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Abstract. In this note we obtain a new cyclicity criterion for four points
in the Euclidean plane, by using algebraic and geometric structures
induced in C2 by the two dimensional complex projective space. We
show that if four points lie on a circle in the real plane, then the type-
one isotropic lines intersect z2-axis in four points of real cross ratio.
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1. Introduction

In Euclidean geometry or complex analysis the cyclicity is related to the study of
a geometric quantity similar to the cross ratio (see e.g. [3], p. 49, or [8], p. 260).
In the present note we explore the underlying projective content of this geometric
quantity. This exploration leads to a new cyclicity criterion for four points in the
Euclidean plane. This criterion, presented below as Theorem 1, has a complex
projective nature. To obtain this result, some algebraic properties of the complex
two dimensional projective space are converted into geometric properties of certain
special configurations in the Euclidean plane.

We recall a few well-known facts in projective geometry (see e.g. [5, 7]). Let
A, B, C, and D be four points, in this order, on the line d in the Euclidean plane.
Consider a system of coordinates on d such that A, B, C, and D correspond to
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x1, x2, x3, and x4, respectively. The cross ratio of four ordered points on a line d,
A, B, C,D is by definition (see for example [1], pp. 161–164, or [4], p. 77, or [6],
p. 248):

(ABCD) =
AC

BC
:

AD

BD
=

x3 − x1

x3 − x2

:
x4 − x1

x4 − x2

. (1)

This definition may be extended to a pencil consisting of four ordered lines
d1, d2, d3, d4. By definition, the cross ratio of four ordered lines is the cross ratio
determined by the points of intersection with a line d. Therefore,

(d1d2d3d4) =
A1A3

A2A3

:
A1A4

A2A4

where {Ai} = d ∩ di. It is known that the above definition is independent of d,
since

(d1d2d3d4) =
sin (α + β)

sin β
:
sin (α + β + γ)

sin (β + γ)
. (2)

Furthermore, the cross ratio may be extended to four points on a circle. Denote
by A1, A2, A3, and A4 four points on a circle C. Then (A1A2A3A4)C := (d1d2d3d4)
where di = MAi, M ∈ C. As formula (2) shows, the definition does not depend
on M . A projectivity on a line d is a map f : d → d such that, for any four points
and their images, the cross ratio is preserved, that is (A1A2A3A4) = (B1B2B3B4)
where Bi = f (Ai) , i = 1, 4. The points Ai and Bi are called homologous points
of the projectivity on d, and the relation Bi = f (Ai) is denoted Ai → Bi. It is
well-known that a projectivity on d is determined by three pairs of homologous
points.

Proposition 1. Denoting by x and y the coordinates of the homologous points
corresponding through a projectivity on d, we have:

y =
mx + n

px + q
, mq − np 6= 0,

where m,n, p, q ∈ R.

Proof. Note that one of the parameters m, n, p, or q has to be different than zero.
Therefore, the above expression depends only of the remaining three parameters,
which would be determined by three pairs of homologous points.

Conversely, if xi, i = 1, 4 are the coordinates of four arbitrary points on d and
yi = mxi+n

pxi+q
are their images then it is easy to see that

x3 − x1

x3 − x2

:
x4 − x1

x4 − x2

=
y3 − y1

y3 − y2

:
y4 − y1

y4 − y2

.

We can extend the definition of projectivity to pencils of lines. Let A and B be
two points and d be a line in the plane. Consider M and N on d, and the families
of lines {AM/M ∈ d}, {BN/N ∈ d}, which are called pencils of lines determined
by A and respectively by B. The two pencils of lines are called projective if M
and N are homologous points in a projectivity on d. The homologous lines AM
and BN are called homologous rays. According to (2) this definition does not
depend on the line d.
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2. The cyclicity theorem

The two dimensional complex projective space is defined by

CP(2) = {(z1, z2, z3) ∈ C3; (z1, z2, z3) ∼ (z′1, z
′
2, z

′
3),

⇔ ∃α ∈ C∗ : zi = αz′i, i = 1, 2, 3}

where we use the natural inclusion R2 ⊂ C2 ⊂ CP(2). (See e.g. [7], pp. 158–160.)
The geometric objects from R2 can be regarded as objects in C2, since we may
use complex coordinates; in particular, any real number x can be written in the
form x+ i0 in C. Any pair (z1, z2) from C2 can be regarded as the triple (z1, z2, 1)
from CP(2). However, this triple is the same as (az1, az2, a) and is the same as

any triple (z′1, z
′
2, z

′
3) with the property that

z′
1

z′
3

= z1,
z′
2

z′
3

= z2, with z′3 6= 0.

A line ax + by + c = 0 in R2 can be viewed also as a geometric object in C2.
In that case its equation becomes az1 + bz2 + c = 0. In CP(2), this equation takes

the form az′1 + bz′2 + cz′3 = 0, by replacing z1 and z2 by
z′
1

z′
3
,

z′
2

z′
3
, respectively. With

this simple procedure we can obtain an induced line in CP(2) for any line from
R2. The converse however is not true. To see why, consider the particular case
when a = b = 0, and c = 1 in the equation az′1 + bz′2 + cz′3 = 0. We obtain a line
in CP(2), z3 = 0, which is not determined by a line in R2. We call this line the
line at infinity of CP(2).

A circle in R2 given by (x− a)2 + (y − b)2 = r2 can be transformed using this
procedure into a figure that we call circle in CP(2), having the equation

(z1 − az3)
2 + (z2 − bz3)

2 = r2z2
3 .

We now observe that all real circles intersect the line at infinity in the same two
points, after they are embedded in C2, and then in CP(2)

Indeed, if we intersect z3 = 0 and (z1 − az3)
2 + (z2 − bz3)

2 = r2z2
3 we obtain

z2
1 + z2

2 = 0. In light of CP(2)’s definition, we can choose z1 = 1 and z2 = ±i.
It follows that the points Ω (1, i, 0) and Ω′ (1,−i, 0) are the points of intersection
between an embedded real circle and the line at infinity. These points are called
the absolute points of CP(2).

Similarly, the real line of equation y = mx + n, regarded in CP(2), intersects
the infinity line at (1, m, 0), where m is the slope of the original line. Since we are
performing only an algebraic computation, it does not matter if the line’s coeffi-
cients a, b, c are real or purely complex. This allows us to extend our discussion
to C2.

In consequence, the result above reveals two types of lines in C2, which corre-
spond to the absolute points: z2 = iz1 + l passing through Ω, and z2 = −iz1 + l′

passing through Ω′. They are called isotropic type-one lines, and isotropic type-
two lines, respectively.

Two such isotropic lines intersect in R2 if and only if l′ = l̄. Indeed, if (a, b) is
their point of intersection, then l = b− ia and l′ = b + ia. For our problem, it is
important to understand the rôle played by the points (0, b− ia) and (0, b + ia).
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These points are of interest since they are the intersection between z2-axis and
each of the lines z2 = iz1 + (b− ia) and z2 = −iz1 + (b + ia), respectively.

By naturally extending the real case, a complex line in C2 gets the form
az1 + bz2 + c = 0, where the coefficients a, b, c ∈ C. The cross-ratio presented
above for four collinear points in the real plane R2 can be extended similarly to
four collinear points in C2.

This analysis leads us to the main result of this paper. We call this result the
“cyclicity theorem”.

Theorem 1. If four points lie on a circle in the real plane R2, then the type-one
isotropic lines intersect z2-axis in four points of real cross ratio.

Proof. Consider four points (xo + r cos αj, yo + r sin αj) , j = 1, 4, which belong
to the circle having (xo, yo) as a center and r as radius. In line with the discussion
above, the type-one isotropic line

z2 = iz1 + (yo + r sin αj − i (xo + r cos αj)) , j = 1, 4

intersect z2-axis in

Wj (0, yo + r sin αj − i (xo + r cos αj)) , j = 1, 4.

The cross ratio ω is

ω =
sin α1 − i cos α1 − sin α2 + i cos α2

sin α1 − i cos α1 − sin α3 + i cos α3

:
sin α4 − i cos α4 − sin α2 + i cos α2

sin α4 − i cos α4 − sin α3 + i cos α3

.

Therefore,

ω =
sin α1−α2

2

sin α1−α3

2

· ei
α1+α2

2
−i

α1+α3
2 :

sin α4−α2

2

sin α4−α3

2

· ei
α4+α2

2
−i

α4+α3
2

which means that

ω =
sin α1−α2

2

sin α1−α3

2

:
sin α4−α2

2

sin α4−α3

2

∈ R. 2

Consider the type-two isotropic lines which correspond to the same four points of
the previous circle. We obtain the equations

z2 = −iz1 + (yo + r sin αj + i (xo + r cos αj)) , j = 1, 4.

The points of intersection between these lines and z2-axis are

W̄j (0, yo + r sin αj + i (xo + r cos αj)) , j = 1, 4.

Their cross ratio is also equal to ω. It means that both type-one and type-two
pencils of isotropic lines ΩWj and Ω′W̄j are projective.

If we trace backwards the arguments from this conclusion to the computations
we did above, we obtain the proof of the converse of the previous assertion: the
corresponding rays ΩWj and Ω′W̄j meet on a given circle in the real plane R2.
Thus we have the following fact.
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Theorem 2. Two pencils of isotropic conjugate lines are projective if and only if
the corresponding rays intersect on a circle.

It follows that a circle can be seen as the intersection of two projective pencils of
isotropic conjugate lines. Theorem 2 is a consequence of our Theorem 1. (The-
orem 2 appears, with a different proof, in [2], pp. 335–336.) Furthermore, the
cyclicity theorem becomes a criterion of recognition of the projectivity of conju-
gate isotropic pencils, and therefore of the existence of the circle of intersection
of conjugate isotropic lines that correspond in that projectivity. The above men-
tioned criterion of recognition is:

If four type-one isotropic lines intersect z2-axis in four points having a real cross
ratio, then each of them intersects the conjugate isotropic line in a point such that
the four points lie on a circle in the real plane R2.

3. When can we apply the cyclicity criterion?

We prove that Theorem 1 is equivalent to the classical cyclicity condition known in
Euclidean geometry or complex analysis, (see e.g. [8], p. 260) that a quadrilateral
is cyclic if and only if the cross ratio of the complex numbers corresponding to its
vertices is real.

Consider the quadrilateral ABCD in the Euclidean plane R2. Denote by
zA, zB, zC , and zD the complex numbers corresponding to the points A, B, C, and
D respectively. Denote by A the measure of ∠BAD and by C the measure of
∠DCB.

Then, a direct computation yields:

zD − zA = ρ(zB − zA)(cos A + i sin A),

zD − zC = µ(zB − zC)(cos(−C) + i sin(−C)),

where ρ = |zD−zA|
|zB−zA|

, and µ = |zD−zC |
|zB−zC | . In the second formula we get −C due to the

orientation of the rotation of the position vector zB − zC when its image overlaps
on zD − zC . Furthermore, we have

zD − zA

zD − zC

:
zB − zA

zB − zC

=
ρ

µ
(cos(A + C) + i sin(A + C)).

This proves that ABCD is cyclic (in classical terms, A + C = π) is equivalent to

zD − zA

zB − zA

:
zD − zC

zB − zC

= −ρ

µ
∈ R.

This means that we have proved cyclicity in the classical theory.

We show below that the classical criterion of cyclicity is equivalent to Theorem 1.
Consider A a point in the plane and its corresponding complex number zA. The
isotropic line of first type passing through A has in C2 the equation z2 = i(z1−zA).
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Its z2-intercept has the coordinates (0,−izA). Computing similarly the intercepts
for the points B, C, D we get that ABCD is cyclic if and only if the cross ratio

−izD + izA

−izB + izA

:
−izD + izC

−izB + izC

(3)

is real, thus, after a simplification, if and only if

zD − zA

zB − zA

:
zD − zC

zB − zC

∈ R.

As a matter of fact, what role would Theorem 1 play if we already have a classical
theorem for cyclicity? The classical criterion is, in fact, a metric characterization,
since it is related to the sum of the measures of two opposite angles in a cyclic
quadrilateral. Actually, the concept of measure of an angle is a metric concept.
On the other hand, bringing a different view on the same problem, the projective
context is at least as suitable for a study of the cyclicity as the classical approach,
since it offers an algebraic qualitative meaning of the cyclicity phenomenon. More
precisely, the emphasis is on the existence of a projectivity between two con-
jugated isotropic pencils or, equivalently, on the existence of a real cross ratio.
This discussion shows that, at least in theory, the cyclicity criterion brought by
Theorem 1 could be used every time the classical criterion applies.

4. Examples

To better illustrate the cyclicity theorems discussed previously, we include here
several applications.

Example 1. Let Ω (1, i, 0) be the first absolute point. Consider A(1, 0), B(0, 1),
C(−1, 0), D(0,−1). To check if they lie on the same circle, consider the isotropic
type-one lines of equations ΩA : z2 = iz1−i, ΩB : z2 = iy1+1, ΩC : z2 = iz1+i,
ΩD : z2 = iz1 − 1, with their z2-intercepts lying on the line of equation z1 = 0.
These intercepts are: z′A = −i, z′B = 1, z′C = i, z′D = −1, respectively. The cross
ratio is 1+i

1−i
: −1+i
−1−i

= −1 ∈ R. Thus A, B, C,D lie on the same circle.

Example 2. Let ABCD be a cyclic quadrilateral. Prove that the centroids of
triangles ABC, BCD, CDA, and DAB lie on the same circle.

For the proof, we use the classical cyclicity criterion. Denote by zA, zB, zC , and
zD the complex numbers corresponding to the points A, B, C, and D respectively.
The hypothesis that ABCD is cyclic can be expressed in equivalent form

zD − zC

zD − zA

:
zB − zC

zB − zA

∈ R.

The centroids in ∆ABC, ∆BCD, ∆ADC, ∆ABD correspond to the complex num-
bers

zABC =
1

3
(zA + zB + zC), zBCD =

1

3
(zD + zB + zC),
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zADC =
1

3
(zA + zD + zC), zBAD =

1

3
(zD + zB + zA).

A direct computation yields:

zABD − zABC

zBCD − zABC

:
zABD − zABC

zBCD − zABC

=
zD − zC

zD − zA

:
zB − zC

zB − zA

∈ R.

Thus, the quadrilateral formed by the four centroids is cyclic.

Remark that this proof can be interpreted also as an application of our cyclicity
criterion, in the sense that the above computation expresses also the cross ratio
(3).

Example 3. We use our cyclicity theorem to prove Problem 10710 from Amer.
Math. Monthly, proposed by the second author in 106 (1999), pp. 68. A syn-
thetic solution, by A. Sinefakopoulos, is in Amer. Math. Monthly 107(6) (2000),
pp. 572–573. To better serve our exposition, we slightly rephrase the problem in
the following form.

Given a triangle ABC, let us denote by D ∈ BC, E ∈ AB, F ∈ AC the contact
points between the incircle and the sides of ABC and let I be the incenter. The
parallel through A to BC intersects DE and DF in M and N , respectively. Let
L, T be the midpoints of MD and ND. Then A, L, I and T lie on a circle.

We show that the circle from the initial problem is the intersection of two projec-
tive pencils of isotropic conjugate lines.

We will use the same notations as in the problem and let p be the semiperime-
ter of ∆ABC.

If A (0, a) , B (−b, 0), and C (c, 0) then

I

(
c +

√
a2 + b2 − b−

√
a2 + c2

2
,

a (b + c)

b + c +
√

a2 + b2 +
√

a2 + c2

)
,

T

(
c−

√
a2 + c2

2
,

a

2

)
and L

(√
a2 + b2 − b

2
,
a

2

)
.

Obviously, BD = p− AC, thus BD = b+c+
√

a2+b2−
√

a2+c2

2
.

The equality BD = BO + OD yields xD = c+
√

a2+b2−b−
√

a2+c2

2
. The inradius

r can be computed by the well-known formula r = S
p
, where S is the area of the

triangle ABC. Thus,

r =
a (b + c)

b + c +
√

a2 + b2 +
√

a2 + c2
.

It follows that

I

(
c +

√
a2 + b2 − b−

√
a2 + c2

2
,

a (b + c)

b + c +
√

a2 + b2 +
√

a2 + c2

)
.
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Since AM = AE = p−BC, we get

AM =

√
a2 + b2 +

√
a2 + c2 − b− c

2
.

Since L and T are midpoints for MD and ND, respectively, we have

T

(
c−

√
a2 + c2

2
,
a

2

)
; L

(√
a2 + b2 − b

2
,

a

2

)
.

Consequence. The type-one isotropic lines which pass through A, L, I, and T
intersect z2-axis in A′, L′, I ′, and T ′, respectively, with the coordinates:

z2(A
′) = a;

z2(L
′) =

a

2
− i

√
a2 + b2 − b

2
;

z2(T
′) =

a

2
− i

c−
√

a2 + c2

2
;

z2(I
′) =

a (b + c)

b + c +
√

a2 + b2 +
√

a2 + c2
+ i

c +
√

a2 + b2 − b−
√

a2 + c2

2
.

Now we are ready to apply the cyclicity theorem to conclude the proof. Consider-
ing the results asserted by Theorem 2, if we compute ω = z2(A′)−z2(L′)

z2(A′)−z2(T ′)
: z2(I′)−z2(L′)

z2(I′)−z2(T ′)

we obtain ω ∈ R.
According to our cyclicity theorem, the isotropic lines ΩA′, ΩL′, ΩI ′, and ΩT ′

cut Ω′A′′, Ω′L′′, Ω′I ′′, and Ω′T ′′ at the points A, L, I, and T , respectively, which
lie on the same circle.

The geometric configuration from Example 3 is studied also, from a different
viewpoint, in [9].
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