = 0, we obtain

g(∇Z grad µ, X) = −g(grad µ,∇XZ).

On the other hand, since grad µ ∈ Γ(TMT) and MT is totally geodesic in M , it fol-
lows that ∇XZ∈Γ(TM⊥) for X∈Γ(D) and Z∈Γ(D⊥). Hence g(∇Z grad µ, X)=
0. Then the spherical condition is also fulfilled, that is M⊥ is an extrinsic sphere
in M . Thus we conclude that M is a warped product and proof is complete.

We recall that a CR-submanifold is called mixed geodesic [3] if h(X,Z) = 0 for
X ∈ Γ(D) and Z ∈ Γ(D⊥). Using (4.4) we have the following:

Corollary 4.1. A mixed totally geodesic CR-warped product M = MT ×f M⊥ in
a nearly Kaehler manifold M̄ is a CR-product.

In particular, if JD⊥ = TM⊥, i. e., M is an anti-holomorphic submanifold of M̄ ,
we have:

Corollary 4.2. An anti-holomorphic warped product submanifold M = MT×fM⊥
in a nearly Kaehler manifold M̄ is a CR-product if and only if M is mixed totally
geodesic.

In the rest of this section, we obtain an inequality for the squared norm of the
second fundamental form in terms of the warping function for CR-warped products
in a nearly Kaehler manifold. We note that this inequality was proved in [7] for
Kaehler case.

Lemma 4.4. Let M be a CR-submanifold of a nearly Kaehler manifold M̄ . Then,
we have:

g(h(Z,Z), JW ) = g(h(Z,W ), JZ) (4.9)

for Z,W ∈ Γ(D⊥).

Proof. From (2.2), we have g(h(Z,Z), JW ) = g(∇̄ZZ, JW ) for Z,W ∈ Γ(D⊥).
Using (1.1), we get g(h(Z,Z), JW ) = −g(J∇̄ZZ,W ). Hence, we derive

g(h(Z,Z), JW ) = −g(−(∇̄ZJ)Z + ∇̄ZJZ, W ).
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Thus, using (1.2) and (2.3), we obtain

g(h(Z,Z), JW ) = g(AJZZ,W ).

Then, from (2.4), we have (4.9).

Theorem 4.2. Let M = MT ×f M⊥ be a CR-warped product in a nearly Kaehler
manifold M̄ . Then we have

(1) The squared norm of the second fundamental form of M satisfies

‖ h ‖2≥ 2p ‖ ∇(ln f) ‖2, (4.10)

where ∇ ln f is the gradient of ln f and p is the dimension of M⊥.

(2) If the equality sign of (4.10) holds identically, then MT is a totally geodesic
submanifold and M⊥ is a totally umbilical submanifold of M̄ . Moreover, M
is a minimal submanifold in M̄

(3) When M is anti-holomorphic and p > 1, the equality sign of (4.10) holds
identically if and only if M⊥ is totally umbilical submanifold of M̄ .

(4) If M is real hypersurface of M̄ (that is p = 1), then the equality sign of
(4.10) holds identically if and only if the characteristic vector field Jξ of
M is a principal vector field with zero as its principal curvature. Also in
this case, the equality sign of (4.10) holds identically if and only if M is a
minimal hypersurface in M̄ .

Proof. We take an orthonormal frame {e1, e2q, e2q+1, . . . , em, e∗1 = J(e2q+1), . . .,
e∗p, e1, . . . , e2r} of M̄ along M such that {e1, . . . , e2q}, {e2q+1, . . . , em} and {e1, . . . ,
e2r} are bases of D, D⊥ and ν, respectively. Since

‖ h ‖2=‖ h(D, D) ‖2 + ‖ h(D⊥, D⊥) ‖2 +2 ‖ h(D⊥, D) ‖2 .

We have

‖ h ‖2 =
n∑

k=m+1

2q∑
i,j=1

g(h(ei, ej), ēk)
2 +

n∑
k=m+1

p∑
s,l=1

g(h(es, el), ēk)
2

+2
n∑

k=m+1

2q∑
i=1

p∑
s=1

g(h(ei, es), ēk)
2

where {ēk}n
k=1 is a basis of TM⊥. Then, from the decomposition of normal bundle

of a CR-submanifold of a nearly Kaehler manifold, we get

‖ h ‖2 =
n∑

k=m+1

2q∑
i,j=1

g(h(ei, ej), ēk)
2 +

n∑
k=m+1

p∑
s,l=1

g(h(es, el), ēk)
2

+2

p∑
t,s=1

2q∑
i=1

g(h(ei, es), Jet)
2 + 2

2r∑
l=1

2q∑
i=1

p∑
s=1

g(h(ei, es), Jel)
2.
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Then, from (4.4) we have

‖ h ‖2 =
n∑

k=m+1

2q∑
i,j=1

g(h(ei, ej), ēk)
2 +

n∑
k=m+1

p∑
s,l=1

g(h(es, el), ēk)
2

+2p ‖ ∇(ln f) ‖2 +2
2r∑
l=1

2q∑
i=1

p∑
s=1

g(h(ei, es), Jel)
2.

This proves (4.10). If the equality case of (4.10) holds identically, we obtain

h(D, D) = 0, h(D⊥, D⊥) = 0, h(D, D⊥) ⊂ JD⊥. (4.11)

Since MT is totally geodesic in M , the first equation in (4.11) implies that MT is
totally geodesic in M̄ . On the other hand, using (2.2) and (1.4) we get

h2(Z, V ) = −(∇ ln f)g(Z, V ) (4.12)

for Z, V ∈ Γ(M⊥). Then, (4.12) and the second equation (4.11) imply that M⊥ is
totally umbilical in M̄ . (4.11) also implies that M is minimal in M̄ .

Now suppose that M is an anti-holomorphic warped product in M̄ . Then
from (4.3) we get

h(D, D) = 0. (4.13)

Thus, if M⊥ is totally umbilical in M̄ , we can write

h̄(Z, V ) = g(Z, V )H̄, (4.14)

for Z, V ∈ Γ(D⊥), where H̄ is a normal vector field to M⊥. Since

h̄(Z, V ) = h2(Z, V ) + h(Z, V ),

(4.14) implies that there is a normal vector field N such that

h(Z, V ) = g(Z, V )N.

Hence, for each unit vector field V ∈ Γ(D⊥) and each unit vector field Z ∈ Γ(D⊥),
perpendicular to V , we derive

g(N, JV ) = g(h(Z,Z), JV ).

Then using (4.9) we get

g(N, JV ) = g(h(Z, V ), JZ) = g(Z, V )g(N, JZ) = 0. (4.15)

Since M is anti-holomorphic, (4.15) implies that either p = 1 or

h(D⊥, D⊥) = 0. (4.16)

Then, from (4.4), (4.13) and (4.16), it follows that the equality case holds, when
p > 1.
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If p = 1, then M is a real hypersurface in M̄ . Then, the characteristic vector
field Jξ is a principal vector field with zero as its principal curvature if and only
if (4.16) holds. Thus, in this case, we also have equality case. If the characteristic
vector field Jξ is a principal vector field with zero as its principal curvature, from
(4.11) we also know that the condition (4.16) holds if and only if M is minimal in
M . The converse is clear. Thus proof is complete.

Remark 3. Thus we show that Theorem 5.1 of [7] is also valid for warped product
CR-submanifolds in the form MT ×f M⊥ in a nearly Kaehler manifold M̄ such
that MT is a holomorphic submanifold and M⊥ is a totally real submanifold of
M̄ . It is also clear that Theorem 4.2 is a generalization of Theorem 5.1 in [7].
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helpful suggestions.
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