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Abstract. A classical theory of Desarguesian geometry, originating
with D. Hilbert in his 1899 treatise Grundlagen der Geometrie, leads
from axioms to the construction of a division ring from which coordi-
nates may be assigned to points, and equations to lines; this theory is
highly nonconstructive. The present paper develops this coordinatiza-
tion theory constructively, in accordance with the principles introduced
by Errett Bishop in his 1967 book, Foundations of Constructive Analy-
sis.
The traditional geometric axioms are adopted, together with two supple-
mentary axioms which are constructively stronger versions of portions
of the usual axioms. Stronger definitions, with enhanced constructive
meaning, are also selected; these are based on a single primitive notion,
and are classically equivalent to the traditional definitions. Brouwerian
counterexamples are included; these point out specific nonconstructiv-
ities in the classical theory, and the consequent need for strengthened
definitions and results in a constructive theory.
All the major results of the classical theory are established, in their
original form – revealing their hidden constructive content.

MSC 2000: 51A30

1. Introduction

In various forms, the constructivist program goes back to Leopold Kronecker,
Henri Poincaré, L. E. J. Brouwer, and many others. The most significant recent
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work, using the strictest methods, is due to Errett Bishop. A large portion of
analysis has been constructivized in Bishop’s book, Foundations of Constructive
Analysis [2]; this book also serves as a guide for constructive work in other fields.1

The initial phase of this program involves the rebuilding of classical theories
using only constructive methods. This phase is based on the entire body of classi-
cal mathematics, as a wellspring of theories waiting to be constructivized. “Every
theorem proved with [nonconstructive] methods presents a challenge: to find a
constructive version, and to give it a constructive proof”.2

Following this dictum, the present work is based on the classical theory of
Desarguesian planes and their coordinatization, which originated with D. Hilbert
[9]; the plan used here follows the modern presentation given by E. Artin [1].
The classical theory is highly nonconstructive; it relies heavily, at nearly every
juncture, on the principle of the excluded middle. For example, it is assumed that
a given point is either on a given line, or not on the line — although no finite
routine is provided for making such a determination.

The Desarguesian coordinatization theory will be developed constructively,
adhering to the precepts put forth by Bishop. The selection of axioms and defi-
nitions is constrained by the constructive properties of the real plane R2; we will
not expect to prove any theorem that is constructively invalid on R2.

Primitive notion. We adopt a single primitive notion, distinct points, with strong
properties. The most significant property involves a disjunction. Classically, the
condition is obvious: A point cannot be equal to each of two given distinct points.
Constructively, we must have a finite routine that results in a definite decision:
The point is distinct from one of the two given points — which point?

Principal relation. Rather than the usual concept “point on a line”, the concept
“point outside a line” will have constructive utility as the principal relation. This
relation is given an affirmative definition directly in terms of the primitive.

Axioms. The axioms fall into three groups. The five classical axioms used by
Artin [1] are adopted here without change. In group G are the three traditional
axioms for plane geometry. In group K are the two symmetry axioms required
for the coordinatization.

Axiom group L. The two axioms in this group are not essentially new, but are
inherent in the classical theory. These axioms are strong versions of the uniqueness
portions of the axioms in group G; they provide disjunctive decisions in situations
involving nonparallel lines. One of these supplementary axioms follows, in classical
form, from the parallel postulate: “A line cannot be parallel to each of two given,
distinct, intersecting lines.” Constructively, a finite routine must provide a definite
decision: The line is nonparallel to one of the given lines — which line? The
alternative forms of these axioms will be discussed further in Appendix A to
Section 2.

1Expositions of constructivist ideas and methods, and further references, may be found in
[2], [3], Chapter 1, [4], [20], [21], and [17]; pp. 1–6.

2Errett Bishop, 1967 [2], page x.
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Parallelism. This is the central idea of the theory. The affirmative concept,
“nonparallel”, is the focus; in turn, this concept will be based on an affirmative
definition of “distinct” lines.

Dilatations. The coordinatization is based on the symmetries of the geometry;
these are the dilatations, maps that preserve direction. The classical theory of
dilatations rests heavily on nonconstructive principles. Here we must strengthen
the definition, requiring a dilatation to be injective in a strict sense. New con-
structions are required to show that the inverse of a dilatation is also a dilatation,
and to prove an extension theorem for dilatations.

Translations. The classical definition of a translation, a dilatation that is either
the identity or has no fixed point, is not constructively feasible. We will say that
a dilatation is a translation if any traces are parallel.3 Then it must be proved
that a translation that maps one point to a distinct point has the same behaviour
at every point.

Coordinatization. The scalars used for the coordinatization are certain homomor-
phisms of the translation group. A new construction is required to show that
non-zero homomorphisms are injective, so that the scalars form a division ring.

Desargues’s Theorem. This theorem will be shown equivalent to the symmetry
axioms. Desargues’s Theorem may thus be used as an alternative to these axioms;
it has the advantage that it involves only direct properties of the parallelism
concept. The proof requires new constructions, and the extension theorem for
dilatations.

Pappus’s Theorem. It will be shown that commutativity of the division ring is
equivalent to Pappus’s Theorem. The proof is based on the preceding work, and
requires no new constructions.

Geometry based on a field. From a given field with suitable properties, we con-
struct a Desarguesian plane. The classical theory does this for an arbitrary divi-
sion ring; constructively, the case of a (non-commutative) division ring is an open
question.

The real plane. The constructive properties of the field R of real numbers ensure
that R2 is a Desarguesian plane satisfying all the axioms. The order and metric
structures on the reals allow possible alternatives for the principal relation, “point
outside a line”. These alternatives are shown to be equivalent to the adopted
definition.

Brouwerian counterexamples. These counterexamples pinpoint the nonconstruc-
tivities of the classical theory, and facilitate the selection of axioms and definitions
for the constructive theory. Two of the examples show that the following state-
ments are constructively invalid: “Parallel lines are either equal or disjoint.” “If
two lines have a unique point in common, then they are nonparallel.”

Other constructive geometries. Constructive geometry has been approached from
various directions. The work of A. Heyting [10] concerns projective geometry,

3This is classically equivalent to the traditional definition, but only under the slightly-
modified definition of trace that is used here.
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obtaining a coordinatization by means of projective collineations, whereas the
present paper is a constructive study of parallelism. The paper [11] concerns
axioms for plane incidence geometry and extensions to projective planes.4 In-
teresting papers by D. van Dalen [7], [8] concern primitive notions and relations
between projective and affine geometry.

Other work is more closely related to logic, type theory, recursive function
theory, and computer techniques — approaches far removed from the straight-
forward realistic approach [2], p. 10 proposed by E. Bishop and followed in the
present paper. The interesting papers by J. von Plato [18], [19], D. Li, X. Li,
P. Jia [12], [13], Lombard and Vesley [14] enable valuable comparisons between
the several varieties of constructivism (see [5]), in the context of geometry.

Logical setting. This work uses informal intuitionistic logic; it does not operate
within a formal logical system.5 This constructivist principle has been most con-
cisely expressed as follows: “Constructive mathematics is not based on a prior
notion of logic; rather, our interpretations of the logical connectives and quanti-
fiers grow out of our mathematical intuition and experience.”6 For the origins of
modern constructivism, and the disengagement of mathematics from formal logic,
see Bishop’s Chapter 1, “A Constructivist Manifesto”, in [2].

Summary. The entire coordinatization theory of Desarguesian planes has been
constructivized in the spirit of Bishop-type constructivism. The results retain
their original classical form, with enhanced constructive meaning. A number of
open problems remain; these have been noted in the various sections.

2. Axioms

A geometry will at first consist of a set of points, a set of lines, and a single
primitive relation. The principal concepts will be defined in terms of this primitive.
The first two axiom groups will be introduced: the traditional group G, and
the special group L concerning nonparallel lines. The elementary properties of
parallelism will be derived.

Definition 2.1. A geometry G = (P,L ) consists of:

(a) A set P, whose elements are called points, with a given equality relation.

(b) A set L of subsets of P, called lines, with the usual equality relation for
subsets. When P ∈ l, we say that the point P lies on the line l, or that the
line l passes through the point P .

(c) An inequality relation on the set of points P, written P 6= Q; we say that
the points P and Q are distinct. This relation is invariant with respect to
the equality relation on P, and has the following properties:

4A few comments on Heyting’s axiom system will be given in Appendix B to Section 2.
5For presentations of informal intuitionistic logic, as it is used in Bishop-type constructive

mathematics, see [5] and [6]. For the most part, it suffices that one exercise assiduous restraint
in regard to the connective “or”.

6[5], page 11.
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(c1) ¬(P 6= P ).

(c2) If P 6= Q, then Q 6= P .

(c3) If P and Q are distinct points, then any point R is either distinct from
P or distinct from Q.

(c4) If ¬(P 6= Q), then P = Q.

The converse of condition 2.1 (c4) follows from condition (c1). However, the state-
ment “if ¬(P = Q), then P 6= Q” is constructively invalid on the real plane R2.7

Thus the notation P 6= Q is not used in the usual classical sense of a negation.
The principal relation, P /∈ l, will also have an affirmative meaning:

Definition 2.2. We define a relation between the points of P and the lines of
L as follows:

P /∈ l if P 6= Q for all points Q ∈ l.

We say that the point P lies outside the line l.

Proposition 2.3. (a) The relation P /∈ l is invariant with respect to the equal-
ity relations on P and L .

(b) If P ∈ l, then ¬(P /∈ l).

The converse of condition 2.3 (b) will be most essential; it will be established in
Theorem 2.12, after the first two axiom groups are introduced.

Notes. It is traditional to define a geometry so that the lines are independent
of the set of points, rather than as subsets of points. It is not difficult to do this
constructively. There results, as usual, a correspondence between lines and sets
of points; an equivalent geometry may be formed in which the lines are, in fact,
sets of points. Thus it is expedient to simply define lines as subsets of the given
set of points, as in Definition 2.1.

The properties of the primitive relation P 6= Q and the principal relation P /∈ l
have analogues in the constructive properties of the real field R and the real plane
R2. On the line, the condition |x| > 0 is affirmative; the condition x = 0 is its
negation. The statement ¬(x = 0) implies |x| > 0, is constructively invalid.8 On
the real plane R2, the basic relations correspond to the distance between points,
and from a point to a line.9 Thus the statements ¬(P = Q) implies P 6= Q and
¬(P ∈ l) implies P /∈ l are constructively invalid on the real plane.10

Condition 2.1 (c3) may be compared to the constructive dichotomy lemma
for the real numbers: If a < b, then for any x, either x < b or x > a. This
lemma serves for the constructive development of analysis in lieu of the classical
trichotomy, which is constructively invalid [2], [3]. The validity of condition (c3)

7See example 11.2.
8See Section 11.
9See Section 10.

10See example 11.2.



552 M. Mandelkern: Constructive Coordinatization of Desarguesian Planes

on the real plane R2 results from applying the dichotomy lemma to coordinates
of points.

The construction of a geometry according to Definition 2.1 must include al-
gorithms, or finite routines, for the conditions listed; the same rule applies to the
definitions and axioms that follow. The notion of algorithm is taken as primitive;
for a discussion of finite routines and algorithms, see [5], Chapter 1.

Notation and conventions. For any lines l and m, the expression l ∩m 6= ∅
will mean that there exists a point P such that P ∈ l∩m; i.e., there exists a finite
routine that would produce the point P. When M ⊆ L , the expression M 6= ∅
will mean that there exists a line l that is in the set M . The expression = ∅ will
mean that the condition 6= ∅ for the set in question leads to a contradiction.
These conventions ensure that the expression 6= ∅ does not mean merely that it
is contradictory that the set in question is void. The symbol ≡ will be used to
define objects.

An inequality relation that satisfies conditions (c1) through (c3) of Definition
2.1 is called an apartness ; if it satisfies condition (c4) it is said to be tight. For a
comprehensive treatment of constructive inequality relations, see [17]; § I.2.

For maps between sets each having a tight apartness as an inequality relation,
the usual equality and inequality relations will be used. Thus ϕ = ψ if ϕx = ψx
for all x, while ϕ 6= ψ if there exists at least one x such that ϕx 6= ψx. It follows
that the inequality relation on a set of maps is also a tight apartness.

A map ϕ will be called injective if x 6= y implies ϕx 6= ϕy. The condition
normally used in classical work, ϕx = ϕy implies x = y, is called weakly injective;
although classically equivalent to injective, this condition is constructively far
weaker, and is of minimal use here. A bijection is injective and onto, and has an
injective inverse.

Parallelism. The usual classical definition, two lines are parallel if they are
either equal or disjoint, is constructively invalid on the real plane R2.11 From the
various classically equivalent conditions, and conditions for nonparallel, we select
the strongest form of nonparallel as a definition, and then take parallel as the
negation. In turn, the concept of nonparallel lines will depend on the concept
of distinct lines, defined below. Constructive difficulties arise if different, albeit
classically equivalent, definitions are used.12

Definition 2.4. We define an inequality relation on L as follows: l 6= m if there
exists a point P ∈ l with P /∈ m, or if there exists a point Q ∈ m with Q /∈ l. We
say that the lines l and m are distinct.

Proposition 2.5. (a) The relation l 6= m is invariant with respect to the equal-
ity relation on L .

(b) ¬(l 6= l).

(c) If l 6= m, then m 6= l.

11See example 11.3.
12See example 11.9.
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Additional properties of this relation will be given in Proposition 2.16, after the
first two axiom groups are introduced.

Definition 2.6. We define a relation ∦ on L as follows:

l ∦ m if l 6= m and l ∩m 6= ∅

We say that the lines l and m are nonparallel.
When ¬(l ∦ m), we write l ‖ m, and say that the lines l and m are parallel.

Proposition 2.7. The relations parallel and nonparallel are invariant with re-
spect to the equality relation on L .

It will be shown in Proposition 2.11 that the relation nonparallel is invariant with
respect to the relation parallel. It will be shown in Proposition 2.18 that parallel
is an equivalence relation.

Axiom groups. The axioms required for a constructive Desarguesian plane G
fall into three groups. In axiom group G are the first three of the usual axioms
for plane geometry. In group L are axioms concerning nonparallel lines. Group
K will be introduced in Sections 5 and 6, to enable the coordinatization. The
axioms in group K are equivalent to Desargues’s Theorem; this will be shown in
Section 7.

The five axioms in groups G and K are virtually identical to those used
classically in [1]. The axioms in group L are inherent in the classical theory; in
this sense, no new axioms are introduced.

Axiom group G. Although these axioms are the same as those used classically,
their meanings are strengthened by the stronger definitions adopted here.

Axiom G1. Let P and Q be distinct points. Then there exists a unique line l
such that the points P and Q both lie on l.

Definition 2.8. We denote the line generated in Axiom G1 by P +Q. Thus the
statement l = P +Q will include the covert condition P 6= Q.

Axiom G2. Let P be any point and let l be any line. Then there exists a unique
line m through P that is parallel to l.

Axiom G3. There exist three non-collinear points. That is, there exist distinct
points A, B, C such that C /∈ A+B.

Axiom group L. These axioms are classical equivalents of the uniqueness por-
tions of the axioms in group G; see the appendix to this section. To state Axiom
L1, we require first a proposition.

Proposition 2.9. Let l and m be nonparallel lines. Then there exists a unique
point P such that P ∈ l ∩m.
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Proof. By Definition 2.6, we have at least one point P in l∩m. Now let Q be any
point in l ∩m. Suppose that Q 6= P ; it then follows from Axiom G1 that l = m,
a contradiction. Thus ¬(Q 6= P ), and by Definition 2.1 this means that Q = P .�

The converse: If l∩m consists of exactly one point, then l ∦ m, is constructively
invalid on the real plane R2.13

Definition 2.10. For the unique point of intersection determined in Proposition
2.9, we write simply P = l ∩m.

Axiom L1. Let l and m be nonparallel lines, and let P be the point of intersection.
Then for any point Q distinct from P , either Q lies outside l, or Q lies outside
m.

Axiom L2. Let l and m be nonparallel lines. Then for any line n, either n is
nonparallel to l, or n is nonparallel to m.

Problem. Find a single axiom to replace Axioms L1 and L2.

Proposition 2.11. The relation nonparallel is invariant with respect to the rela-
tion parallel.

Proof. Let l and m be nonparallel lines, and let n be a line parallel to m. It
follows from Axiom L2 that either n is nonparallel to l, or n is nonparallel to m;
hence n is nonparallel to l.14 �

Theorem 2.12. Let P be any point, and let l be any line. If ¬(P /∈ l), then
P ∈ l.

Proof. Let it be given that ¬(P /∈ l). Axiom G3 provides a pair of nonparallel
lines. Using Axiom L2, we find that one of these lines is nonparallel to l; denote it
by m. Use the parallel postulate to construct the line n through P that is parallel
to m. It follows from Proposition 2.11 that n is also nonparallel to l; set R ≡ l∩n.

Suppose that P 6= R. It then follows from Axiom L1 that either P /∈ l, or
P /∈ n. The first case is ruled out by our hypothesis; the second case is ruled out
by the choice of n. This contradiction shows that P = R. Hence P ∈ l. �

Theorem 2.13. If three non-collinear points are given as in Axiom G3, then the
three lines formed are nonparallel in pairs.

Proof. Since A + B and A + C have the common point A, and C /∈ A + B, we
have A+B ∦ A+ C.

Since A + B ∩ A + C = A, and B 6= A, it follows from Axiom L1 that
B /∈ A+B or B /∈ A+ C; thus B /∈ A+ C. Hence B + C ∦ A+ C.

Since B + C ∩ A + C = C, and A 6= C, it follows that A /∈ B + C. Hence
A+B ∦ B + C. �

13See example 11.4.
14This conclusion follows because the other case contradicts the hypothesis. To some eyes,

this sort of argument may appear as a proof by contradiction, contrary to a proper constructivist
attitude. However, this method merely involves the ruling out of a case that does not occur.
For further comment on this issue, see [2], Appendix B.
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Proposition 2.14. Let l = P + Q and let m be a line nonparallel to l. Then
either P /∈ m or Q /∈ m.

Proof. Set R ≡ m ∩ l. Either R 6= P or R 6= Q; let us say that R 6= P . It then
follows from Axiom L1 that either P /∈ m or P /∈ l; thus P /∈ m. �

Note. Classically, the above proposition still holds if we assume only that the line
m is distinct from l, rather than nonparallel to l. This is also true constructively,
as will be shown in Proposition 2.29.

Proposition 2.15. Let l be a line, let P be a point outside l, and let Q be any
point on l. Then P +Q ∦ l.

Proof. This follows directly from the definition. �

Proposition 2.16. Let l and m be any lines.

(a) If ¬(l 6= m), then l = m.

(b) If l 6= m, and n is any line, then either n 6= l or n 6= m.

Proof. (a) Let ¬(l 6= m), let P ∈ l, and suppose that P /∈ m. Then l 6= m, a
contradiction; hence ¬(P /∈ m), and it follows from Theorem 2.12 that P ∈ m.
Thus P ∈ l implies P ∈ m. Similarly, the opposite inclusion also holds.

(b) We may assume that there exists a point P ∈ l such that P /∈ m. Choose
any point Q ∈ m; thus P 6= Q. It follows from Proposition 2.15 that P +Q ∦ m.
By Axiom L2, either n ∦ m or n ∦ P + Q. In the second case, it follows from
Proposition 2.14 that either P /∈ n or Q /∈ n. Thus either n 6= l or n 6= m. �

Propositions 2.5 and 2.16 together show that the inequality relation distinct lines
is a tight apartness.

Proposition 2.17. Let l be any line, let R be a point outside l, and let P and Q
be distinct points on l. Then R + P ∦ R +Q.

Proof. It follows from Proposition 2.15 that R+P ∦ l. It then follows from Axiom
L1 that either Q /∈ l or Q /∈ R + P ; thus Q /∈ R + P. Hence R + P ∦ R +Q. �

Proposition 2.18. The relation parallel is an equivalence relation.

Proof. Since the relation nonparallel is clearly anti-reflexive and symmetric, the
relation parallel is reflexive and symmetric. Now let l ‖ m and m ‖ n. Suppose
that l ∦ n; then these lines have a common point. It follows from the parallel
postulate that l = n, a contradiction. This shows that l ‖ n. Thus the relation
parallel is transitive. �
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Definition 2.19. An equivalence class of the relation parallel will be called a pen-
cil of lines. Each pencil of lines π is of the form π = πl ≡ {m ∈ L : m ‖ l},
for any line l in π. For pencils πl and πm, the expression πl 6= πm will mean that
l ∦ m, and hence l′ ∦ m′ whenever l′ ∈ πl and m′ ∈ πm; we say that the pencils
πl and πm are distinct. For any line l and any pencil π, the expression l /∈ π will
mean that l ∦ m for some (hence any) line m in π.

Proposition 2.20. Given any two pencils of lines, there exists a pencil distinct
from each of the two given pencils.

Proof. Theorem 2.13 provides three distinct pencils of lines; three applications of
Axiom L2 then yield the required pencil. �

Proposition 2.21. Let l and m be any lines. If l = m, or if l ∩m = ∅, then
l ‖ m.

Proof. This follows directly from the definition. �

The statement of Proposition 2.21 is the usual classical definition of parallel lines.
However, the converse is constructively invalid on the real plane R2.15

Proposition 2.22. Let l and m be any lines. Then l ‖ m if and only if

l ∩m 6= ∅ implies l = m

Proof. First let l ‖ m, and let l∩m 6= ∅. Suppose that l 6= m; then, by definition,
l ∦ m, a contradiction. It follows from Proposition 2.16 (a) that l = m. Now
let the implication hold. Suppose that l ∦ m; thus l ∩ m 6= ∅ and l 6= m, a
contradiction. This shows that l ‖ m. �

The implication in Proposition 2.22 is classically equivalent to the usual definition
of parallel lines. However, the implication would not serve as a definition here; its
negation is insufficient to construct a point of intersection of nonparallel lines.16

Theorem 2.23. Let l and m be distinct parallel lines. Then P 6= Q for any point
P on l, and any point Q on m. Thus P /∈ m for any point P ∈ l, and Q /∈ l for
any point Q ∈ m.

Proof. Let P be a point on l, and let Q be a point on m. We may assume
that there exists a point R on l that is outside m; thus R 6= Q. It follows from
Proposition 2.15 that m ∦ R + Q; thus l ∦ R + Q, with R = l ∩ R + Q. Since
Q 6= R, it follows from Axiom L1 that Q /∈ l . Thus Q 6= P . �

A relation nonparallel that was not invariant with respect to the relation parallel
would be unacceptable. Thus the following theorem provides one rationale for
Axiom L2.

15See example 11.3.
16See example 11.9.
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Theorem 2.24. Assume for the moment only the axioms through L1. Assume
also that at least two distinct points lie on any given line. Then the following are
equivalent:

(a) The relation nonparallel is invariant with respect to the relation parallel.

(b) Axiom L2.

Proof. Let (a) hold, let l and m be nonparallel lines, let n be any line, and set
P ≡ l ∩m. Let n′ be the line through P that is parallel to n. Choose a point Q
on n′ distinct from P . It follows from Axiom L1 that either Q /∈ l or Q /∈ m; let
us say Q /∈ l. Thus n′ ∦ l and by hypothesis it follows that n ∦ l. This proves
Axiom L2. The converse was Proposition 2.11. �

Problem. Determine whether or not Axioms L1 and L2 are independent.

Lemma 2.25. Given any line l, there exists a point that lies outside l.

Proof. Axiom G3 provides distinct points A, B, C with C /∈ A + B; it is clear
that A + B ∦ A + C. By Axiom L2, either l ∦ A + B or l ∦ A + C; in the first
case, set D ≡ l ∩ A + B. Either D 6= A or D 6= B; in the first subcase it follows
from Axiom L1 that either A /∈ l or A /∈ A+B, and thus A /∈ l. The other three
subcases are similar. �

Theorem 2.26. At least two distinct points lie on any given line.

Proof. Let l be any line. Use Lemma 2.25 to construct a point R that is outside
l. Let three non-collinear points be given as in Axiom G3, and construct the
three lines formed by these points. By Theorem 2.13 these lines are nonparallel
in pairs. It follows from two applications of Axiom L2 that two of the three lines
are nonparallel to l; denote them m and n.

Let m′ and n′ be the lines through R such that m′ ‖ m and n′ ‖ n . Thus
m′ ∦ n′, l ∦ m′, l ∦ n′, and R = m′ ∩ n′. Set P ≡ l ∩ m′, and set Q ≡ l ∩ n′.
Since R /∈ l, we have R 6= Q. Thus it follows from Axiom L1 that either Q /∈ n′

or Q /∈ m′. Thus Q /∈ m′, and it follows that Q 6= P . �

Corollary 2.27. Any line may be expressed in the form l = P +Q.

Corollary 2.28. Given a line l, and any point P on l, there exists a point Q on
l that is distinct from P .

Theorem 2.26 now enables the proof of the next proposition, which was foretold
in the note following Proposition 2.14.

Proposition 2.29. Let l = P+Q and let m be a line distinct from l. Then either
P /∈ m or Q /∈ m.
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Proof. Either there exists a point R ∈ m that is outside l, or there exists a point
S ∈ l that is outside m.

In the first case, R + P ∦ R + Q, and it follows from Axiom L2 that m
is nonparallel to one of these lines; we may assume that m ∦ R + P . Since
P 6= R = m ∩R + P , it follows from Axiom L1 that P /∈ m.

In the second case, use Corollary 2.27 to express m in the form m = U + V .
Using S in place of R, it follows from the first case, with the lines reversed, that
either U /∈ l or V /∈ l; let us say that U /∈ l. Now, using the point U in place of
R, the first case shows that either P /∈ m or Q /∈ m. �

When distinct lines are given, the following corollary circumvents the need to
consider both alternatives in the definition.

Corollary 2.30. Let l1 and l2 be distinct lines. If l is either of these lines, then
there exists a point on l that is outside the other line.

Theorem 2.31. There exist bijections mapping

(a) the lines in any two pencils of lines,

(b) the points on any two lines,

(c) the points on any line and the lines in any pencil of lines.

Proof. First let π be any pencil of lines, and let l be any line with l /∈ π. Define a
map ψ : π → l as follows. For any line m in π, set ψ(m) ≡ m∩ l. Let m and n be
lines in π with m 6= n. Set P ≡ ψ(m) = m ∩ l, and Q ≡ ψ(n) = n ∩ l. It follows
from Theorem 2.23 that P 6= Q. This shows that the map ψ is injective; it is onto
l because of the parallel postulate. If P = m∩ l and Q = n∩ l are distinct points
on l, then it follows from Axiom L1 that Q /∈ m; thus m 6= n. This shows that
the inverse is injective, and thus the map ψ : π → l is a bijection.

Now the required maps are obtained by combining various instances of the
map ψ and its inverse. �

Appendix A to Section 2.

Alternative axioms. The axioms in group L are classically equivalent to the
uniqueness portions of Axioms G1 and G2. Thus axiom group L could be deleted,
with group G rewritten as shown below. This would have the advantage of show-
ing clearly that no essentially new axioms are introduced; the traditional axioms
are only rewritten as strong classical equivalents. On the other hand, the proce-
dure followed above in Section 2 has the following advantages:

(i) The axioms in group G retain their traditional form.

(ii) Axiom group L clearly indicates what supplements are needed for the con-
structivization.

Axiom G1*. If P and Q are distinct points, then there exists a line l that passes
through both points P and Q. The line l is unique in the following sense: If l1
and l2 are distinct lines, both through P , then either Q lies outside l1, or Q lies
outside l2.
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Axiom G2*. If P is any point and l is any line, then there exists a line m that
passes through P and is parallel to l. The line m is unique in the following sense:
If m1 and m2 are distinct lines, both through P , then either m1 is nonparallel to
l, or m2 is nonparallel to l.

Appendix B to Section 2.

Heyting’s axiom system. Arend Heyting has introduced axioms for incidence
geometry [11], with the goal of extending the resulting plane to a projective plane.
The express purpose of Heyting’s axiom system, and the divergent approaches of
[11] versus the present paper, make direct comparisons difficult, if not meaningless.
Nevertheless, a few comments on the various features of the two systems might
not be out of place. A cursory comparison, rather than an exhaustive discussion,
is intended.

Heyting uses unfamiliar notation for certain concepts. His reason, it may be
surmised, was to provide clear indicia to remind the reader that intuitionistic
mathematics is different than classical mathematics; the unusual notation was
perhaps meant to serve as a reminder that classical ideas, such as the principle of
the excluded middle, were not to be invoked. In particular, the usual symbol 6=
for denoting distinct points and distinct lines, and the symbol /∈ for point outside
a line, were eschewed; perhaps this was meant to emphasize the special meanings
adopted for these concepts, and avoid the possibility of conjuring up the idea of
simple negation.

In contrast, at a later time, Bishop strived to demonstrate that constructive
mathematics was not a new type of mathematics, but rather a return to older,
more stringent standards. Thus Bishop tried to make constructive mathematics
look the same as traditional mathematics; this is the approach followed in the
present paper.

The axiom system in [11] involves quite a few more axioms than the three
axioms of the traditional system, and many of the axioms lack an immediately
clear intuitive interpretation. In contrast, guided by the idea of the preceding
paragraph, the present paper attempts to obtain an axiom system similar to the
classical system; it is identical to the traditional system in the sense outlined in
Appendix A above.

Both systems make use of apartness relations, which are natural in construc-
tive mathematics.17 The apartness concept was developed by A. Heyting (1898–
1980) in his 1925 dissertation, written under the direction of L. E. J. Brouwer.

In [11], the parallel postulate is not taken as a simple axiom, but proved later,
as [11], Theorem 3, using the more complicated axioms. The present paper uses
the traditional axiom G2.

Axiom A4 in [11] follows directly from Proposition 2.14 in the present paper.
Axiom A5 in [11] follows from Theorem 2.23 in the present paper.

17The terminology for apartness relations is somewhat variegated in [11] and [17]; the termi-
nology of the latter is used in the present paper.
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Axiom A7(ii) in [11] requires that every line contains at least four points; this
excludes the four-point and nine-point geometries.18 In Axiom G3, the present
paper assumes only the existence of three non-collinear points, as is traditional; it
is then proved in Theorem 2.26 that at least two distinct points lie on any given
line.

In Section 4 (Definition 2) of [11], the definition of distinct lines is not sym-
metric as stated; the concept is later shown to be symmetric (Theorem 2). In
the present paper, Definition 2.4 for distinct lines is symmetric, and weaker than
the definition in [11]; the concept is later shown, in Corollary 2.30, to have the
stronger property.

In [11], the notion of parallel lines, given in Definition 5, does not include equal
lines; parallelism is not an equivalence relation. The definition in the present paper
more closely matches the traditional idea.

The terms parallel lines and nonparallel lines (the later being termed “inter-
secting lines” in [11]) are given separate definitions in [11]. In the present paper,
nonparallel is given the primary, affirmative definition; parallel is the negation of
nonparallel, and Propositions 2.21 and 2.22 connect the concept of parallel lines
with the traditional definition, as far as is constructively possible.

The above comments notwithstanding, one must remember that the axiom
system in [11] was written expressly to enable the extension to a projective plane.
It remains an open problem to use the axiom system and methods of the present
paper to effect this extension. (The sole concern of the present paper is the
coordinatization of the plane.)

Acknowledgement. Many thanks are due the referee for bringing Heyting’s
paper to the author’s attention, and for suggesting the addition of this appendix.

3. Dilatations

The symmetries required for Desarguesian geometry are mappings of the plane
that preserve direction. On the real plane R2, these include uniform motions and
expansions about a fixed point.

Definition 3.1. A dilatation is a map σ : P → P such that:

(a) σ is injective and onto, and

(b) if P and Q are distinct points, then P +Q ‖ σP + σQ.

The normally-used classical condition, weakly injective, would not suffice here.
The direction-preserving property 3.1 (b) cannot even be stated unless the map is
injective.

Classically [1], a dilatation need not be even weakly injective; if not, it is
termed “degenerate.” Although only nondegenerate dilatations are of use, crucial
steps in the most important classical constructions depend on the notion that

18The possibility of the four-point geometry sprang up as one of the hurdles in the present
work; see Theorem 7.5, condition (a) therein, and the subsequent note labeled Problems.
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a dilatation must be either degenerate or injective; this notion is constructively
invalid on the real plane R2.19

The following form of the direction-preserving property is often convenient.

Lemma 3.2. Let σ be a dilatation, let P and Q be distinct points, and let l be a
line parallel to P +Q. If σP ∈ l, then also σQ ∈ l.

In the construction of the division ring in Section 5, we will need to construct a
dilatation in a situation where the onto property is not immediate; the following
theorem will be required.

Theorem 3.3. Let σ : P → P be a map such that

(a) σ is injective, and

(b) if P and Q are distinct points, then P +Q ‖ σP + σQ.

Then σ is a dilatation.

Proof. We need only to prove that σ is onto. Let S be any point. Using Axiom G3
and Theorem 2.13, construct three distinct noncollinear points A, B, C, forming
three nonparallel lines. It follows that the points σA, σB, σC have the same
properties. Applying Axiom L1, we may choose two of these points, which we
may denote by σP and σQ, such that S /∈ σP + σQ.

Set l ≡ σP +σQ and l′ ≡ P +Q; thus l ‖ l′. Set m ≡ σP +S and n ≡ σQ+S.
It follows from Proposition 2.17 that m ∦ n; thus S = m ∩ n. Let m′ and n′ be
the lines such that P ∈ m′ ‖ m, and Q ∈ n′ ‖ n. Thus m′ ∦ n′; set R ≡ m′ ∩ n′.

Either R 6= P or R 6= Q. In the first case, R 6= m′ ∩ l′; it follows from Axiom
L1 that R /∈ l′, and thus R 6= Q. The second case is similar; thus in either case
we have both R 6= P and R 6= Q.

Since σP ∈ m ‖ m′ = P + R, it follows from Lemma 3.2 that σR ∈ m.
Similarly, σR ∈ n; hence σR = S. Thus σ is onto. �

Although the inverse of a dilatation is weakly injective, the stronger condition,
injective, is not evident. It will be required that dilatations have inverses that are
also dilatations; thus the inverses must be injective. One might consider specifying
this in the definition, but this would create serious difficulties in constructing
dilatations. The next theorem settles this problem.

Theorem 3.4. If σ is a dilatation, then the inverse σ−1 is also a dilation.

Proof. We will first show that σ−1 is injective. Since σ is injective and onto, any
point may be expressed uniquely in the form R′ ≡ σR.

Let S ′ and T ′ be points with S ′ 6= T ′, and set w′ ≡ S ′ + T ′. Choose any line
l′ with l′ ∦ w′, and set V ′ ≡ l′ ∩ w′. Let l and w be the lines through V that are
parallel to l′ and w′. Using Theorem 2.26, construct a point P on l distinct from
V . Thus P ′ ∈ l′, and P ′ 6= V ′; it follows from Axiom L1 that P /∈ w and P ′ /∈ w′.

19See Example 11.6.
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Set m′ ≡ P ′ + S ′ and n′ ≡ P ′ + T ′; thus m′ ∦ n′, m′ ∦ w′, and n′ ∦ w′. Let
m and n be the lines through P that are parallel to m′ and n′; set A ≡ m ∩ w
and set B ≡ n ∩ w. Since P /∈ w, we have A 6= P = m ∩ n; it follows that A /∈ n.
Thus A 6= B.

Either V 6= A or V 6= B. In the first case, V ′ ∈ w′ ‖ w = V +A, and it follows
from Lemma 3.2 that A′ ∈ w′. Now A′ ∈ w′ ‖ w = A + B, and it follows that
B′ ∈ w′. This shows that both A′ and B′ lie on w′; the second case produces the
same result.

Since P ′ ∈ m′ ‖ m = P + A, we have A′ ∈ m′. Similarly, B′ ∈ n′. Thus
A′ = m′ ∩w′ = S ′, and A = S. Similarly, B′ = T ′, and B = T . Since A 6= B, this
means that S 6= T . This shows that σ−1 is injective.

Now let P ′ and Q′ be any distinct points. Then P 6= Q, and σ−1P ′ +σ−1Q′ =
P +Q ‖ σP + σQ = P ′ +Q′. Hence σ−1 is a dilatation. �

Theorem 3.5. The dilatations form a group D.

Proof. The identity 1 : P → P is clearly a dilatation. Theorem 3.4 has shown
that the inverse of a dilatation is also a dilatation. Let σ1 and σ2 be dilatations;
the product is clearly injective and onto. If P and Q are distinct points, then
P +Q ‖ σ2P + σ2Q ‖ σ1σ2P + σ1σ2Q. Hence σ1σ2 is a dilatation. �

Definition 3.6. Let σ be a dilatation. A point P is a fixed point of σ if σP = P .
If ¬(σP = P ) for all points P , then σ has no fixed point.20

Lemma 3.7. Let σ be a dilatation with two distinct fixed points P and Q. If R
is any point outside the line P +Q, then σR = R.

Proof. Set l ≡ P +Q, set m ≡ P +R, and set n ≡ Q+R. Since σP ∈ m = P +R,
it follows from Lemma 3.2 that σR ∈ m. Similarly, σR ∈ n. Thus σR = m∩ n =
R. �

Lemma 3.8. If σ is a dilatation with two distinct fixed points, then σ = 1.

Proof. Let P and Q be distinct fixed points, and set l ≡ P + Q. Using Lemma
2.25, construct any point S outside l. It follows from Lemma 3.7 that S is a fixed
point. Since S 6= P and S 6= Q, the lemma applies also to the lines m ≡ P + S
and n ≡ Q+ S. It also follows that l ∦ m, l ∦ n, P = l ∩m, and Q = l ∩ n.

Now consider any point R. Either R 6= P or R 6= Q; we may assume the
first case. Thus R /∈ l or R /∈ m; in either case, it follows from Lemma 3.7 that
σR = R . This shows that σ = 1. �

Theorem 3.9. A dilatation is uniquely determined by the images of any two dis-
tinct points.

20The definition of “has no fixed point” is uncharacteristically negativistic for a constructive
theory. It is given mainly to enable a discussion of the definition of “translation” in Section 4.
In contrast, Theorem 4.6 will provide a strong version of this idea.
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Proposition 3.10. Let σ1 and σ2 be dilatations. If σ1σ2 6= 1, then either σ1 6= 1
or σ2 6= 1.

Proof. We have P 6= σ1σ2P for some point P . Since σ−1
1 is injective, we have

σ−1
1 P 6= σ2P . Either P 6= σ−1

1 P or P 6= σ2P . In the first case, σ1P 6= P, and thus
σ1 6= 1. In the second case, σ2 6= 1. �

Definition 3.11. A trace of a dilatation σ is any line of the form P +σP , where
P 6= σP . For any dilatation σ, the set of lines

t(σ) ≡ {l ∈ L : l is a trace of σ}

will be called the trace family of σ.

Proposition 3.12. Let σ be a dilatation. Then

(a) t(σ) = ∅ if and only if σ = 1,

(b) t(σ) 6= ∅ if and only if σ 6= 1,

(c) t(σ−1) = t(σ).

In the classical theory [1], the definition of trace is slightly weaker, with the result
that t(1) = L ; this is of little consequence, since it is presumed that one always
knows whether σ = 1 or σ 6= 1. For a constructive development, our definition is
more convenient: if a dilatation σ has a trace, then σ 6= 1. In general, we will not
know whether σ = 1 or σ 6= 1, or whether t(σ) = ∅ or t(σ) 6= ∅.21

Lemma 3.13. If l is a trace of a dilatation σ, then there exist at least two distinct
points P and R such that l = P + σP and l = R + σR.

Proof. Choose a point P such that l = P + σP and set R ≡ σP . Since σP ∈
l = P + R, it follows from Lemma 3.2 that σR ∈ l. Since R 6= P, we have
σR 6= σP = R; thus l = R + σR. �

Theorem 3.14. Let σ be a dilatation, and let l be a trace of σ. If Q is a point
on l, then σQ also lies on l.

Proof. Using Lemma 3.13, choose a point P such that l = P + σP and Q 6= P .
Since σP ∈ l = P +Q, it follows from Lemma 3.2 that σQ ∈ l. �

Corollary 3.15. Let σ be a dilatation. The intersection of any two nonparallel
traces of σ is a fixed point.

Lemma 3.16. Let σ be a dilatation with fixed point P . Then every trace of σ
passes through P .

Proof. Let l be a trace of σ. Using Lemma 3.13, choose a point Q such that
l = Q + σQ and P 6= Q. Since P + Q ‖ σP + σQ = P + σQ, it follows that
σQ ∈ P +Q. Since the line P +Q passes through both points Q and σQ, we have
P +Q = l. �

21See example 11.5.
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Lemma 3.17. Let σ be a dilatation with fixed point P, and let l be a line through
P . If Q is a point on l, then σQ also lies on l.

Proof. Suppose that σQ /∈ l. Then σQ 6= P ; applying σ−1, we have Q 6= P . Thus
l = P + Q. Also, σQ 6= Q; thus Q + σQ is a trace of σ. It follows from Lemma
3.16 that P ∈ Q + σQ; thus Q + σQ = l, and σQ ∈ l, a contradiction. Hence
σQ ∈ l. �

If σ is a dilatation with σ 6= 1, then it follows from Lemma 3.8 that σ may have
at most one fixed point. More precisely, if P and Q are fixed points, then P = Q.
To establish Theorem 3.19, we will require the following stronger result:

Lemma 3.18. Let σ 6= 1 be a dilatation with fixed point P . If Q is any point
distinct from P , then σQ 6= Q.

Proof. Since σ 6= 1, we may construct at least one point R such that σR 6= R.
Set l ≡ R + σR; it follows from Lemma 3.16 that P ∈ l.

Let S be any point outside l. Set m ≡ R+S, and m′ ≡ σR+σS; thus m ‖ m′.
Since S /∈ l, we have m ∦ l. Since σR 6= R = l ∩m, it follows that σR /∈ m. Thus
m 6= m′, and it follows from Theorem 2.23 that σS 6= S.

Construct one point T outside l, and set l′ ≡ T + σT . It follows that P ∈ l′,
and l ∦ l′. Also, for any point S outside l′ we have σS 6= S. Now let Q be any
point distinct from P . It follows from Axiom L1 that either Q /∈ l or Q /∈ l′; hence
σQ 6= Q. �

Theorem 3.19. Let σ 6= 1 be a dilatation with fixed point P . Then

t(σ) = LP ≡ {l ∈ L : P ∈ l}.

Proof. Lemma 3.16 shows that t(σ) ⊆ LP . Now let l be any line through P .
Construct a point Q on l such that Q 6= P ; it follows from Lemma 3.17 that
σQ ∈ l, and from Lemma 3.18 that σQ 6= Q. Thus l = Q + σQ, and this is a
trace of σ. �

4. Translations

The translations of the geometry are the symmetries which we perceive as uniform
motions. These maps form the substructure of the coordinatization to be carried
out in Sections 5 and 6. Points on the plane will be located using translations.
Selected translations will determine the unit points on the axes. The scalars will
be certain homomorphisms of the translation group; they will relate the various
translations to each other, and provide coordinates for the points.

Given a dilatation τ , the classical definition of a translation, “either τ = 1,
or τ has no fixed point”, is constructively invalid for translations on the real
plane R2.22 From the following list of classically equivalent conditions, we give a

22See example 11.5.
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Brouwerian counterexample for the first, prove the equivalence of the last three,
and choose the last for a definition.23

(a) Either τ = 1, or τ has no fixed point.

(b) If τ has a fixed point, then τ = 1.

(c) If τ 6= 1, then τP 6= P for all points P .

(d) Any traces of τ are parallel.

Condition (d) is chosen for its simplicity and intuitive imagery. All of the last three
conditions will be required; their equivalence will be demonstrated in Theorems
4.2 and 4.6.

Definition 4.1. A dilatation τ will be called a translation if any traces of τ are
parallel.

Theorem 4.2. A dilatation τ is a translation if and only if the following impli-
cation is valid: If τ has a fixed point, then τ = 1.

Proof. First, let τ be a translation and let P be a fixed point of τ . Suppose that
τ 6= 1. It then follows from Theorem 3.19 that the trace family t(τ) is the family
LP , which contains nonparallel lines; this is a contradiction. Hence τ = 1.

Now assume the implication and let l and m be any traces of τ . Suppose that
l ∦ m; it then follows from Corollary 3.15 that the point P ≡ l ∩ m is a fixed
point. Thus τ = 1, and τ has no traces, a contradiction. Hence l ‖ m. �

Corollary 4.3. Let τ be a dilatation. If either τ = 1 or τ has no fixed point,
then τ is a translation.

Although the condition of Corollary 4.3 is the classical definition of translation,
the converse is constructively invalid on the real plane R2.24

Lemma 4.4. Let τ 6= 1 be a translation, and let l be a trace of τ . Then τQ 6= Q
for any point Q outside l.

Proof. Choose a point P such that l = P + τP . Since Q /∈ l, we have P + Q ∦
P + τP . It follows from Axiom L1 that τP /∈ P + Q. Thus the lines P + Q
and τP + τQ are parallel and distinct. It now follows from Theorem 2.23 that
τQ 6= Q. �

Lemma 4.5. Let the lines l and m be parallel and distinct. For any point Q,
either Q /∈ l or Q /∈ m.

Proof. Choose a line n containing Q such that n ∦ l; thus also n ∦ m. Set
P ≡ n ∩ l, and R ≡ n ∩m. It follows from Theorem 2.23 that P 6= R; we may
assume that Q 6= P . It now follows from Axiom L1 that Q /∈ l. �

Although it follows from Theorem 4.2 that a translation 6= 1 has no fixed point,
we will require the following stronger result.

23Condition (d) is classically equivalent to conditions (b) and (c) only under the concept of
trace adopted in Definition 3.11.

24See Example 11.5.
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Theorem 4.6. Let τ be a translation. If τ 6= 1, then τP 6= P for every point P .

Proof. Since τ 6= 1 we may choose at least one point Q such that τQ 6= Q. Set
l ≡ Q + τQ, and choose any point R outside l. It follows from Lemma 4.4 that
τR 6= R; set m ≡ R + τR. Since l and m are traces of τ , they are parallel; they
are also distinct.

Now let P be any point; it follows from Lemma 4.5 that either P /∈ l or P /∈ m.
In either case, Lemma 4.4 shows that τP 6= P . �

For translations, the next lemma extends Theorem 3.14.

Lemma 4.7. Let τ be a translation, let π be a pencil of lines with t(τ) ⊆ π, and
let l be any line in π. If P ∈ l, then also τP ∈ l.

Proof. Suppose that τP /∈ l. Then τP 6= P , and m ≡ P + τP is a trace of
τ . Since both l and m are in the pencil π, they are parallel, and thus equal, a
contradiction. This shows that τP ∈ l. �

The statement: For any translation τ , there exists a pencil of lines π such that
t(τ) ⊆ π, is constructively invalid.25

Theorem 4.8. The traces of a translation τ 6= 1 form a pencil of lines.

Proof. Choose any trace l of τ . Since any traces of τ are parallel, it follows that
t(τ) ⊆ πl. Now let m ∈ πl, and choose any point Q on m. Lemma 4.7 shows that
τQ ∈ m, and it follows from Theorem 4.6 that τQ 6= Q. Thus m = Q+ τQ, and
m is a trace of τ . �

Definition 4.9. The trace pencil of a translation τ 6= 1 will be called the direction
of τ .

Theorem 4.10. A translation is uniquely determined by the image of a single
point.

Proof. Let τ1 and τ2 be translations such that τ1P = τ2P for some point P .
Consider first the special case in which τ1P = τ2P 6= P . Denote by τ either

of the given translations. Thus τ 6= 1, and l ≡ P + τP is a trace of τ . Select a
point Q outside the line l; thus P 6= Q. Let l′ be the line through Q, parallel to
l. Then l′ is also a trace of τ , and it follows from Theorem 3.14 that τQ ∈ l′.

Set m ≡ P+Q, and let m′ denote the line parallel to m through τP . It follows
from Lemma 3.2 that τQ ∈ m′. Since l ∦ m, also l′ ∦ m′; thus τQ = l′ ∩m′. The
lines l, l′, m, m′ are uniquely determined, solely by P, τP, and Q. Thus the
point τQ is uniquely determined.

Since the point τQ was determined independently of the choice τ = τ1 or
τ = τ2, we have τ1Q = τ2Q. Since τ1 and τ2 agree at two distinct points, it follows
from Theorem 3.9 that τ1 = τ2.

25See Example 11.8.
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Now consider the general case, and suppose that τ1 6= τ2. Suppose further
that τ2P 6= P . Using the special case, we have τ1 = τ2, a contradiction; hence
τ2P = P . From Theorem 4.2 it follows that τ2 = 1, and also that τ1 = 1, a
contradiction. This shows that τ1 = τ2. �

Theorem 4.11. (a) The translations form a group T .

(b) T is an invariant subgroup of the dilatation group D.

(c) Let τ be a translation, and let σ be a dilatation.

Then t(στσ−1) = t(τ).

Proof. (a) It follows directly from Theorem 4.2 that 1 ∈ T , and that τ−1 ∈ T
whenever τ ∈ T . Now let τ1, τ2 ∈ T , and let τ1τ2P = P for some point P . Then
τ2P = τ−1

1 P . It follows from Theorem 4.10 that τ2 = τ−1
1 and thus τ1τ2 = 1. This

shows that τ1τ2 ∈ T .

(b) Let τ ∈ T , let σ ∈ D and let στσ−1P = P for some point P. Then τσ−1P =
σ−1P ; it follows that τ = 1, and thus στσ−1 = 1. This shows that στσ−1 ∈ T .

(c) Let l = Q + στσ−1Q be a trace of στσ−1, and set P ≡ σ−1Q. Then l =
Q + στσ−1Q ‖ σ−1Q + τσ−1Q = P + τP , a trace of τ . It follows from Theorem
4.8 that l is also a trace of τ . This shows that t(στσ−1) ⊆ t(τ) for all τ ∈ T
and all σ ∈ D. In this inclusion replace σ by σ−1 and then τ by στσ−1; thus
t(τ) ⊆ t(στσ−1). �

Theorem 4.12. Let π be any pencil of lines. Then

Tπ ≡ {τ ∈ T : t(τ) ⊆ π}

is a subgroup of T .

Proof. It is clear from Proposition 3.12 that 1 ∈ Tπ, and that τ−1 ∈ Tπ whenever
τ ∈ Tπ. Now let τ1, τ2 ∈ T , and let l = P + τ1τ2P be a trace of τ1τ2. Let m be the
line in π containing P . It follows from Lemma 4.7 that τ2P ∈ m, and thus also
τ1τ2P ∈ m. Thus m = l, and it follows that l ∈ π. This shows that τ1τ2 ∈ Tπ. �

Lemma 4.13. Let τ1 and τ2 be translations with τ1τ2 6= τ2τ1. Then τ1 6= 1,
τ2 6= 1, and τ1 and τ2 have the same direction.

Proof. Choose a point P such that τ1τ2P 6= τ2τ1P . Thus τ2P 6= τ−1
1 τ2τ1P .

Either P 6= τ2P or P 6= τ−1
1 τ2τ1P . In the first case, τ2 6= 1. In the second

case, τ1P 6= τ2τ1P, and again it follows that τ2 6=. Thus, in either case, τ2 6= 1.
Similarly, τ1 6= 1.

Now set τ ≡ τ1τ2τ
−1
1 τ−1

2 ; thus τ 6= 1. Let l be any trace of τ . Theorem 3.12
and Theorem 4.11 show that t(τ2τ

−1
1 τ−1

2 ) = t(τ−1
1 ) = t(τ1), and it follows from

Theorem 4.12 that l ∈ t(τ) = t(τ1 · τ2τ−1
1 τ−1

2 ) = t(τ1). Similarly, l ∈ t(τ) =
t(τ1τ2τ

−1
1 · τ−1

2 ) = t(τ2). Since τ1 and τ2 have the common trace l, they have the
same direction. �
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Lemma 4.14. If the translations τ1 and τ2 have no common trace, then τ1τ2 =
τ2τ1.

Theorem 4.15. Assume that for any given translation τ 6= 1, there exists an-
other translation τ ′ 6= 1 such that τ and τ ′ have different directions.26 Then the
translation group T is commutative.

Proof. Let τ1 and τ2 be any translations, and suppose that τ1τ2 6= τ2τ1. Lemma
4.13 shows that τ1 6= 1, τ2 6= 1, and that τ1 and τ2 have the same direction,
which we will denote by π. Thus τ1 and τ2 belong to the subgroup Tπ. Choose
a translation τ3 6= 1 such that τ3 and τ1 have different directions; it follows from
Lemma 4.14 that τ3τ1 = τ1τ3.

Now suppose further that τ2τ3 and τ1 have a common trace; it follows that
τ2τ3 ∈ Tπ. Since τ3 = τ−1

2 · τ2τ3, we then have τ3 ∈ Tπ, a contradiction. Hence τ2τ3
and τ1 have no common trace.

Now, again by Lemma 4.14, we have τ1 · τ2τ3 = τ2τ3 · τ1 = τ2 · τ3τ1 = τ2 · τ1τ3,
and thus τ1τ2 = τ2τ1, a contradiction. This shows that τ1τ2 = τ2τ1. �

5. Division ring

The classical theory of the division ring of scalars is highly nonconstructive. The
main step in the constructivization, Theorem 5.12, will require both the displace-
ment property of translations, obtained above in Theorem 4.6, and the injective
property of nonzero trace-preserving homomorphisms, derived below in Theorem
5.7.

Axiom K1. Given any points P and Q, there exists a translation that maps P
into Q.

The translation resulting from Axiom K1 will be denoted τPQ.

Proposition 5.1. (a) For any points P and Q, the translation τPQ is unique.

(b) The translation group T is commutative.

Proof. The uniqueness of τPQ follows from Theorem 4.10. The commutativity of
the group T follows from Theorem 4.15. �

Definition 5.2. A map α : T → T will be called a trace-preserving homomor-
phism if:

(a) For any translations τ1 and τ2, (τ1τ2)
α = τα

1 τ
α
2 .

(b) For any translation τ , t(τα) ⊆ t(τ).27

The set of all trace-preserving homomorphisms will be denoted k.

26This will follow from Axiom K1 in Section 5.
27The inclusion in part (b) of Definition 5.2 is the reverse of that used in [1]. This is required

because of the restricted notion of “trace” adopted in Definition 3.11.
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Examples. These examples include certain trace-preserving homomorphisms
which will be required in the ring k. The verifications are straightforward.

(a) The trace-preserving homomorphism denoted by 0 maps any translation τ into
the identity in T . Thus τ 0 = 1 for all τ ∈ T .

(b) The trace-preserving homomorphism denoted by 1 is the identity map. Thus
τ 1 = τ for all τ ∈ T . Since we have Axiom K1, it follows that 1 6= 0.

(c) The trace-preserving homomorphism denoted by −1 maps any translation τ
into its inverse τ−1.

(d) Let σ be a dilatation. The trace-preserving homomorphism denoted by ασ is
defined by τασ = στσ−1 for all τ ∈ T . It is easily verified that ασ 6= 0.

Proposition 5.3. Let τ be a translation, let l be a trace of τ , and let α ∈ k. If
P ∈ l, then also ταP ∈ l.

Proof. This follows from Lemma 4.7. �

Definition 5.4. Let α, β ∈ k.
(a) Define a map, denoted α+ β, by τα+β = τατβ for all τ ∈ T .

(b) Define a map, denoted αβ, by ταβ = (τβ)α for all τ ∈ T .

Theorem 5.5. (a) For any α, β ∈ k, the maps α+β and αβ are trace-preserv-
ing homomorphisms.

(b) Under Definitions 5.4, k is a ring with identity.

Proof. The algebraic portions of the proof are straightforward; we need only
examine the traces. Let α, β ∈ k and let τ ∈ T .

Let l ∈ t(τα+β). It follows that τατβ 6= 1. Using Proposition 3.10, we have
either τα 6= 1 or τβ 6= 1. In the first case, ∅ 6= t(τα) ⊆ t(τ); thus τ 6= 1. The
second case is similar; thus we may let π denote the pencil t(τ). It follows from
Theorem 4.12 that τατβ ∈ Tπ, and thus l ∈ t(τ). This shows that the map α+ β
has the trace-preserving property.

Also, t(ταβ) = t((τβ)α) ⊆ t(τβ) ⊆ t(τ); thus αβ ∈ k. �

We will need to know that the product of translations with different directions
is distinct from the identity. Further, we will require this conclusion even in a
situation where one of the translations is not known to be 6= 1, only that its
traces, if any, are distinct from those of the other translation.

Lemma 5.6. Let τ1 6= 1 be a translation with direction π1, and let τ2 be a transla-
tion with t(τ2) ⊆ π2, where π2 is a pencil of lines distinct from π1. Then τ1τ2 6= 1.

Proof. Choose a point P such that l1 ≡ P + τ1P is a trace of τ1. Denote by l2
the line in π2 through τ1P . It follows from Lemma 4.7 that τ2τ1P ∈ l2. Since
P 6= τ1P = l1 ∩ l2, it follows from Axiom L1 that P /∈ l2. Thus P 6= τ2τ1P ; this
shows that τ2τ1 6= 1. �
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Classically, the following theorem is a consequence of [1], Theorem 2.12. The
latter is proved nonconstructively using multiplicative inverses in k, which are
also derived nonconstructively. For a constructive proof that k is a division ring,
we must derive Theorem 5.7 first, directly from the properties of translations and
traces.

Theorem 5.7. Let α be a trace-preserving homomorphism. If α 6= 0, then τα 6= 1
for all translations τ 6= 1.

Proof. Since α 6= 0, we may choose one translation τ1 such that τα
1 6= 1. Thus

τ1 6= 1; let π1 denote the direction of τ1. Choose any point P such that τ1P 6= P ,
and set l1 ≡ P + τ1P ; thus l1 ∈ π1.

First consider the special case in which a translation τ 6= 1 has direction π
distinct from the pencil π1. Using Theorem 4.6, we may set l ≡ τ1P + ττ1P ; thus
l ∈ π. It follows from Lemma 5.6 that τ ′ ≡ ττ1 6= 1; let π′ denote the direction
of τ ′. By Theorem 4.6 again, we may set l′ ≡ P + τ ′P ; thus l′ ∈ π′. Since τ ′P 6=
τ1P = l ∩ l1, it follows from Axiom L1 that τ ′P /∈ l1. Thus l1 ∦ l′, and the pencils
π1 and π′ are distinct. Since t(τ−α

1 ) = t(τα
1 ) = π1, and t(τατα

1 ) ⊆ t(ττ1) = π′, it
follows from Lemma 5.6 that τατα

1 · τ−α
1 6= 1; thus τα 6= 1.

The special case shows that τα 6= 1 for any translation τ 6= 1 with direction
distinct from π1. Use Axiom K1 to construct one such translation τ2, with direc-
tion π2. Thus τα

2 6= 1, and it follows from the special case that τα 6= 1 for any
translation τ 6= 1 with direction distinct from π2. Now consider any translation
τ 6= 1. It follows from Axiom L2 that its direction is either distinct from π1 or
distinct from π2; thus τα 6= 1. �

Corollary 5.8. Let α 6= 0 be a trace-preserving homomorphism. If τ1 and τ2 are
translations with τ1 6= τ2, then τα

1 6= τα
2 .

Corollary 5.9. The product of two translations with different directions has a
third direction, distinct from the first two.

Proof. In the proof of the theorem, translations τ1 and τ are arbitrary, with
distinct directions π1 and π. The product ττ1 has direction π′, and the proof
shows that π′ is distinct from π1. Also, since P 6= τ1P = l ∩ l1, it follows that
P /∈ l; thus l ∦ l′. This shows that π′ is also distinct from π. �

Corollary 5.10. Let τ1 6= 1 and τ2 6= 1 be translations with different directions,
and let α and β be elements of k, with α 6= 0. Then τα

1 τ
β
2 6= 1.

Proof. It follows from Theorem 5.7 that τα
1 6= 1; thus Lemma 5.6 applies. �

The following corollary is a constructive version of [1], Theorem 2.12, “If τα = 1,
then either α = 0 or τ = 1”, which is constructively invalid.28 The most essential
constructive substitute, however, is Theorem 5.7 itself.

28See Example 11.7.
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Corollary 5.11. Let α, β ∈ k.
(a) Let α 6= 0. If τα = 1 for some translation τ, then τ = 1.

(b) If τα = 1 for some translation τ 6= 1, then α = 0.

(c) If τα = τβ for some translation τ 6= 1, then α = β. Thus a trace-preserving
homomorphism is uniquely determined by the image of a single translation
6= 1.

(d) If τα = τ for some translation τ 6= 1, then α = 1.

Theorem 5.12. Let α be a trace-preserving homomorphism with α 6= 0, and let
P be any point. Then there exists a unique dilatation σ with fixed point P such
that α = ασ.

Proof. We first prove the uniqueness, and determine a working definition for a
map σ. Let σ be as specified, and let Q be any point. It follows from Axiom K1
that σQ = στPQP = στPQσ

−1P = τασ
PQP = τα

PQP . This shows that σ, if it exists,
is unique.

Define a map σ : P → P by

σQ = τα
PQP for all Q ∈ P.

Clearly, σP = P .
Let Q and R be any points with Q 6= R. Then

σR = τα
PRP = τα

QRτ
α
PQP = τα

QRσQ.

Since α 6= 0 and τQR 6= 1, it follows from Theorem 5.7 that τα
QR 6= 1. Theorem 4.6

shows that τα
QRσQ 6= σQ; thus σR 6= σQ. This shows that σ is injective.

Since Q + R is a trace of τQR, σQ + σR is a trace of τα
QR, and α is trace-

preserving, we have Q + R ‖ σQ + σR. It now follows from Theorem 3.3 that σ
is a dilatation.

Now let τ be any translation, and set S ≡ τP . Then τασP = στσ−1P =
στP = σS = τα

PSP = ταP . Since τασ and τα agree at the point P , it follows from
Theorem 4.10 that these translations are equal. Thus α = ασ. �

Definition 5.13. A ring k with identity is a division ring if for any elements x
and y in k, x 6= y if and only if x− yl is a unit in k.29

Note. Let k be a ring with identity, and let k have an inequality relation that is
invariant with respect to addition. Then k is a division ring if and only if, for any
element x ∈ k, x 6= 0 if and only if x is a unit in k. This applies to the ring k of
trace-preserving homomorphisms.

Theorem 5.14. The ring k of trace-preserving homomorphisms has the following
properties, where α, β ∈ k.

(a) If α 6= β, then for any γ ∈ k, either γ 6= α, or γ 6= β.

29See [17], § II.2.
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(b) If αβ 6= 0, then α 6= 0 and β 6= 0.

(c) k is a division ring.

Proof. (a) Choose a translation τ , and then a point P , such that ταP 6= τβP .
Now, either τ γP 6= ταP , or τ γP 6= τβP , and it follows that either γ 6= α, or
γ 6= β.

(b) Choose a translation τ such that ταβ 6= 1. Then ∅ 6= t(ταβ) = t((τβ)α) ⊆
t(τβ). It follows that (τβ)α 6= 1 and τβ 6= 1; thus α 6= 0 and β 6= 0.

(c) Let α ∈ k with α 6= 0. Using Theorem 5.12, construct a dilatation σ such
that α = ασ. It is clear that ασ−1ασ = ασασ−1 = 1; thus ασ−1 is the inverse of α.
Conversely, let α be a unit in k; then αβ = 1 for some β ∈ k. It then follows from
condition (b) that α 6= 0. �

6. Coordinates

Whereas Axiom K1 provided translations mapping any point to any point, Axiom
K2 will provide dilatations that expand about a fixed central point, mapping other
points arbitrarily along radials. These dilatations will then lead to the required
scalars and coordinates.

Axiom K2. Let P be any point. If Q and R are points collinear with P , and
each is distinct from P , then there exists a dilatation σ with fixed point P that
maps Q into R.

It follows from Theorem 3.9 that the dilatation σ resulting from Axiom K2 is
unique.

Theorem 6.1. The following are equivalent.

(a) Axiom K2.

(b) If τ1 6= 1 and τ2 6= 1 are translations with the same direction, then there
exists a unique trace-preserving homomorphism α 6= 0 in k such that τ2 =
τα
1 .

Proof. Given Axiom K2, let τ1 and τ2 satisfy the hypotheses in (b). Choose any
point P , set Q ≡ τ1P , and set R ≡ τ2P . Use the axiom to construct a dilatation
σ with fixed point P such that σQ = R, and set α ≡ ασ. Since the translations
τ2 and στ1σ

−1 agree at the point P , it follows from Theorem 4.10 that they are
equal; thus τ2 = τα

1 . The uniqueness of α follows from Proposition 5.11(c).

Given (b), let P be any point, and let the points Q and R satisfy the hypotheses
in Axiom K2. Use Axiom K1 to construct the translations τPQ and τPR; thus
τPQ 6= 1, τPR 6= 1, and these translations have the same direction. Let α 6= 0
be the element of k such that τPR = τα

PQ. Use Theorem 5.12 to construct the
dilatation σ with fixed point P such that α = ασ. It then follows that R =
τPRP = στPQσ

−1P = σQ. �
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Proposition 6.2. If the statement of Axiom K2 holds at a single point P , then
it holds at every point, and thus Axiom K2 is valid.

Proof. Let the statement hold at the point S, and let the points P, Q and R
be as in Axiom K2. Using Axiom K1, construct the translation τ ≡ τPS. Then
P + Q ‖ S + τQ, and P + R ‖ S + τR. It follows that τQ and τR are collinear
with S, and distinct from S. Let σ1 be the dilatation with fixed point S such that
σ1τQ = τR. It then follows that σ ≡ τ−1σ1τ is the required dilatation. �

Theorem 6.3. Let τ1 6= 1 be a translation. For any translation τ2 with t(τ2) ⊆
t(τ1), there exists a unique element α in k such that τ2 = τα

1 .

Proof. Choose any point P such that τ1P 6= P . It then follows that either
τ2P 6= P or τ2P 6= τ1P . In the first case, τ2 6= 1, and Theorem 6.1 applies directly.
In the second case, τ2 6= τ1 and it follows from Theorem 4.12 that τ−1

1 τ2 has the
same direction as τ1. Use Theorem 6.1 to construct an element β in k such that
τ−1
1 τ2 = τβ

1 ; thus τ2 = τβ+1
1 . The uniqueness follows from Corollary 5.11 (c). �

Theorem 6.3 is a constructive substitute for [1]; page 63, Remark. This remark,
an essential part of the classical theory, requires the nonconstructive statement:
either τ2 = 1 or τ2 6= 1.30 The theorem here covers all cases, without determining
whether or not τ2 = 1.

Theorem 6.4. Let τ1 6= 1 and τ2 6= 1 be translations with different directions.
For any translation τ , there exist unique elements α and β in k such that

τ = τα
1 τ

β
2 .

If τ 6= 1, then either α 6= 0 or β 6= 0, and conversely.

Proof. Choose any point P , and set Q ≡ τP . Let l2 be the τ2 trace through P,
let l1 be the τ1 trace through Q, and set R ≡ l1 ∩ l2. Let l be a trace of τPR.
Then P 6= R, and l2 is also a trace of τPR. Thus l ‖ l2, and this shows that
t(τPR) ⊆ t(τ2). Similarly, t(τRQ) ⊆ t(τ1). Using Theorem 6.3, construct elements

α and β in k such that τPR = τβ
2 and τRQ = τα

1 . It follows that τα
1 τ

β
2 takes P into

Q, and it is therefore equal to τ .
Now let τα

1 τ
β
2 = τ γ

1 τ
δ
2 , and set τ3 ≡ τα−γ

1 = τ δ−β
2 . Since t(τ3) ⊆ t(τ1)∩t(τ2) = ∅,

it follows that τ3 = 1, and it then follows from Corollary 5.11 (b) that α − γ =
δ − β = 0. Thus α and β are unique.

Finally, let τ 6= 1. By Proposition 3.10, either τα
1 6= 1 or τβ

2 6= 1. Thus either
α 6= 0 or β 6= 0. The converse follows from Corollary 5.10. �

We are now prepared to place the capstone to the coordinatization theory.

Theorem 6.5. Let G = (P,L ) be a Desarguesian plane. Select a point O, and
select translations τ1 6= 1 and τ2 6= 1 with different directions.

30See Example 11.5.
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(a) To any point P there corresponds a unique coordinate pair (x, y) in k2 such
that

τOP = τx
1 τ

y
2 .

(b) The resulting map P → k2 is a bijection. Thus the inequality relations on
P and on k2 correspond under this map.

(c) To any line l, there correspond elements α, β, γ, δ in k, with either γ 6= 0 or
δ 6= 0, such that the points on l are the points with coordinates in the set

L = {(α+ tγ, β + tδ) : t ∈ k}.

Conversely, if elements α, β, γ, δ in k are given, with either γ 6= 0 or δ 6= 0,
then the set of points with coordinates in the set L determines a line in L .

(d) The principal relation P /∈ l of Definition 2.2 corresponds to the condition
(x, y) 6= (α+ tγ, β + tδ) for all t ∈ k.

Proof. (a) This follows from Theorem 6.4.

(b) For any pair (x, y) ∈ k2, set P ≡ τx
1 τ

y
2O; thus P → (x, y). This shows that the

map is onto k2. Now let P and Q be points with P → (x, y) and Q→ (z, w). If P
and Q are distinct, then τPQ 6= 1 and τPQ = τOQτPO = τ z

1 τ
w
2 τ

−x
1 τ−y

2 = τ z−x
1 τw−y

2 .
It follows from Proposition 3.10 that either τ z−x

1 6= 1 or τw−y
2 6= 1; thus either

z 6= x or w 6= y, and hence (x, y) 6= (z, w). This shows that the map P → k2 is
injective. Conversely, if (x, y) 6= (z, w), then Corollary 5.10 and a reversal of the
last argument will show that P 6= Q. Thus the inverse map is injective.

(c) Given a line l, choose any point P on l, with coordinates (α, β); thus τOP =
τα
1 τ

β
2 . Choose any translation τ with l as a trace. Use Theorem 6.4 to construct

elements γ and δ in k such that τ = τ γ
1 τ

δ
2 ; thus either γ 6= 0 or δ 6= 0. For any

point Q on l, use Theorem 6.3 to construct the unique element t ∈ k such that
τPQ = τ t. Then τOQ = τPQτOP = τ tτOP = τ tγ+α

1 τ tδ+β
2 , and thus Q has coordinates

in the set L. Conversely, a reversal of this argument will show that if a point has
coordinates in the set L, then it lies on l.

Now let α, β, γ, δ be elements of k, with either γ 6= 0 or δ 6= 0. Let P be
the point with coordinates (α, β), and set τ ≡ τ γ

1 τ
δ
2 . It follows from Corollary

5.10 that τ 6= 1; let l denote the trace of τ containing P . The construction above
shows that the points on l are those with coordinates in the set L.

(d) This follows from part (b). �

Using the expression for the set L in Theorem 6.5, one may obtain parametric
equations for a line l, and, if k is commutative, also an equation in the form
ax+ by + c = 0, where either a 6= 0 or b 6= 0.

7. Desargues

Assuming now only the axioms in groups G and L, we demonstrate that the
axioms in group K are equivalent to Desargues’s Theorem; this theorem has two
variations, stated below as Postulates D1 and D2. Using Desargues’s Theorem as
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an alternative to axiom group K would have the advantage that these postulates
involve only direct properties of the parallelism concept.

Postulate D1. Let l1, l2, l3 be distinct parallel lines. Let P, P ′ ∈ l1; Q, Q′ ∈ l2;
and R, R′ ∈ l3. If

P +Q ‖ P ′ +Q′ and P +R ‖ P ′ +R′

then
Q+R ‖ Q′ +R′.

Postulate D2. Let l1, l2, l3 be distinct concurrent lines. Let P, P ′ ∈ l1; Q, Q′ ∈
l2; and R, R′ ∈ l3; with these points each distinct from the point of concurrence.
If P +Q ‖ P ′ +Q′ and P +R ‖ P ′ +R′, then Q+R ‖ Q′ +R′.

Theorem 7.1. Axiom K1 implies Postulate D1. Axiom K2 implies Postulate D2.

Proof. Assume Axiom K1, consider the configuration of Postulate D1, and set
τ ≡ τPP ′ . Then P ′ +Q′ ‖ P +Q ‖ τP + τQ = P ′ + τQ, and thus τQ ∈ P ′ +Q′.
The traces of the translation τ , if any, are contained in the pencil π that contains
the three lines li. Thus Lemma 4.7 applies, and τQ ∈ l2. It follows that τQ =
l2 ∩ P ′ +Q′ = Q′. Similarly, τR = R′. Thus Q+R ‖ τQ+ τR = Q′ +R′.

Now assume Axiom K2 and consider the configuration of Postulate D2. The
proof is similar to the proof of D1. Axiom K2 provides a dilatation that has
the common point V of the given lines as fixed point, and that maps P into P ′.
Lemma 3.17 is used now in lieu of Lemma 4.7. �

Lemma 7.2. Let P and P ′ be distinct points, and set l ≡ P + P ′. For any point
Q outside l, let l′ denote the line through Q that is parallel to l, set m ≡ P +Q,
and let m′ denote the line through P ′ that is parallel to m. Then l′ ∦ m′. If we
set Q′ ≡ l′ ∩m′, then Q′ 6= Q, Q′ 6= P ′, and P +Q ‖ P ′ +Q′.

Proof. Since Q /∈ l, we have l ∦ m; thus l′ ∦ m′. Since P ′ 6= P = l ∩m, it follows
from Axiom L1 that P ′ /∈ m. Thus m 6= m′, and it follows from Theorem 2.23 that
Q′ 6= Q. Since also l 6= l′, we have Q′ 6= P ′. Finally, P +Q = m ‖ m′ = P ′ +Q′.�

Definition 7.3. The map Q → Q′ constructed in Lemma 7.2 will be called a
partial translation, and will be denoted λPP ′. We extend the definition of trace to
these maps.

Lemma 7.4. Let P and P ′ be distinct points, and set l ≡ P + P ′. Consider the
map defined by

Q′ ≡ λPP ′Q for all Q /∈ l.

(a) The map λPP ′ is defined at all points Q outside l. In this domain, the map
is injective.

(b) The traces of the map λPP ′ are parallel to l.
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(c) For any point Q outside l, λQQ′P = P ′.

(d) Let Q and R be distinct points outside l. If Postulate D1 is valid, then
Q+R ‖ Q′ +R′.

(e) Let Q be a point outside l. If Postulate D1 is valid, then the maps λPP ′ and
λQQ′ agree at all points in their common domain.

Proof. (a) Let Q and R be distinct points outside l. Thus Q′ is determined by
l′, m and m′ as constructed in Lemma 7.2. Similarly, let R′ be determined by
l′′, n, and n′.

Since R 6= Q = l′ ∩m, it follows from Axiom L1 that either R /∈ l′ or R /∈ m.
In the first case, we have l′′ 6= l′, and it follows from Theorem 2.23 that R′ 6= Q′.
In the second case, we have m 6= n, and thus m ∦ n; it follows that m′ ∦ n′. Since
R′ 6= P ′ = m′ ∩ n′, it follows that R′ /∈ m′, and thus R′ 6= Q′.

(b) and (c) These are clear from the construction in Lemma 7.2.

(d) With the notation as in the proof of part (a), first consider the special case
in which R /∈ l′. Then l′ 6= l′′, and we have a Desargues configuration. Thus
Q+R ‖ Q′ +R′.

In the general case, suppose that Q+R ∦ Q′ +R′. Then the condition R /∈ l′
would lead, using the special case, to a contradiction; hence R ∈ l′, and it follows
from part (b) that also R′ ∈ l′. Thus Q + R = Q′ + R′, a contradiction. Hence
Q+R ‖ Q′ +R′.

(e) This leads to a Desargues configuration. �

Theorem 7.5. Postulate D1 implies Axiom K1.

Proof. (1) Assume Postulate D1, and let P and P ′ be any points; we must
construct a translation that maps P into P ′.

(2) Consider first the special case in which P and P ′ are distinct, and set l1 ≡
P + P ′. Set λ1 ≡ λPP ′ ; thus λ1 is defined outside l1. Using Lemma 2.25, choose
one point P2 outside l1, set P ′

2 ≡ λ1P2, set l2 ≡ P2 + P ′
2, and set λ2 ≡ λP2P ′

2
.

Lemma 7.4 shows that λ1 and λ2 agree in their common domain, and that l1 and
l2 are parallel and distinct. Define a map τ by τQ ≡ Q′ ≡ λiQ, whenever Q /∈ li.
Lemma 4.5 shows that τ is defined at all points. Lemma 7.4 shows that τP = P ′,
and that the lines lQ ≡ Q+Q′, for all points Q, form a pencil of lines π.

(2.1) The map τ is injective. Let Q and R be distinct points. We may assume
that Q /∈ l1; thus lQ 6= l1. Now, either R /∈ lQ, or R /∈ l1. In the first case, lR 6= lQ,
and it follows from Theorem 2.23 that R′ 6= Q′. In the second case, Lemma 7.4 (a)
applies, and again R′ 6= Q′.

(2.2) The map τ is a dilatation. To verify the direction-preserving property, let
Q and R be distinct points.
(2.2a) First consider the special case in which
(a) At least three points lie on any given line.
It then follows from Theorem 2.31 that each pencil of lines contains at least three
lines. Now we may construct a line l3 ≡ P3 + P ′

3 in π, distinct from both l1 and
l2. Set λ3 ≡ λP3P ′

3
; it follows that τS = λ3S for all points S outside l3.
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Applying Lemma 4.5, we find that the point Q lies outside at least two of the
three lines li, and that the points Q and R together lie outside one of these lines.
Now Lemma 7.4 (d) applies, and Q+R ‖ Q′ +R′.
(2.2b) Now consider the general case, and suppose that
(b) Q+R ∦ Q′ +R′.

We may assume that lQ 6= l1, and thus either R /∈ l1 or R /∈ lQ.
In the first case, lR 6= l1. Suppose further that lR 6= lQ; then the pencil

π contains three distinct lines, and the special case (a) applies, a contradiction.
Thus lR = lQ, contradicting condition (b).

In the second case, lQ ∦ Q + R. Making use of condition (b), set T ≡ Q +
R ∩ Q′ + R′. Since Q 6= Q′, either T 6= Q or T 6= Q′. In the first subcase,
T 6= lQ ∩ Q + R; thus T /∈ lQ, and it follows that T 6= Q′. Thus, in either
subcase, T 6= Q′. Similarly, T 6= R′. Thus there exists a third point T on the line
Q′ +R′, and the special case (a) applies, again contradicting condition (b).

Since condition (b) leads to a contradiction in each case, we have Q + R ‖
Q′ +R′. It now follows from Theorem 3.3 that τ is a dilatation.

(2.3) The map τ is a translation. This follows from Lemma 7.4 (b).

(3) Now consider the general case. Choose any point Q distinct from P , and use
the special case (2) to construct the translation τPQ. Either P ′ 6= P or P ′ 6= Q.
In the second case, the translation τ ≡ τQP ′τPQ takes the point P into P ′. This
establishes Axiom K1. �

Problems. In the classical proof that Postulate D1 implies Axiom K1 [1], Theo-
rem 2.17, two disjoint cases are considered: the four-point geometry, and all other
geometries. For Theorem 7.5, we have been unable to make such a clear distinction
constructively. The proof is carried out first for the special case (a); the general
case then discovers, under the assumption (b), a third point on a line. This raises
the question of whether the four-point, nine-point, and larger geometries can be
distinguished constructively, and the corresponding question for fields.

Lemma 7.6. Let l be a line, and let V a point on l. Let P and P ′ be points on l,
each distinct from V . For any point Q outside l, set l′ ≡ V +Q, set m ≡ P +Q,
and let m′ denote the line through P ′ that is parallel to m. Then l′ ∦ m′. If we
set Q′ ≡ l′ ∩m′, then Q′ 6= V , Q′ 6= P ′, and P +Q ‖ P ′ +Q′.

Proof. Since Q /∈ l, we have l ∦ l′; it follows from Axiom L1 that P /∈ l′. Thus
m ∦ l′, and l′ ∦ m′. Since P ′ 6= V = l ∩ l′ we have P ′ /∈ l′; thus P ′ 6= Q′. Since
Q /∈ l, we have m ∦ l; thus m′ ∦ l. Now Q′ 6= P ′ = l ∩m′; it follows that Q′ /∈ l,
and Q′ 6= V . Finally, P +Q = m ‖ m′ = P ′ +Q′. �

Definition 7.7. The map Q → Q′ constructed in Lemma 7.6 will be called a
partial dilatation, and will be denoted λV PP ′. We extend the definition of trace to
these maps.

Lemma 7.8. Let l be a line, and let V a point on l. Let P and P ′ be points on
l, each distinct from V . Consider the map defined by

Q′ ≡ λV PP ′Q for all Q /∈ l.
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(a) The map λV PP ′ is defined at all points Q outside l. In this domain, the map
is injective.

(b) The traces of the map λV PP ′ all pass through V .

(c) For any point Q outside l, λV QQ′P = P ′.

(d) Let Q and R be distinct points outside l. If Postulate D2 is valid, then
Q+R ‖ Q′ +R′.

(e) Let Q be a point outside l. If Postulate D2 is valid, then the maps λV PP ′

and λV QQ′ agree at all points in their common domain.

Proof. This is similar to the proof of Lemma 7.4. �

The proof that Postulate D2 implies Axiom K2, while similar to the proof of
Theorem 7.5, will include several differences. The main difference is in defining a
map from a collection of partial maps. In lieu of Lemma 4.5, used in step (2) of
Theorem 7.5 to show that the map is everywhere defined, we must now use Axiom
L1, which applies only to points distinct from the point of concurrence. Thus we
will require the following extension theorem:

Theorem 7.9. Let V be any point, and let

PV ≡ {Q ∈ P : Q 6= V }

be the plane punctured at V . Let σ0 : PV → PV be a map that is injective, has
the direction-preserving property, and has its traces all passing through V . Then
σ0 may be extended to a dilatation σ with fixed point V .

Proof. (1) Choose a point U distinct from V . Using Theorem 2.13 and Axiom
L1, construct nonparallel lines l1 and l2 through U , such that V lies outside each
line.

(2) Let Q be any point. Either Q 6= V or Q 6= U . In the first case, set σQ ≡ σ0Q.

(3) In the case Q 6= U , we may assume that Q /∈ l1. Choose distinct points P1 and
P2 on l1. Set l ≡ V + P1, set l′ ≡ V + P2, set m ≡ P1 + Q, and set n ≡ P2 + Q.
Suppose σ0P1 /∈ l; then σ0P1 6= P1. Thus q ≡ P1 +σ0P1 is a trace of σ0 and passes
through the point V . It follows that q = l, a contradiction. Hence σ0P1 ∈ l.
Similarly, σ0P2 ∈ l′. Denote by m′ and n′ the lines parallel to m and n, through
σ0P1 and σ0P2. Since m ∦ n, we have m′ ∦ n′; set σQ ≡ m′∩n′. Thus σ is defined
at all points of the plane.

(3a) If Q = V , then m = l, n = l′, m′ = l, n′ = l′, and σQ = l′ ∩ l. Thus
σQ = V , and V is a fixed point of σ.

(3b) If Q 6= V , then m = P1 + Q ‖ σ0P1 + σ0Q and it follows that m′ =
σ0P1 + σ0Q. Similarly, n′ = σ0P2 + σ0Q; hence σQ = σ0Q. This shows that σ
extends the map σ0.

(4) The map σ is single-valued. Let σ′ be a map defined by the above method,
although with different choices of U, li, and Pi, and let Q be any point. Suppose
that σ′Q 6= σQ. It follows from step (3b) that Q = V ; by step (3a) this is a
contradiction. This shows that σ′Q = σQ.
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(5) If Q is any point with σQ 6= V , then Q 6= V . Either Q 6= V or Q 6= U . In
the second case, we have σQ 6= V = l ∩ l′; thus we may assume that σQ /∈ l. It
follows that m′ ∦ l, and m ∦ l. Since Q 6= P1 = m ∩ l, it follows that Q /∈ l, and
thus Q 6= V .

(6) The map σ is injective. Let Q and R be any distinct points. Either V 6= Q
or V 6= R; let us assume the latter. In this case, σR = σ0R 6= V . Now, either
σQ 6= σR, or σQ 6= V . In the second subcase, step (5) shows that Q 6= V , and
hence σQ = σ0Q 6= σ0R = σR.

(7) The map σ has the direction-preserving property. Let Q and R be any distinct
points, and suppose that

(a) Q+R ∦ σQ+ σR.

Either V 6= Q or V 6= R; it suffices to consider the first case. The condition
R 6= V would then imply that σQ + σR = σ0Q + σ0R, contradicting (a); hence
R = V , and thus also σR = V . Now condition (a) yields

(b) Q+ V ∦ σQ+ V

with Q distinct from the point of intersection V . Hence Q /∈ σQ+V , and Q 6= σQ.
Using the hypothesis on traces, we have then V +Q = V +σQ, contradicting (b).
This shows that Q+R ‖ σQ+ σR.

(8) It now follows from Theorem 3.3 that σ is a dilatation. �

Theorem 7.10. Postulate D2 implies Axiom K2.

Proof. Assume Postulate D2, let V be any point, and let P and P ′ be points
collinear with V and distinct from V ; we must construct a dilatation with fixed
point V that maps P into P ′.

Set l1 ≡ V + P , and λ1 ≡ λV PP ′ . Select a point P2 outside l1, set P ′
2 ≡ λ1P2,

set l2 ≡ V + P2, and set λ2 ≡ λV P2P ′
2
. Lemma 7.8 (e) shows that λ1 and λ2 agree

in their common domain.
Define a map σ0 : PV → PV by σ0Q ≡ Q′ ≡ λiQ whenever Q /∈ li. It follows

from Axiom L1 that σ0 is defined on PV . Lemma 7.8 shows that σ0P = P ′, and
that the traces of σ0, if any, pass through V .

The map σ0 is injective. Let Q and R be distinct points in PV ; set lQ ≡ V +Q
and lR ≡ V + R. We may assume that Q /∈ l1; thus lQ ∦ l1. Now, either R /∈ lQ,
or R /∈ l1. In the first case, lR ∦ lQ, and it follows that R′ 6= Q′. In the second
case, Lemma 7.8 (a) applies.

It follows from Theorem 2.13 that there are at least three distinct lines through
V . Choose a line l3 through V , distinct from both l1 and l2, choose a point P3 6= V
on l3, set P ′

3 ≡ λ1P3, and set λ3 ≡ λV P3P ′
3
. It follows that σ0S = λ3S whenever

S /∈ l3.
The map σ0 has the direction-preserving property. Let Q and R be distinct

points in PV . The point Q will lie outside at least two of the three lines li, and
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points Q and R together will lie outside one of these lines. Now Lemma 7.8 (d)
applies.

The map σ0 now satisfies the conditions of the extension Theorem 7.9; this
yields the required dilatation σ, and establishes Axiom K2. �

8. Pappus

Commutativity of the division ring k of trace-preserving homomorphisms will be
shown equivalent to Pappus’s Theorem, stated below as Postulate P.

Postulate P. Let l and m be nonparallel lines with common point P . Let Q, Q′,
Q′′ be points on l, and let R, R′, R′′ be points on m, with each of these points
distinct from the common point P . If Q + R′ ‖ Q′ + R′′ and Q′ + R ‖ Q′′ + R′,
then Q+R ‖ Q′′ +R′′.

Proposition 8.1. Let P be any point. The following are isomorphic:

(a) The subgroup DP of dilatations with fixed point P .

(b) The multiplicative group k∗ of non-zero elements in the division ring k of
trace-preserving homomorphisms.

Proof. Theorem 5.12 shows that the map σ → ασ, for σ ∈ DP , is onto the group
k∗. To show that the map is injective, let σ1 and σ2 be elements of DP with
σ1 6= σ2, and choose a point Q such that σ1Q 6= σ2Q. From the proof of Theorem
5.12, we have τ

ασi
PQP = σiQ. This shows that ασ1 6= ασ2 . This argument is easily

reversed; thus the map is a bijection. The verification of the algebraic properties
of an isomorphism is straightforward. �

Theorem 8.2. The following are equivalent.

(a) Postulate P.

(b) The division ring k of trace-preserving homomorphisms is commutative.

Proof. Let Postulate P hold, let P be any point, and let σ1 and σ2 be any
dilatations in the subgroup DP . Choose any two distinct lines l and m passing
through P ; it follows that l ∦ m. Choose any points Q and R, on l and m, each
distinct from P . Set Q′ ≡ σ1Q, set Q′′ ≡ σ2σ1Q, set R′ ≡ σ2R, set R′′ ≡ σ1σ2R,
and set S ≡ σ1σ2Q. Since the dilatations are injective, these points are also
distinct from P . It follows from Lemma 3.17 that Q′, Q′′, and S lie on l, while R′

and R′′ lie on m. Thus Q+R′ ‖ σ1Q+σ1R
′ = Q′+R′′, and Q′+R ‖ σ2Q

′+σ2R =
Q′′ +R′.

Applying Postulate P, we have Q′′ +R′′ ‖ Q+R ‖ σ1σ2Q+ σ1σ2R = S +R′′.
It follows that both of the points Q′′ and S lie on Q′′ + R′′, which is nonparallel
to l. Since the points Q′′ and S also lie on l, these points are equal. Thus the
dilatations σ1σ2 and σ2σ1 agree at the point Q, and it follows from Theorem 3.9
that they are equal. This shows that the subgroup DP is commutative, and thus
the group k∗ is also commutative.

Conversely, let k∗ be commutative, and let a Pappus configuration be given.
Using Axiom K2, construct dilatations σ1 and σ2 in the subgroup DP such that
σ1Q = Q′, and σ2R = R′. Now the above argument may be reversed. �
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9. Geometry based on a field

Beginning now with a given field k, we construct a geometry that satisfies all
the axioms. The field k must possess certain special properties; these are all
constructively valid for the real field R.31

Definition 9.1. A Heyting field 32 is a field k with an inequality relation that is a
tight apartness. Thus k satisfies the following conditions, where x and y are any
elements of k.

(a) ¬(x 6= x).

(b) If x 6= y, then y 6= x.

(c) If x 6= y, then for any element z, either z 6= x or z 6= y.

(d) If ¬(x 6= y), then x = y.

Proposition 9.2. A Heyting field k has the following properties, where x and y
are any elements of k.

(e) x 6= 0 if and only if x is a unit in k.

(f) If xy 6= 0, then x 6= 0 and y 6= 0.

Proposition 9.3. The division ring of trace-preserving homomorphisms constru-
cted in Section 5 satisfies all the conditions for a Heyting field, and the additional
conditions (e) and (f), except for commutativity.

Proof. This follows from Theorem 5.14. �

Problem. The classical theory [1] constructs a geometry based on an arbitrary
division ring. Construct a geometry based on a division ring having all the con-
ditions for a Heyting field, and the additional conditions (e) and (f), except for
commutativity.

Definition 9.4. Let k be a Heyting field, and set P k ≡ k2. Let P = (x, y) and
Q = (z, w) be points in P k. We will write P = Q if x = z and y = w, and
P 6= Q if either x 6= z or y 6= w. We will identify points and vectors in k2, and
use vector notation; we will not use the notation l = P + Q in this section. For
origin, set O ≡ (0, 0).

For any point P in P k and any vector A 6= 0, we define a set of points, which
will be called a line, by

P,A ≡ {P + tA : t ∈ k}.

The set of all such lines will be denoted L k.

Proposition 9.5. Definition 9.4 defines a geometry Gk ≡ (P k,L k) according to
Definition 2.1.

31See [2], [3], Chapter 2.
32See [17], § II.2.
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Note. Theorem 2.12, a fundamental and quite essential result, if ¬(P /∈ l), then
P ∈ l, was obtained in Section 2 only after introduction of the axioms; for Gk it
may be proved directly by using coordinates. Let P = (x, y) be a point, and let
l = R,A be a line such that ¬(P /∈ l), where A = (a1, a2). It suffices to consider
the case in which a1 6= 0; thus, by a change in parameter, we may assume that R
has coordinates (x, r2). Suppose that P 6= R, and let Q = R+ tA be any point on
l. Either Q 6= P , or Q 6= R. In the second case, it follows from condition 9.2 (f)
that t 6= 0, and thus q1 6= x; this shows that Q 6= P . Hence P /∈ l, a contradiction;
it follows that P = R. Thus P ∈ l.

Lemma 9.6. Let l be a line.

(a) If l = P,A and Q ∈ l, then l may be written as l = Q,A.

(b) If l = P,A and B = cA for some element c 6= 0 in k, then l may be written
as l = P,B.

(c) If P and Q are distinct points on l, then l = P,Q− P .

Lemma 9.7. Let l = P,A and m = Q,B be lines, with A = (a1, a2) and B =
(b1, b2).

(a) l ∦ m if and only if a1b2 6= a2b1.

(b) l ‖ m if and only if a1b2 = a2b1.

(c) l ‖ m if and only if B = cA for some element c 6= 0 in k.

Proof. Let l ∦ m; these lines then have a common point, and by a change of
parameters we may assume that Q = P . Since l 6= m, we may assume that there
exists a point R ∈ l with R /∈ m. Thus there exists an element t1 6= 0 in k such
that R = P + t1A 6= P + tB, for all t ∈ k. We may assume that b1 6= 0; take
t ≡ t1a1b

−1
1 . Then A 6= a1b

−1
1 B = (a1, a1b

−1
1 b2), and it follows that a2 6= a1b

−1
1 b2.

Thus ∗ a1b2 6= a2b1.
33

Now let a1b2 6= a2b1. This condition allows us to solve ∗ the system resulting
from the equation P + tA = Q+ uB; thus l ∩m 6= ∅. Choose a point R in l ∩m;
thus l = R,A and m = R,B. Set S ≡ R+A = (r1 + a1, r2 + a2); thus S ∈ l. Let
T ≡ R + tB = (r1 + tb1, r2 + tb2) be any point on m. Using condition 9.1 (c), we
have either tb1b2 6= a1b2 or tb1b2 6= a2b1. Thus, either a1 6= tb1, or ∗ a2 6= tb2; it
follows that S 6= T . Thus S /∈ m, and this shows that l 6= m. Hence l ∦ m. �

Theorem 9.8. The geometry Gk satisfies the axioms in group G.

Theorem 9.9. The geometry Gk satisfies Axiom L2.

Proof. Let l = P,A and m = P,B be nonparallel lines; thus a1b2 6= a2b1. Let
n = Q,C be any line; we may assume that c2 6= 0. Thus a1b2c2 6= a2b1c2. Either
c1a2b2 6= a1b2c2 or c1a2b2 6= a2b1c2. In the first case, ∗ c1a2 6= c2a1, and thus n ∦ l.
In the second case, ∗ c1b2 6= c2b1, and thus n ∦ m. �

33In this section, portions of the proofs that utilize the commutativity of the field k will be
marked with an asterisk.
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Theorem 9.10. The geometry Gk satisfies Axiom L1.

Proof. Let l ≡ P,A and m ≡ P,B be nonparallel lines, and let Q be a point
distinct from P . Set C ≡ Q− P and n ≡ P,C. Using Axiom L2, we may assume
that n ∦ l; thus a1c2 6= a2c1. Now let R ≡ P + tA be any point on l. Either
ta1a2 6= a1c2, or ta1a2 6= a2c1. Thus ∗ either c2 6= ta2 or c1 6= ta1; hence Q 6= R.
This shows that Q /∈ l. �

Problem. The axioms in group L have been verified out of order, using Axiom
L2 to prove Axiom L1. Prove Axiom L1 for Gk directly; then use Theorem 2.24
to derive Axiom L2.

Theorem 9.11. The dilatations of the geometry Gk are the maps σ defined by

σX ≡ eX + C for all points X (1)

where e 6= 0 is an element of k, and C is any vector.
The translations of Gk are the maps τC where C is any vector, defined by

τCX ≡ X + C for all points X. (2)

The translation τC is 6= 1 if and only if C 6= O; in this case, the trace family of
τC is the pencil containing the line O,C.

Proof. Let σ be a map defined by (1); it is clearly injective. Let P and Q be
distinct points, let l be the line through P and Q, and let l′ the line through σP
and σQ. Then l′ = σP, σQ− σP = σP, e(Q− P ) = σP,Q− P ‖ P,Q− P = l.
This shows that σ is a dilatation.

Now let σ be any dilatation. Set C ≡ σO, and choose any point U distinct
from O. Since σ takes the points O and U into the points C and σU , the lines
O,U and C, σU − C are parallel. Thus there exists an element e 6= 0 in k such
that σU −C = eU . Let σ′ be the dilatation defined by (1), using these values for
e and C. Since σ and σ′ agree at the points O and U , it follows from Theorem
3.9 that σ = σ′. This shows that the maps defined in (1) include all dilatations.

The traces, if any, of the dilatation τC have the form X,C. Since these lines
are all parallel, τC is a translation. Now let τ be an arbitrary translation, choose
any point P , and set C ≡ τP − P . Since τC agrees with τ at the point P , it
follows from Theorem 4.10 that τ = τC . Thus the maps defined in (2) include all
translations. �

Theorem 9.12. The geometry Gk satisfies the axioms in group K.

Proof. Given points P and Q, set C ≡ Q− P ; the translation τC satisfies axiom
K1. Now let Q and R be points collinear with, and distinct from, the origin O.
There exists an element e 6= 0 in k such that R = eQ; define a dilatation by
σX ≡ eX. Thus Proposition 6.2 applies, and Axiom K2 is valid. �

Since the geometry Gk now satisfies the axioms in all three groups, it is a con-
structive Desarguesian plane.
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Theorem 9.13. The trace-preserving homomorphisms of the geometry Gk are the
maps αx, for all x ∈ k, defined by

ταx
C ≡ τxC for all translations τC . (3)

Furthermore, αx 6= 0 if and only if x 6= 0.

Proof. Let x ∈ k. The algebraic condition for a trace-preserving homomorphism
is easily verified for αx. Now let τC be any translation, and let l be a trace of ταx

C .
It follows that τxC 6= 1; thus x 6= 0 and C 6= O. Then l1 ≡ O, xC is a trace of ταx

C ,
and l2 ≡ O,C is a trace of τC . Since l ‖ l1 and l1 ‖ l2, it follows that l ∈ t(τC).
This shows that αx is a trace-preserving homomorphism.

Now let α be any trace-preserving homomorphism. Set C = (1, 0), and D ≡
(x, y) ≡ τα

CO. Suppose that y 6= 0. Then O,D is a trace of τα
C , and since O,C is

a trace of τC , these lines are parallel. It follows that D = dC for some d ∈ k, and
y = 0, a contradiction. Hence y = 0. Thus τα

CO = (x, 0) = τxCO = ταx
C O. Since

the translations τα
C and ταx

C agree at the origin O, it follows from Theorem 4.10
that they are equal. Since α and αx agree at the translation τC 6= 1, it follows
from Corollary 5.11 (c) that they are equal. This shows that the maps defined in
(3) include all trace-preserving homomorphisms. �

Theorem 9.14. The set k of trace-preserving homomorphisms of the translation
group T in the geometry Gk is a field, isomorphic with the given field k under the
map x → αx of k onto k. Let Gk be coordinatized by the field k as in Section 6,
using the point (0, 0) as origin in Theorem 6.5, with τ1 ≡ τ(1,0) and τ2 ≡ τ(0,1).

If, using the field k, a point P = (x, y) in P k is assigned the coordinates (ξ, η),
then ξ = αx and η = αy. Thus the two coordinate systems correspond under the
isomorphism x→ αx between the two fields.

Proof. The algebraic properties for an isomorphism are easily verified. In Theorem
6.5, the coordinates (ξ, η) are assigned to the point P = (x, y) according to the
rule τOP = τ ξ

1 τ
η
2 , while τOP is in the present section denoted τP . Now, τP = τ(x,y) =

τ(x,0)τ(0,y) = ταx
1 τ

αy

2 . Thus it follows from the uniqueness shown in Theorem 6.4
that ξ = αx and η = αy. �

10. The real plane

The constructive properties of the real field R ensure that it is a Heyting field;34

thus it follows from Section 9 that R2 is a Desarguesian plane.
The field R has additional structures compared to an arbitrary field, especially

order and metric. This raises the possibility of other choices for the principal
relations on the plane R2. Clearly, the primitive relation P 6= Q is equivalent to
the condition ρ(P,Q) > 0. Theorem 10.1 will show that the principal relation,
P /∈ l, as given in Definition 2.2, is also equivalent to conditions involving the
additional structures.

34The various properties are found in [2], [3], Chapter 2.



M. Mandelkern: Constructive Coordinatization of Desarguesian Planes 585

A subset F of a constructive metric space (M,ρ) is located in M if the distance
ρ(x, F ) ≡ infy∈F ρ(x, y) may be determined for any point x in M . Any line l on
the real plane R2 is a located subset.35 An equation may be found for any line,
as noted in the comment following the proof of Theorem 6.5.

Theorem 10.1. Let ρ be the usual metric on R2. Let P = (x0, y0) be any point,
and let l be a line with equation ax+by+c = 0. Then the following are equivalent:

(a) P /∈ l,
(b) ρ(P, l) > 0,

(c) ax0 + by0 + c 6= 0.

Proof. If ρ(P, l) > 0, then for any point Q on l, we have ρ(P,Q) ≥ ρ(P, l) > 0,
and thus P 6= Q. This shows that P /∈ l. Conversely, if P /∈ l, then P 6= Q for all
points Q on l, and it follows from [2], Chapter 6, Lemma 7 36 that ρ(P, l) > 0.

Now let ax0+by0+c 6= 0. LetQ = (x1, y1) be any point on l; thus ax1+by1+c =
0. It follows that 0 < |a(x0 − x1) + b(y0 − y1)| ≤ |a||x0 − x1| + |b||y0 − y1|. Thus
at least one of the last two terms is positive, and P 6= Q. This shows that P /∈ l.

Finally, let P /∈ l. Let m be the line y = y0, and let n be the line x = x0. It
follows from Lemma 9.7 that m ∦ n. Using Axiom L2, we may assume that l ∦ m;
it then follows that a 6= 0. Set Q ≡ l ∩ m; thus Q has coordinates of the form
Q = (x1, y0). Since P /∈ l, we have P 6= Q, and thus x0 6= x1. Since Q ∈ l, we
have ax1 + by0 + c = 0, and thus ax0 + by0 + c = a(x0 − x1) 6= 0. �

Problem. For an arbitrary Heyting field k, extend the part of Theorem 10.1
involving conditions (a) and (c) to the geometry Gk constructed in Section 9.

11. Brouwerian counterexamples

To determine the specific nonconstructivities in the classical theory, and the points
at which modification is required, we use Brouwerian counterexamples, in conjunc-
tion with omniscience principles. A Brouwerian counterexample contains a proof
that a given statement implies an omniscience principle. In turn, an omniscience
principle, taken with full constructive meaning, would provide solutions, or sig-
nificant information, for a large number of well-known unsolved problems.37

For example, the results of an effort to find a counterexample to the Goldbach
conjecture might be recorded as a binary sequence: set an = 0 if you verify the
conjecture up through n, and set an = 1 when you find a counterexample ≤ n.
Given an arbitrary binary sequence (an), the limited principle of omniscience

35This follows from the results in [2], [3], Chapter 4.
36For an alternative proof of this lemma, see [15], Lemma 5.4.
37This method was introduced by L. E. J. Brouwer in 1908 to demonstrate that the content

of mathematics is placed in jeopardy by use of the principle of the excluded middle. For a
discussion of Brouwer’s critique and the reaction of the mathematical community, see [21], page
319ff. For more information concerning Brouwerian counterexamples, and other omniscience
principles, see [5], [17], [15], and [16].
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(LPO)38 provides either a proof that an = 0 for all n, or a finite routine for
constructing an integer n with an = 1; this would settle the Goldbach problem,
along with many other unsolved problems. No one has, nor is it conceivable that
anyone will ever find, such a general principle. While humans may discover proofs
that settle certain individual questions, only an omniscient being would claim to
possess a finite routine for predicting the outcome of an arbitrary infinite search.
Thus the principle LPO is considered nonconstructive.

Although the omniscience principles are usually stated in terms of binary
sequences, these sequences may be used to construct corresponding real numbers;
this results in the following equivalent formulations for the principal omniscience
principles:

Limited principle of omniscience (LPO). For any real number c ≥ 0, either
c = 0 or c > 0.

Weak limited principle of omniscience (WLPO). For any real number c ≥ 0,
either c = 0 or ¬(c = 0).

Lesser limited principle of omniscience (LLPO). For any real number c,
either c ≤ 0 or c ≥ 0.

Limited principle of existence (LPE).39 For any real number c ≥ 0, if ¬(c =
0), then c > 0.

A statement will be considered nonconstructive if it implies one of these omni-
science principles. The examples in this section all take place on the real plane
R2.

Example 11.1. The following statements are nonconstructive.

(i) Given any points P and Q, either P = Q or P 6= Q.

(ii) Given any point P and any line l, either P ∈ l or P /∈ l.
(iii) Given any lines l and m, either l ‖ m or l ∦ m.

Let c ≥ 0 be a real number. Set P ≡ (0, c), set Q ≡ (0, 0), let l be the line y = 0,
and let m be the line y = cx. Each statement implies LPO.

Example 11.2. The following statements are nonconstructive.

(i) If ¬(P = Q), then P 6= Q.

(ii) If ¬(P ∈ l), then P /∈ l.

Let c ≥ 0 be a real number such that ¬(c = 0). Set P ≡ (0, c), set Q = (0, 0),
and let l be the line y = 0. Each statement implies LPE.

38LPO and LLPO were introduced by Brouwer, and given the current names by Errett Bishop.
39The principle LPE is usually called Markov’s principle (MP). Although accepted in the

Markov school of recursive function theory, this principle is nonconstructive according to the
strict constructivism introduced by Bishop. No strictly constructive algorithm validating this
principle is known, and it is unlikely that such an algorithm will ever be found. Markov’s
principle asserts a general finite routine: Given an infinite binary sequence, and a proof that it
is contradictory that each term is 0, MP constructs a positive integer n such that the nth term
is 1. For more information concerning Markov’s principle, see [5].
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Example 11.3. The following statement is nonconstructive:

If the lines l and m are parallel, then either l = m or l ∩m = ∅.40

Let c ≥ 0 be a real number, and define the lines l and m by y = 0 and y = c.
Suppose that l ∦ m. Then these lines have a common point, so c = 0, and they
are distinct, so c > 0. Hence l ‖ m. The statement implies WLPO.

Example 11.4. The following statements are nonconstructive:

(i) If l and m are lines with ¬(l ‖ m), then l ∦ m.

(ii) If the lines l and m have a unique point in common, then l ∦ m.

Let c ≥ 0 be a real number such that ¬(c = 0) and let l and m be the lines y = 0
and y = cx.

(i) Suppose that l ‖ m; then l = m, and thus c = 0, a contradiction. Hence
¬(l ‖ m). The statement implies that l ∦ m, and thus l 6= m. It follows that
one of the lines contains a point that is outside the other line. In one case, we
have a point (x, cx) /∈ l; thus (x, cx) 6= (x, 0). In the other case, we have a point
(x, 0) /∈ m; thus (x, 0) 6= (x, cx). In either case, cx 6= 0, and thus c 6= 0. This
shows that statement (i) implies LPE.

(ii) Let P = (x, y) be any common point; thus cx = 0. Suppose that P 6= (0, 0);
then x 6= 0, and thus c = 0, a contradiction. Hence P = (0, 0). Thus l and m have
a unique common point. Statement (ii) implies that l ∦ m; it has been shown in
part (i) that this implies LPE.

Example 11.5. The following statements are nonconstructive:

(i) Any given dilatation is either the identity, or distinct from the identity.

(ii) Any given dilatation either has a fixed point, or has no fixed point.

(iii) Any given translation is either the identity, or has no fixed point.

Let c ≥ 0 be a real number. Using Theorem 9.11, define a dilatation σ by
σX ≡ X + (c, 0). The first statement implies LPO; the last two statements each
imply WLPO.

Example 11.6. Assume for the moment that the definition of dilatation were to
allow the degenerate case, in which all points map onto a single point. Then the
following statement [1], Theorem 2.3 is nonconstructive.41

Any given dilatation is either degenerate or (weakly) injective.

Let c ≥ 0 be a real number, and consider the map X → cX. The statement
implies (WLPO) LPO.

Example 11.7. The following statement [1], Theorem 2.12 is nonconstructive.42

Let τ be a translation, and let α be a trace-preserving homomorphism. If τα = 1,
then either α = 0 or τ = 1.

40This is the converse of Proposition 2.21.
41This example relates to a comment following Definition 3.1.
42This example relates to the comment preceding Corollary 5.11.
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Let c be any real number. Set d ≡ max{c, 0}, and e ≡ min{c, 0}; thus de = 0.
Set τ ≡ τ(e,0), and set α ≡ αd. Thus τα = τ(de,0) = τO = 1. If α = 0, then d = 0,
and c ≤ 0. If τ = 1, then e = 0, and c ≥ 0. Thus the statement implies LLPO.

Example 11.8. The following statement is nonconstructive.43

For any translation τ , there exists a pencil of lines π such that the trace family of
τ is contained in π.

Let c, d, and e be as in Example 11.7, and let τ be the translation defined by
τX ≡ X + (d, e). Use the statement to choose a line l such that t(τ) ⊆ πl. It
follows from Axiom L2 that l is either nonparallel to the line y = 0 or nonparallel
to the line x = 0. In the first case, suppose that c > 0; then d > 0, e = 0, and
the line y = 0 is a trace of τ , a contradiction. Hence c ≤ 0. The second case is
similar. Thus the statement implies LLPO.

Example 11.9. Weakening the definition of nonparallel adopted in Definition
2.6 is not feasible. It must follow from the definition that nonparallel lines have
a common point, and Axiom L1 must be allowed. The following statements are
nonconstructive:

(i) If l 6= m and ¬(l ∩m = ∅), then l ∦ m.

(ii) If ¬(l = m) and l ∩m 6= ∅, then l ∦ m.

(iii) If ¬(l ∩m 6= ∅ implies l = m), then l ∦ m.44

Let c ≥ 0 be a real number such that ¬(c = 0), and let l be the line y = 0.

(i) Let m be the line y = cx + 1; it is clear that l 6= m. Now suppose that
l ∩m = ∅. Suppose further that c > 0; then l ∩m 6= ∅, a contradiction. Hence
c = 0, a contradiction. Thus ¬(l∩m = ∅). The statement implies that l ∦ m; thus
the lines have a common point (x, y), and it follows that c > 0. Thus statement
(i) implies LPE.

(ii) Let m be the line y = cx. The statement implies that l ∦ m. It follows from
Axiom L1 that (1, 0) /∈ m, and hence c > 0. Thus statement (ii) implies LPE.

(iii) Let m be the line in part (i). Suppose that the implication holds. Suppose
further that c > 0; then l ∩ m 6= ∅, and it follows that l = m, a contradiction.
Hence c = 0, a contradiction. Thus the implication is contradictory. Statement
(iii) implies that l ∦ m; it has been shown in part (i) that this implies LPE.
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