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Abstract. Suppose that π be a set of primes and F a local Fitting
class. Let Kπ(F) be the set of finite π-soluble groups with a Hall π-
subgroup belonging to F. In this paper, we show that the class Kπ(F)
is a local Fitting class. Thus, an interesting Shemetkov question for
Fitting classes will be answered positively. By using the result, the
F-radical of a Hall π-subgroup of a finite π-soluble group is described.
For an H-function f , we also give the definition and its description of
f -radical of a finite π-soluble group. Some known important results
follow.
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1. Introduction

In the theory of classes of finite groups, a number of classification problems and
the problems of description of canonical subgroups are closed associated with the
formations and Fitting classes determined by means of some properties of Hall
subgroups (cf., for example, [7, IV, §16] and [4, IX, 1–4]). In this connection,
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Blessenohl [1] and Brison [3] introduced respectively the following two classes of
groups Kπ(F) and Kπ(F) in class of all soluble groups.

If F is a formation of finite groups and π a set of prime numbers, then
Blessenohl defines

Kπ(F) = {G : G is a finite group and a Hall π-subgroup H of G is in F}.

If F is a Fitting class of finite groups and π a set of prime numbers, then Brison
defines

Kπ(F) = {G : G is a finite group and a Hall π-subgroup H of G is in F}.

It is easy to check that the class of groups Kπ(F) is a formation and the class of
groups Kπ(F) is a Fitting class. In connection with the class of groups, Shemetkov
proposed the following problem.

Problem (L. A. Shemetkov [7, Problem 19]). If F is a local formation of finite
groups and every group in Kπ(F) possesses exactly one conjugate class of Hall
π-subgroups, is Kπ(F) a local formation?

In the class of all soluble groups, the positive answer to this problem was obtained
by Blessenohl [1]. Later on, Slepova [8] proved that under some restrictive con-
ditions on a local formation F, the answer to this problem is also possible in the
class of all finite groups. In connection with the above results, the following dual
Shemetkov problem naturally arises:

Problem. If F is a local Fitting class of finite groups and every group in Kπ(F)
possesses exactly one conjugate class of Hall π-subgroups, is Kπ(F) a local Fitting
class?

The problem has been solved in the class of all soluble groups by Zagurskij and
Vorob’ev [12]. In this paper, we shall give a positive answer to this problem in the
class of all π-soluble groups. By using this result, we shall give some applications.
In particular, the F-radical of a Hall π-subgroup of a finite π-soluble group is
described.

All groups considered in this paper are finite π-soluble groups, and Sπ denotes
the class of all finite π-soluble groups, where π is some given subset of the set P.
All unexplained notations and terminologies are standard. The reader is referred
to the text of Doerk and Hawkes [4] and Guo [6] if necessary.

2. Preliminaries

Recall that a class of groups F is called a Fitting class provided the following two
conditions are satisfied:

(i) if G ∈ F and N E G, then N ∈ F,

(ii) if N1, N2 E G and N1, N2 ∈ F, then N1N2 ∈ F.
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Condition (ii) in the definition says that, for every non-empty Fitting class, every
group G has a unique maximal normal F-subgroup which is called the F-radical
of G and denoted by GF.

The product FH of two Fitting classes F and H is defined as the class (G |
G/GF ∈ H). It is well known that the product of any two Fitting classes is also a
Fitting class and the multiplication of Fitting classes satisfies associative law.

Let σ be a non-empty set of prime numbers and σ′ the complement of σ in the
set of all prime numbers P. For a group G, let |G| be the order of G and Fπ(G)
the maximal normal π-nilpotent subgroup of G. X denotes a class of groups and
Xσ denotes the class of all finite σ-groups lying in X; N denotes the class of all
finite nilpotent groups. Nσ denotes the class of all finite nilpotent σ-groups. In
particular, Np is the class of all p-groups.

Within the universe Sπ, a function f defined by f : P −→ {Fitting classes} is
called a Hartley function (or in brevity, H-function) (see [9]). Let σ = Supp(f) =
{p ∈ P : f(p) 6= ∅}, that is, σ is the support of the function f (see [4, p. 323])
and LR(f) = Sπ

σ ∩ (∩p∈σf(p)NpS
π
p′). A Fitting class F is called local [5] in Sπ, if

there exists an H-function f such that F = LR(f). In this case, we say that F is
local defined by f or f is an H-function of F.

Let f be an H-function of F. Then f is called

(i) integrated if f(p) ⊆ F for all p ∈ P, and

(ii) full if f(p) = f(p)Np for all p ∈ P (cf. [10]).

The following known result is useful in the sequel.

Lemma 2.1. [11] Every local Fitting class F can be defined by a largest integrated
H-function F such that F (p)Np = F (p) for all p ∈ P and each non-empty value
F (p) is Lockett class.

Recall that a Fitting class F is said be Lockett class if F = F∗, where F∗ is the
smallest Fitting class containing F such that the F∗-radical of the direct product
G×H of two groups G and H is equal to the direct product of the F∗-radical of
G and the F∗-radical of H, that is, (G×H)F∗ = GF∗ ×HF∗ , for all groups G and
H.

Let π ⊆ P. A subgroup H of a group G is called a Hall π-subgroup of G if the
order |H| of H is a π-number and the index |G : H| is a π′-number.

Definition. [4, IX, 1.24] Let π be a set of primes and F a Fitting class. Then
define

Kπ(F) = (G : if H is a Hall π-subgroup of G, then H ∈ F).

If F = ∅, then put Kπ(F) = ∅. In particular, K∅(F) = Sπ and KP(F) = F.
We also need the following results which generalized [4, IX, 1.25], [4, IX,

p. 574, ex. 3] and [4, IX, 1.27], the condition of solubility was weakened.

Lemma 2.2.
(a) Let F be a Fitting class. Then Kπ(F) is a Fitting class for any π ⊆ P.
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(b) If F is a non-empty Fitting class and H is a Hall π-subgroup of G, then
GKπ(F) ∩H = HF.

(c) If F and H are Fitting classes, then Kπ(FH) = Kπ(F)Kπ(H).

Proof. (a) It is clear by the definition of Kπ(F).

(b) Put R = Kπ(F) and K = GR. Since K � G, we have H ∩ K ∈ Hallπ(K)
and H ∩ K � H. Hence H ∩ K ⊆ HF. Let F/K = Fπ(G/K), then F/K ∈ Nπ

since F ∈ Kπ(F)Eπ′Nπ = Kπ(F)Nπ. Therefore, F/K ≤ HK/K ∈Hallπ(G/K).
Obviously, HF ∈ Hallπ(HFK). So HFK ∈ R. On the other hand, F ∩HFK sn G
by F/K ∈ N, so F ∩HFK ≤ GR = K. Therefore, [F, HFK] ≤ F ∩HFK ≤ K,
and consequently, HFK ≤ CG(F/K) ≤ F (cf. [6, Theorem 1.8.19]. It follows that
HF ≤ H ∩ F ∩HFK ≤ H ∩K. Thus, (b) holds.

(c) Let H be a Hall π-subgroup of G. If G ∈ Kπ(FH), then H ∈ FH, that is,
H/HF ∈ H. By (b), we know that HF = GKπ(F)∩H, so H/HF ' HGKπ(F)/GKπ(F)∈
H and hence G/GKπ(F) ∈ Kπ(H). This shows that Kπ(FH) ≤ Kπ(F)Kπ(H).
On the other hand, if G ∈ Kπ(F)Kπ(H), then G/GKπ(F) ∈ Kπ(H). It follows
from (b) that H/HF ' HGKπ(F)/GKπ(F) ∈ H. Hence H ∈ FH and consequently
G ∈ Kπ(FH). Thus, (c) holds.

Remark. The statements (b) and (c) in this Lemma maybe not true in the class
G of all finite groups. For example, put F = N = H, G = A5 and π = {2, 3}.
Then H ' A4 is a Hall π-subgroup of G. Clearly GKπ(F) ∩ H = GKπ(F) = 1,
but HF 6= 1. Hence (b) is not true. Since H ∈ N2, we know G ∈ Kπ(FH). But
G /∈ Kπ(F)Kπ(H) since GKπ(F) = 1. Hence (c) is not true.

The following lemma is evident.

Lemma 2.3. Let F and H be two Fitting classes. Then the following statements
hold:

(a) if F ⊆ H, then Kπ(F) ⊆ Kπ(H).

(b) Kπ(F ∩ H) = Kπ(F) ∩Kπ(H).

Lemma 2.4. Let F be a Fitting class. Then the following statements hold:

(a) if p ∈ π and F = Sπ
p′, then Kπ(F) = F;

(b) if F is a non-empty Fitting class and FNp = F for some prime p, then
Kπ(F)Np = Kπ(F).

Proof. (a) Since a subgroup of a π-soluble p′-group is a π-soluble p′-group, it is
easy to see that F ⊆ Kπ(F). Let G ∈ Kπ(F) and H is a Hall π-subgroup of G.
Then H ∈ F, and so |H| is a p′-number. On the other hand, since p ∈ π, we have
π′ ⊆ p′. Hence |G : H| is also a p′-number. It follows that |G| is a p′-number and
G ∈ F. Therefore F = Kπ(F).

(b) Obviously, Kπ(F) ⊆ Kπ(F)Np. Now assume that G ∈ Kπ(F)Np. Then
G/GKπ(F) is a p-group. Let H be a Hall π-subgroup of G. By Lemma 2.2 (b), we
see that H/HF = H/H∩GKπ(F) ' HGKπ(F)/GKπ(F) ≤ G/GKπ(F) is a p-group, that
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is, H/HF ∈ Np. This means that H ∈ FNp = F, that is, G ∈ Kπ(F). Therefore,
Kπ(F)Np = Kπ(F).

Lemma 2.5. Let F be a non-empty Fitting class, and π, σ be two sets of prime
numbers such that π ∩ σ = ∅. Then the following statements hold:

(a) Kπ(F)Sπ
σ = Kπ(F). In particular, Kπ(F)Sπ

π′ = Kπ(F);

(b) Kπ(F)Nσ = Kπ(F).

Proof. (a) Firstly, it is clear that Kπ(F) ⊆ Kπ(F)Sπ
σ. Assume that G ∈

Kπ(F)Sπ
σ and H is a Hall π-subgroup of G. Then G/GKπ(F) ∈ Sπ

σ and the Hall
π-subgroup HGKπ(F)/GKπ(F) of G/GKπ(F) is a σ-group. Since HGKπ(F)/GKπ(F) '
H/H∩GKπ(F), H/HF is a σ-group by Lemma 2.2 (b). Hence H/HF ∈ Sπ

π∩Sπ
σ =

(1), where (1) is the class consisting of identity groups. Consequently, H = HF
and hence G ∈ Kπ(F).

(b) By the statement (a) of the lemma, we see that Kπ(F)Nσ ⊆ Kπ(F)Sπ
σ =

Kπ(F). Thus, the statement (b) holds.

3. Main theorem

Theorem 3.1. For any set of primes π and any local Fitting class F, the Fitting
class Kπ(F) is a local Fitting class.

Proof. Since F is a local Fitting class, by Lemma 2.1, there exists an H-function
F such that F = LR(F ) and F (p)Np = F (p) ⊆ F for all p ∈ P and each value
F (p) is a Lockett class, for every p ∈ σ = Supp(F ). Then, we have that

F = Sπ
σ ∩ (∩p∈σF (p)NpS

π
p′) = Sπ

σ ∩ (∩p∈σF (p)Sπ
p′). (3.1)

If π = P, then Kπ(F) = F and so the theorem holds. Assume that π = ∅, then
Kπ(F) = Sπ. However, it is easy to see that the class of all π-soluble groups
Sπ = LR(h), where h is the H-function such that h(p) = Sπ, for all p ∈ P. This
shows that, in this case, Kπ(F) is a local Fitting class.

We now assume that ∅ $ π $ P and define an H-function as follows:

f(p) =


Kπ∩σ(F (p)), if p ∈ π ∩ σ,

Kπ(F), if p ∈ π′,

∅, if p ∈ π ∩ σ′.

Then ω = Supp(f) = σ ∪ π′, and so

LR(f) = Sπ
σ∪π′ ∩ ((∩p∈π∩σKπ∩σ(F (p))NpS

π
p′) ∩ (∩p∈π′Kπ(F)NpS

π
p′). (3.2)

In order to prove the theorem, we only need to ascertain that Kπ(F) = LR(f).
For this purpose, we let M = ∩p∈π∩σKπ∩σ(F (p))NpS

π
p′ . Since the H-function

F is full, by Lemma 2.4 (b), we see that M = ∩p∈π∩σKπ∩σ(F (p))Sπ
p′ . We now

prove
M = Kπ∩σ(F). (3.3)
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Indeed, by the equality (3.1), we have that F ⊆ ∩p∈π∩σF (p)Sπ
p′ . Then, by Lemma

2.3, Lemma 2.2 (c) and Lemma 2.4 (a), we see that Kπ∩σ(F) ⊆ Kπ∩σ(∩p∈π∩σF (p)
Sπ

p′) ⊆ ∩p∈π∩σKπ∩σ(F (p)Sπ
p′) = ∩p∈π∩σKπ∩σ(F (p))Kπ∩σ(Sπ

p′) = ∩p∈π∩σKπ∩σ

(F (p))Sπ
p′ . Therefore, Kπ∩σ(F) ⊆ M. On the other hand, since the H-function

F is integrated, by Lemma 2.3 (a), we have Kπ∩σ(F (p)) ⊆ Kπ∩σ(F) for every
p ∈ π ∩ σ. It follows that Kπ∩σ(F (p))Sπ

p′ ⊆ Kπ∩σ(F)Sπ
p′ for all p ∈ π ∩ σ, and

consequently, M ⊆ ∩p∈π∩σKπ∩σ(F)Sπ
p′ = Kπ∩σ(F)Sπ

(π∩σ)′ . However, by Lemma

2.5 (a), we see that Kπ∩σ(F)Sπ
(π∩σ)′ = Kπ∩σ(F), thus, the equality (3.3) holds.

Let M1 = ∩p∈π′Kπ(F)NpS
π
p′ . We prove

M1 = Kπ(F)Sπ
π. (3.4)

In fact, by Lemma 2.5 (b), we have M1 = ∩p∈π′Kπ(F)Sπ
p′ = Kπ(F)(∩p∈π′Sπ

p′) =
Kπ(F)Sπ

π. Hence the equality (3.4) holds.
Now, by the equalities (3.2), (3.3) and (3.4), we obtain that

LR(f) = Sπ
σ∪π′ ∩M ∩M1 = Sπ

σ∪π′ ∩Kπ∩σ(F) ∩Kπ(F)Sπ
π. (3.5)

Let D = Sπ
σ∪π′ ∩Kπ∩σ(F). We prove that D = Kπ(F). Assume that G ∈ Kπ(F)

and H is a Hall π-subgroup of G. Then, H ∈ F. Since F ⊆ Sπ
σ, |H| is a (π ∩ σ)-

number. It follows that |G| is a (σ ∪ π′)-number, that is, G ∈ Sπ
σ∪π′ . In addition,

since π′ ⊆ (σ∩π)′, we see that H is a (σ∩π)-Hall subgroup of G. This shows that
G ∈ Kπ∩σ(F), and hence G ∈ D. On the other hand, assume that G ∈ D and H
is a (π ∩ σ)-Hall subgroup of G. Then, |G| is a (σ ∪ π′)-number and H ∈ F. It is
clear that the index |G : H| is a (π′ ∪ σ′)-number. Hence |G : H| is a µ-number,
where µ = (π′ ∪ σ′) ∩ (σ ∪ π′). Obviously, µ ⊆ π′. Thus, H is a Hall π-subgroup
of G. This means that G ∈ Kπ(F). Therefore D = Kπ(F).

Finally, by using the above results and Lemma 2.5, we have that LR(f) =
D∩M1 = Kπ(F)∩Kπ(F)Sπ

π = Kπ(F)Sπ
π′∩Kπ(F)Sπ

π = Kπ(F)(Sπ
π′∩Sπ

π) = Kπ(F).
This completes the proof of the theorem.

4. Remark and Example

The “local” condition in the theorem is essential. We now give an example to
show it.

For this purpose, we need the concept of normal Fitting class. Recall that a
non-empty Fitting class F is called a normal Fitting class if for every group G, the
F-radical GF of G is F-maximal subgroup of G. In the theory of normal Fitting
classes, it is well known that the intersection of any non-empty set of non-identity
normal Fitting classes is still a normal Fitting class (see Blessenohl and Gaschütz
[2, Theorem 6.1]). It follows that there exists a unique minimal normal Fitting
class, which is denoted by S∗.

Now let π = P and F = KP(S∗) = S∗. We prove that S∗ is not a local
Fitting class. Indeed, if the class S∗ is a local Fitting class, then by [10, Lemma
6], S∗ is a Lockett class, that is, (S∗)

∗ = S∗. Then, by [4, X.1.15], we have that
S∗ = (S∗)

∗ = S∗ = S, which is impossible.
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5. Applications

Let F be a non-empty Fitting class. In this section, we will describe F-radical of
Hall π-subgroup of a group by applying Theorem 3.1. Firstly, by Lemma 2.2, we
know that the F-radical of a Hall π-subgroup H of a group G can be formed by
the following equality:

HF = GKπ(F) ∩H. (5.1)

Now we give the following definition.

Definition 5.1. Let F be a local Fitting class defined by H-function f , and
σ = Supp(f). A subgroup S of G is called f -radical of G (denoted by Gf) if
S = Πp∈π(G)∩σGf(p), that is, Gf = Πp∈π(G)∩σGf(p).

Remark 5.1. It is easy to see that if f(p) = F for some p ∈ σ = Supp(f) and f
is an integrated H-function of F, then Gf = GF.

In connection with Remark 5.1, the following problems naturally arise:

1) For a local Fitting class F defined by f such that f(p) 6= F for all primes
p ∈ P (that is, σ = Supp(f) = {p ∈ P : ∅ 6= f(p) 6= F}), is it true that
Gf = GF?

2) Can we describe the F-radical of a Hall subgroup H of G ? The following
theorem resolved the two problems.

Theorem 5.1. Let F be a local Fitting class defined a largest integrated H-
function F and Φ be the largest integrated H-function of the local Fitting class
Kπ(F). Then, for every group G and its Hall π-subgroup H, the following state-
ments hold:

(a) if σ = Supp(F ) = {p : p ∈ P and ∅ 6= F (p) 6= F}, then GF = GF ;

(b) HF = GΦ ∩H.

Proof. (a) Since F is an integrated H-function, F (p) ⊆ F for all p ∈ P. Then,
F (p) ⊂ F for all p ∈ π(G)∩σ and GF (p) ⊂ GF. Hence GF = Πp∈π(G)∩σGF (p) ⊆ GF.
Assume that GF 6= GF. Then, since GF ∈ F = Sπ

σ ∩ (∩p∈σF (p)Sπ
p′) and

GF/GF (p)/GF /GF (p) ' GF/GF ,

we see that GF/GF is a p′-group for all p ∈ σ ∩ π(G). Consequently, GF/GF ∈
Sπ

(σ∩π(G))′ .

On the other hand, GF/GF ∈ Sπ
σ ∩ Sπ

π(G) = Sπ
σ∩π(G). This induces that

GF/GF = 1 and hence GF = GF .

(b) By using Theorem 3.1 and its proof, we know that Kπ(F) is a local Fitting
class and Kπ(F) = LR(f), where f is the H-function such that

f(p) =


Kπ∩σ(F (p)), if p ∈ π ∩ σ,

Kπ(F), if p ∈ π′,

∅, if p ∈ π ∩ σ′.

(5.2)
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By [10, Lemma 1] (also see [5, Lemma 6]), it is easy to see that Kπ(F) is defined
by a full integrated H-function Φ such that Φ(p) = (f(p)∩Kπ(F))Np for all p ∈ P.

We now prove that Φ is the largest integrated H-function of the class Kπ(F).
Indeed, by the equality (5.2), we have f(p) = Kπ∩σ(F (p)) for all p ∈ π ∩ σ. Let
G1 and G2 be π-soluble groups, H1 ∈ Hallπ∩σ(G1) and H2 ∈ Hallπ∩σ(G2). Then,
by Lemma 2.2 (b), we have that (G1 × G2)f(p) ∩ (H1 ×H2) = (H1 ×H2)F (p). By
the hypotheses and Lemma 2.1, F (p) is a Lockett class. Hence (H1 ×H2)F (p) =
(H1)F (p)×(H2)F (p). Now, by Lemma 2.2 (b) again, (H)i)F (p) = (Gi)f(p)∩Hi. Thus,
(H1)F (p) × (H2)F (p) = ((G1)f(p) ∩H1) × ((G2)f(p) ∩H2) = ((G1)f(p) × (G2)f(p)) ∩
(H1×H2). Therefore (G1×G2)f(p)/((G1)f(p)× (G2)f(p)) is a (π ∩ σ)′-group. But,
obviously, O(π∩σ)′(Gi/(Gi)f(p)) = 1, i = 1, 2, so (G1×G2)f(p) = (G1)f(p)×(G2)f(p).
Hence f(p) is a Lockett class, for all p ∈ π ∩ σ.

If p ∈ π′, then, by the equality (5.2), f(p) = Kπ(F). By using our Theorem
3.1, Kπ(F) is a local Fitting class. Since every local Fitting class is a Lockett class
(cf. [10, Lemma 5]), f(p) is a Lockett class.

The above reasoning shows that the class f(p) is a Lockett class for all p ∈
Supp(Φ). It follows from [4, X, 1.13] that the intersection f(p) ∩ Kπ(F) is still
a Lockett class, and consequently, the product of the Lockett class f(p) ∩Kπ(F)
and the local Fitting class Np is also a Lockett class by [10, Lemma 5] and [4,
Theorem X.1.26 (b)]. This shows that every non-empty value Φ(p) is a Lockett
class. Thus, by Lemma 2.1, we obtain that Φ is the largest integrated H-function
of the class Kπ(F).

Now, by the equality (5.1), we have that HF = GKπ(F) ∩ H. Therefore, we
now only need show that GΦ = GKπ(F) in order to prove (b).

Let µ = Supp(Φ). If there exists a prime p ∈ µ such that Φ(p) = Kπ(F), then,
GΦ = GKπ(F) by Remark 5.1. If Φ(p) 6= Kπ(F) for all p ∈ µ, then, by (a), we also
have that GΦ = GKπ(F). Thus, the proof is completed.

Corollary 5.2. Let F = LR(F ), for the largest integrated H-function F and
F ⊇ N. Let H be a Hall π-subgroup of a group G. Then

HF = Πp∈πHF (p).

Proof. Since F ⊇ N, we have that σ = Supp(F ) = P, and π ∩ σ = π. Let
Φ be that largest integrated H-function of Kπ(F). Then, as we have seen in
the above Theorem 5.1 and its proof, Φ(p) = (f(p) ∩ Kπ(F))Np = (Kπ(F (p)) ∩
Kπ(F))Np, for all p ∈ π. Because F is a largest integrated H-function of F, we
have F (p) = F (p)Np ⊆ F. Hence, by Lemma 2.3 and Lemma 2.4, we see that
Φ(p) = Kπ(F (p))Np = Kπ(F (p)), for all p ∈ π. It follows from Theorem 5.1 (b)
that

HF = GΦ ∩H = Πp∈πGΦ(p) ∩H = (Πp∈πGKπ(F (p))) ∩H.

Hence, HF = Πp∈π(GKπ(F (p)) ∩ H) (cf. [4, Lemma I.3.2 (d)]). Now, by using the
equality (5.1), we obtain that HF = Πp∈πHF (p). This completed the proof.

In conclusion, we consider a simple application of Theorem 5.1 and Corollary 5.2.
Let F = N, the class of all finite nilpotent groups. Since F has a largest integrated
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H-function F such that F (p) = Np for all p ∈ P, by Theorem 5.1 and Corollary
5.2, we immediately obtain that F (G) = Πp∈π(G)Op(G) and F (H) = Πp∈πOp(H),
for every group G and its Hall π-subgroup H.
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