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Abstract. We prove a criterion for k-formality of arrangements, us-
ing a complex constructed from vector spaces introduced in [2]. As
an application, we give a simple description of k-formality of graphic
arrangements: Let G be a connected graph with no loops or multiple
edges. Let ∆ be the flag (clique) complex of G and let H•(∆) be the
homology of the chain complex of ∆. If AG is the graphic arrange-
ment associated to G, we will show that AG is k-formal if and only if
Hi(∆) = 0 for every i = 1, . . . , k − 1.
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1. Introduction

In [1], Falk and Randell introduced the notion of a formal arrangement. An
arrangement is formal iff every linear dependency among the defining forms of
the hyperplanes can be expressed as linear combination of dependencies among
exactly 3 defining forms. Many interesting classes of arrangements are formal: in
[1], Falk and Randell proved that K(π, 1) arrangements and arrangements with
quadratic Orlik-Solomon ideal are formal and, in [8], Yuzvinsky showed that free
arrangements are also formal; and gave an example showing that formality does
not depend on the intersection lattice. In [2], Brandt and Terao generalized the
notion of formality to k-formality, proving that every free arrangement is k-formal.
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For this they introduced the concept of ‘higher’ relation spaces, which capture ‘the
dependencies among dependencies’.

In the first section of this paper we briefly recall the notions of relation spaces
and k-formality. By rewriting the definitions, we obtain a lemma characterizing
k-formality topologically. Then we apply this criteria for graphic arrangements
to obtain a description of k-formality in terms of the homology of a certain chain
complex. With this it is easy to produce examples of graphic arrangements which
are k-formal but not (k + 1)-formal, for any given k.

2. Preliminaries

In what follows we adopt all the notation from [2]. Let A be an arrangement of
n hyperplanes in a vector space V over a field K. For each H ∈ A we fix the
defining form αH ∈ V ∗.

Define a map φ : E(A) := ⊕H∈AKeH → V ∗, by φ(eH) = αH , where E(A) is
the vector space with basis {eH}.

Let F (A) be the kernel of this map. Then dim F (A) = n− r(A) where r(A)
is the rank of A. The vector space F (A) describes which linear forms are linearly
dependent, as well as the dependency coefficients (up to scalar multiplication).
We will refer to elements of F (A) as relations.

Let F2(A) be the subspace of F (A) generated by the relations corresponding
to dependencies of exactly 3 linear forms.

Definition 2.1. A is formal iff F (A) = F2(A).

Definition 2.2. For 3 ≤ k ≤ r(A), recursively define Rk(A) to be the kernel of
the map

πk−1 = πk−1(A) :
⊕

X∈L,r(X)=k−1

Rk−1(AX) → Rk−1(A),

where L is the lattice of intersections of A and πk−1 is the sum of the inclusion
maps Rk−1(AX) ↪→ Rk−1(A). We identify R2(A) with F (A).

To simplify notation, for k ≥ 2 we will denote with Dk = Dk(A) the vector space⊕
X∈L,r(X)=k Rk(AX).

Definition 2.3. We define:

1. An arrangement is 2-formal if it is formal.

2. For k ≥ 3, A is k-formal iff it is (k − 1)-formal and the map πk : Dk →
Rk(A) is surjective.

Lemma 2.4. For any arrangement A, the following sequence of vector spaces and
maps form a complex:

D• : 0 −→ · · · d3−→ D2
d2−→ D1

d1−→ D0 −→ 0,

where D0 = V ∗, D1 = E(A) and for k ≥ 2, Dk are the spaces from the notations
above. Also, d1 = φ and dk : Dk → Dk−1, dk = πk for k ≥ 2.
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Proof. We have dk(Dk) = πk(Dk) ⊆ Rk(A) = ker(πk−1) ⊆ Dk−1. So dk is well
defined. Also, dk−1 ◦ dk(v) = πk−1(πk(v)) = 0 for any v ∈ Dk, as πk(v) ∈ Rk(A) =
ker(πk−1). So, indeed we have a complex.

Lemma 2.5. A is k-formal iff Hi(D•) = 0 for every i = 1, . . . , k − 1.

Proof. πl is surjective iff ∀w ∈ Rl(A) there exists v ∈ Dl such that πl(v) = w.
We have Rl(A) = ker(πl−1) = ker(dl−1) and w = πl(v) = dl(v) ∈ Im(dl). So

we get ker(dl−1) ⊆ Im(dl) which give us Hl−1(D) = 0.

Example 2.6. In this example we will discuss [2], Example 5.1., in terms of the
homology of the above complex. We must specify that all the computations are
already done in [2], and we are just translating into topological language.

A is a real essential arrangement of rank 4 consisting of 10 hyperplanes, defined
by the vanishing of the following linear forms: α1 = x3, α2 = x3 − x4, α3 =
x2, α4 = x2 + x3 − 2x4, α5 = x1, α6 = x1 + x3 − 2x4, α7 = x2 + 2x3 − 2x4, α8 =
x1 + 2x3 − 2x4, α9 = x1 + x2 + x3 − 2x4, α10 = x4.

So D0 = R4, D1 = R10 and the map d1 : D1 −→ D0 is just the map φ and has
rank 4. Therefore ker(d1) has dimension 10− 4 = 6.

We have 7 nondegenerate rank 2 elements in L(A) and each is an intersection
of exactly 3 hyperplanes. So we have 7 relations of length 3: α1 − α2 − α10 =
0, α1 + α4 − α7 = 0, α1 + α6 − α8 = 0, 2α2 + α3 − α7 = 0, 2α2 + α5 − α8 =
0, α3 + α6 − α9 = 0, α4 + α5 − α9 = 0.

Therefore D2 = R7. The matrix of the map d2 : D2 −→ D1 is exactly the
matrix in [2], page 61

1 −1 0 0 0 0 0 0 0 −1
1 0 0 1 0 0 −1 0 0 0
1 0 0 0 0 1 0 −1 0 0
0 2 1 0 0 0 −1 0 0 0
0 2 0 0 1 0 0 −1 0 0
0 0 1 0 0 1 0 0 −1 0
0 0 0 1 1 0 0 0 −1 0


,

and it has rank 6. So dim Im(d2) = 6 and dim ker(d2) = 7− 6 = 1.
Also in [2] we have listed all the elements of rank 3 from L(A): {1, 2, 9, 10},

{3, 6, 9, 10}, {4, 5, 9, 10}, {1, 3, 6, 8, 9}, {1, 4, 5, 7, 9}, {1, 4, 6, 7, 8}, {2, 3, 5, 7, 8},
{2, 3, 6, 7, 9}, {2, 4, 5, 8, 9}, {3, 4, 5, 6, 9}, {1, 2, 3, 4, 7, 10}, {1, 2, 5, 6, 8, 10}.

If X is such an element (with r(X) = 3), then R3(AX) 6= 0 means that there
is at least a relation among the relations of length 3 of elements of rank 2 in
L(AX). The nondegenerate rank 2 elements in L(AX) are nondegenerate rank
2 elements in L(A) and these are listed above. It is not difficult to check which
are the relations of length 3 for each rank 3 element in A. For reference, these
are listed in the chart on page 62 in [2]. Also, there is no problem to check that
for each r(X) = 3, the length 3 relations are linearly independent. Therefore we
conclude that D3 = 0.
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So the complex we get is:

D• : 0 −→ R7 −→ R10 −→ R4 −→ 0

with homology: H1(D•) = 0 and H2(D•) = 1. So A is formal, but not 3-formal.

Graphic arrangements are a class of arrangements possessing many nice properties
(see, for example, [3], [5], [6], [7]), and for this class there is a pleasant combinato-
rial interpretation of Lema 2.5. In the next section, G denotes a connected graph
with no loops or multiple edges. For the graphic arrangement AG, we will identify
the complex above with the chain complex of the flag complex of G. Then, with
Lemma 2.5., the statement in the abstract will be natural.

3. Graphic Arrangements

Let G be a connected graph on vertices [n] = {1, . . . , n} with no loops or multiple
edges. The flag(clique) complex ∆ = ∆(G) is the simplicial complex with:

• The 0-faces = the vertices of G.

• The 1-faces = the edges of G.

• For i ≥ 2, the i-faces = the Ki+1 (i.e., complete graph on i + 1 vertices)
subgraphs of G.

For i ≥ 0, let ai be the number of i−faces of ∆. We have the natural chain
complex of ∆:

0 −→ · · · f3−→ C2
f2−→ C1

f1−→ C0 −→ 0,

where Ci = Kai and fi : Ci → Ci−1 is the usual differential given in terms of
generators: fi([n1, . . . , ni+1]) =

∑i+1
j=1(−1)j−1[n1, . . . , n̂j, . . . , ni+1].

The homology of this complex will be denoted by H•(∆).

By definition, the graphic arrangement associated to G is A = AG = {ker{αij}|
αij = xi − xj, i < j and [ij] is an edge in G}. Note that A is an arrangement in
V = Ka0 of rank a0 − 1 (if G is connected) and consists of a1 (= the number of
edges in G) hyperplanes.

Notice that from the beginning we fixed the defining forms αij. To be con-
sistent with notation, eij, i < j will be the symbols in E(A) (i.e., φ(eij) = αij).
With these, we can identify D1 = E(A) with C1 by eij ↔ [ij] for i < j.

If we fix the form of the elements in the basis of Di’s and with proper notations of
those, the correspondence between the two complexes will become natural. The
next lemma will do this, but before we state and prove it here is the flavor of it:

For X ∈ L, let GX be the subgraph of G built on the edges corresponding to
the hyperplanes in X.

We have D2 = ⊕X∈L2R2(AX). Suppose for an X ∈ L2 we have R2(AX) =
F (AX) 6= 0. This means that we must have a dependency (relation) among some
of the linear forms corresponding to some edges in GX . But this translates in the
fact that GX contains a cycle. If the length of this cycle is ≥ 4, then the linear
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forms corresponding to 3 consecutive edges in the cycle are linearly independent.
This contradicts the fact that rk(X) = 2. So GX contains a triangle. If we have
an extra edge in GX , beside those from the triangle, then the linear form of this
extra edge and the linear forms associated to two of the edges of the triangle are
linearly independent. Again we get a contradiction with the fact that rk(X) = 2.
So GX = a triangle. So each nonzero summand of D2 corresponds to a triangle
in G. The converse of this statement is obvious.

Lemma 3.1. (The Recursive Identification Lemma) Let X ∈ L with r(X) =
l, l ≥ 2. Then Rl(AX) 6= 0 iff GX is a Kl+1 subgraph of G. More, dim Rl(AX) = 1
and if GX = [i1i2 · · · il+1], i1 < i2 < · · · < il+1, then we can pick a ‘special’ basis
element of Rl(AX) to be the relation on the special elements corresponding to
the Kl subgraphs of GX : ri2···il+1

− ri1i3···il+1
+ · · · + (−1)lri1i2···il. This element is

denoted with ri1i2···il+1
.

Proof. Suppose Rl(AX) 6= 0. We will use induction on l.

For l = 2 we have already seen this case above.

Suppose l ≥ 3. By definition, we have Rl(AX) = ker(πl−1), where

πl−1 : Dl−1(AX) =
⊕

Y ∈L(AX),r(Y )=l−1

Rl−1((AX)Y ) −→ Rl−1(AX).

The induction hypothesis is telling that for each Y ∈ L(AX), r(Y ) = l − 1
such that Rl−1((AX)Y ) 6= 0, GY = [i1i2 · · · il] is a Kl subgraph of GX and
dim Rl−1((AX)Y ) = 1 with ri1i2···il ‘special’ basis element of Rl−1((AX)Y ).

From this we get first that dim Dl−1(AX) = the number of Kl subgraphs of
GX .

The condition Rl(AX) 6= 0 is telling us that, since Rl(AX) ⊆ Dl−1(AX), GX has
at least one Kl subgraph.

If GX has just one Kl subgraph, then Rl(AX) = Dl−1(AX). But πl−1 is a sum
of inclusions, and in this particular case it will be exactly an inclusion. So we get
that Rl(AX) = ker(πl−1) = 0, which is a contradiction.

Therefore, GX has at least two Kl subgraphs.
Let’s take two of them K1

l and K2
l , and first suppose they do not share any

vertex. Let v ∈ K1
l and w ∈ K2

l be two vertices of GX . Through v pass exactly
l − 1 edges and the corresponding linear forms α1, . . . , αl−1 are linearly indepen-
dent. Let’s take two edges [w, w1] and [w, w2] of K2

l and let β1 and β2 be the
corresponding linear forms. Then, α1, . . . , αl−1, β1, β2 are linearly dependent if at
least one of the vertices {w, w1, w2} is a vertex in K1

l . Contradiction. Therefore,
α1, . . . , αl−1, β1, β2 are linearly independent. But this will contradict r(AX) = l.

Hence, K1
l and K2

l have at least a common vertex v. Suppose w1, w2 are two
vertices of K2

l but not of K1
l . Then, through v pass at least l + 1 edges: l − 1

from K1
l and [v, w1], [v, w2] from K2

l . The corresponding linear forms are linearly
independent and again we obtain a contradiction with the fact that r(AX) = l.

The conclusion of all of above is that any two distinct Kl subgraphs of GX

have exactly l − 1 vertices in common. (∗)
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Suppose GX has exactly two Kl subgraphs: [1, 2, . . . , l − 1, l] and [1, 2, . . . , l −
1, l + 1]. Let r ∈ Rl(AX), r 6= 0. Then r = r1,2,...,l−1,l + br1,2,...,l−1,l+1 for some
b ∈ K − {0}. We have πl−1(r) = 0 in Dl−2(AX). So we get a relation on the
‘special’ basis elements of Dl−2(AX):

0 = (r2,...,l−1,l − r1,3,...,l−1,l + · · ·+ (−1)l−1r1,2,...,l−1)

+b(r2,...,l−1,l+1 − r1,3,...,l−1,l+1 + · · ·+ (−1)l−1r1,2,...,l−1).

Observe that this equation is impossible.
So GX has at least three distinct Kl subgraphs: K1

l = [1, 2, . . . , l− 1, l], K2
l =

[1, 2, . . . , l−1, l+1] and K3
l . If both l and l+1 are vertices in K3

l , then l and l+1 are
connected in GX , so GX contains a Kl+1 subgraph. If, for example, l /∈ K3

l , then
from (∗) and since Ki

l , i = 1, 2, 3 are distinct we get that K3
l = [1, 2, . . . , l−1, l+2],

for some other vertex l + 2 in GX . Observe that through the vertex 1 pass at
least l + 1 edges of GX : [1, 2], [1, 3], . . . , [1, l − 1], [1, l], [1, l + 1], [1, l + 2]. The
corresponding linear forms of these edges are linearly independent so we get a
contradiction with the fact that r(AX) = l.

We can conclude that GX contains a Kl+1 subgraph. Now, if there exists an
extra edge of GX not on this Kl+1, then the corresponding linear form of this edge
together with the corresponding linear forms of the edges passing through any
vertex of the Kl+1 subgraph will form a linearly independent set of l+1 elements.
Again we get a contradiction with the fact that r(AX) = l. So GX is a Kl+1.

With this, GX has exactly l + 1 Kl subgraphs. These subgraphs will give us the
‘special’ elements of Dl−1(AX): r2,...,l+1, r1,3,...,l+1, . . . , r1,2,...,l. The only relation on
these elements is exactly the ‘special’ element in Rl(AX):

r2,...,l+1 − r1,3,...,l+1 + · · ·+ (−1)lr1,2,...,l.

We denote this element with r1,2,...,l,l+1 and it is forming the basis for Rl(AX).

For the converse, it is obvious that if GX is a Kl+1, then Rl(AX) 6= 0 and even
more, dim Rl(AX) = 1.

With this lemma we can identify easily the two complexes. The way we pick
the special basis elements will give us the same matrices for the differentials of
the two complexes and, hence, with Lemma 2.5., we have proved the following
proposition:

Proposition 3.2. Let G be a connected graph. AG is k-formal if and only if
Hi(∆) = 0 for every i = 1, . . . , k − 1.

Note that from this proposition we get that in the graphic arrangement case,
k-formality depends only on combinatorics, contrary to the case of lines arrange-
ments (see Yuzvinsky’s example).
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Example 3.3. We conclude with an easy example of a formal graphic arrange-
ment which is not 3-formal. Consider the graph G in the figure below:

4

5

3

1 2

6

The associated flag complex ∆ is the boundary complex of an octahedron on the
same vertices and edges. The associated chain complex of ∆ is:

0 −→ K8 f2−→ K12 f1−→ K6 −→ 0,

where, if we order the basis lexicographically we have:

f1 =


1 1 1 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 −1 0 0 1 1 1 0 0
0 −1 0 0 0 0 0 −1 0 0 1 1
0 0 −1 0 0 −1 0 0 −1 0 −1 0
0 0 0 −1 0 0 −1 0 0 −1 0 −1


and

f2 =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
−1 0 −1 0 0 0 0 0
0 −1 0 −1 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1



.

Since G is connected, then dim H0(∆) = 1. So rk(f1) = 6 − 1 = 5. Therefore,
dim ker(f1) = 12− 5 = 7.

Every 4-cycle in G is a linear combination of 3-cycles. So AG is formal (2-
formal). By the proposition above, dim H1(∆) = 0 and with this we get rk(f2) =
7. Therefore, dim ker(f2) = 8 − 7 = 1. So we get dim H2(∆) = 1. Hence AG is
not 3-formal.
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