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Abstract. This paper presents a technique for constructing new chi-
ral or regular polyhedra (or maps) from self-dual abstract chiral poly-
topes of rank 4. From improperly self-dual chiral polytopes we derive
“Petrie-Coxeter-type” polyhedra (abstract chiral analogues of the clas-
sical Petrie-Coxeter polyhedra) and investigate their groups of automor-
phisms.

1. Introduction

The modern theory of regular polytopes and their geometric realizations in Eu-
clidean spaces has been greatly influenced by the discovery of the Petrie-Coxeter
polyhedra in E3 and Coxeter’s regular skew polyhedra in E4 (see Coxeter [3],
Dress [7], Grünbaum [11], McMullen [14, 15], and [8, 17]). Two of the Petrie-
Coxeter polyhedra and all of Coxeter’s skew polyhedra inherit their symmetry
properties directly from self-dual regular figures, namely the cubical tessellation
in E3, and the self-dual regular convex polytopes (the 4-simplex {3, 3, 3} and 24-
cell {3, 4, 3}) or the double p-gonal prisms (or {p, 2, p}) in E4, respectively (see
Section 4). However, the symmetries of these figures provide only one half of
the symmetries of the polyhedra; the other half corresponds to the dualities (see
[16, 20]).

Coxeter credited Petrie with the original idea of admitting infinite regular
polyhedra in E3 with skew vertex-figures. In particular, Petrie discovered two
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of the Petrie-Coxeter polyhedra, and then Coxeter found the third and carried
out the corresponding enumeration in E4. In [10] and [13], this enumeration
is extended to hyperbolic 3-space H3, where there are thirty-one regular skew
polyhedra.

The connection between self-dual polytopes and skew polyhedra was further
investigated in [16] in the context of abstract regular polytopes, where a construc-
tion of regular “Petrie-Coxeter-type” polyhedra from self-dual regular 4-polytopes
is described. In this paper we extend these ideas to abstract chiral polytopes. We
exploit the two different kinds of self-duality (proper and improper self-duality)
for chiral polytopes and present constructions of polyhedra, which are chiral or
regular, depending on the kind of self-duality of the original chiral 4-polytope.
From improperly self-dual chiral 4-polytopes we obtain chiral “Petrie-Coxeter-
type” polyhedra (or maps), that is, abstract chiral analogues of the ordinary
Petrie-Coxeter polyhedra.

2. Regular and chiral polytopes

In this section we briefly review some definitions and basic results from the theory
of abstract polytopes. For details we refer to [17].

A polytope of rank n, or an n-polytope, is a partially ordered set P with a strictly
monotone rank function having range {−1, 0, . . . , n}. The elements of P with
rank j are the j-faces of P . The faces of ranks 0, 1 or n − 1 are called vertices ,
edges or facets , respectively. There is a smallest face F−1 (of rank −1) and a
greatest face Fn (of rank n), and each flag (maximal chain) contains exactly n+2
faces. Also, P is strongly flag-connected , that is, any two flags Φ and Ψ of P
can be joined by a sequence of flags Φ = Φ0, Φ1, . . . , Φk = Ψ such that each Φi−1

and Φi are adjacent (they differ by just one face), and Φ ∩ Ψ ⊆ Φi for each i.
Furthermore, P has the following homogeneity property: whenever F ≤ G, with
rank(F ) = j − 1 and rank(G) = j + 1, then there are exactly two j-faces H with
F ≤ H ≤ G. These conditions essentially say that P shares many combinatorial
properties with classical polytopes.

If Φ is a flag, then by Φi we denote the unique flag adjacent to Φ and differing
from Φ in the face of rank i. Note that (Φi)i = Φ. We extend our notation and
write Φi1,...,ik−1,ik := (Φi1,...,ik−1)ik . For any two faces F and G with F ≤ G, we
call G/F := {H | F ≤ H ≤ G} a section of P ; if F is a vertex and G = Fn, then
this is the vertex-figure of P at F . Note that G/F is an abstract polytope of rank
equal to rank(G)− rank(F )− 1.

The group of automorphisms (order preserving bijections) of P is denoted by
Γ(P). If P admits an order reversing bijection, then P is said to be self-dual
and any such bijection is called a duality of P . In this case the group of all
automorphisms and dualities is called the extended group of P and is denoted by
Γ(P). A polarity is an involutory duality. Note that, if Φ is any flag and δ any
duality, then Φjδ = (Φδ)n−j−1 for j = 0, . . . , n− 1.

A polytope P is regular if Γ(P) is transitive on the flags of P . The group of
a regular polytope P is generated by involutions ρi, i = 0, . . . , n − 1, mapping a
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fixed, or base, flag Φ to the adjacent flags Φi. These generators satisfy (at least)
the relations

(ρiρj)
pij = ε for i, j = 0, . . . , n− 1, (1)

where pii = 1, pji = pij =: pi+1 if j = i + 1, and pij = 2 otherwise. We then
say that P is of type {p1, . . . , pn−1}. Furthermore, these generators satisfy the
intersection condition,

〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 (I, J ⊆ {0, 1, . . . , n− 1}). (2)

Conversely, if Γ = 〈ρ0, . . . , ρn−1〉 is a group whose generators satisfy relations (1)
and condition (2) (such groups are called C-groups), then there exists a regular
polytope with Γ(P) ∼= Γ.

We note that every self-dual regular polytope possesses a polarity mapping
the base flag to itself (but reversing the order of its elements).

A polytope P (of rank n ≥ 3) is chiral if P is not regular, but if for some base
flag Φ = {F−1, F0, . . . , Fn} there exist automorphisms σ1, . . . , σn−1 of P such that
σi fixes all faces in Φ \ {Fi−1, Fi} and cyclically permutes consecutive i-faces of P
in the section Fi+1/Fi−2 = {G | Fi−2 ≤ G ≤ Fi+1} of rank 2. We may choose σi

in such a way that

Φσi = Φi,i−1, for all i ∈ {1, . . . , n− 1},

and hence
Φσ−1

i = Φi−1,i, for all i ∈ {1, . . . , n− 1}.
The automorphisms σ1, . . . , σn−1 generate Γ(P) and satisfy (at least) the relations

σpi

i = ε for 1 ≤ i ≤ n− 1,

(σiσi+1 . . . σj)
2 = ε for 1 ≤ i < j ≤ n− 1,

(3)

where again {p1, . . . , pn−1} is the type of P . For general background on chiral
polytopes see [18, 19].

Alternatively, chiral polytopes can be characterized as those polytopes whose
automorphism groups have two flag orbits, with adjacent flags in distinct orbits
(see [18, 19]). Consequently, if a chiral polytope P is self-dual, it can be so in
one of two ways. If a duality of P maps a flag to a flag (in reverse order) in the
same orbit under Γ(P), then each duality must do so with each flag; in this case
P is said to be properly self-dual . However, if a duality maps a flag to a flag in
a different orbit under Γ(P), then again each duality must do so with each flag,
and in this case P is said to be improperly self-dual .

For a regular n-polytope P with group Γ(P) = 〈ρ0, ρ1, . . . , ρn−1〉, define σi :=
ρi−1ρi for i = 1, . . . , n−1. Then σ1, . . . , σn−1 generate the (combinatorial) rotation
subgroup Γ+(P) of Γ(P) (of index at most 2) and have properties similar to those
of the distinguished generators for chiral polytopes.

From now on we restrict our considerations to polytopes of rank n ≤ 4. The
generators σi of a chiral polytope P also satisfy an intersection condition, which
for n = 4 is

〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉,
〈σ1〉 ∩ 〈σ2〉 = {ε} = 〈σ2〉 ∩ 〈σ3〉,

(4)
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while for n = 3 we only have

〈σ1〉 ∩ 〈σ2〉 = {ε}. (5)

Conversely, if Γ = 〈σ1, . . . , σn〉 is a group whose generators satisfy the relations
(3) and this intersection condition, namely (4) for n = 4 or (5) for n = 3, then
there exists a chiral polytope P with Γ(P) ∼= Γ or a regular polytope P with
Γ+(P) ∼= Γ.

3. Holes, zigzags, and Petrie polygons

Each 3-polytope P gives rise to a map on a surface, which in the case of a chiral
polytope must be orientable. A j-hole of P is an edge-path on the surface which
leaves a vertex by the j-th edge from which it entered, always in the same sense
(in some local orientation), keeping to the left (say). Similarly, a j-zigzag of P is
an edge-path on the surface which leaves a vertex by the j-th edge from which it
entered, alternating the sense. For example, the 1-holes are simply the 2-faces of
P , and the 1-zigzags are precisely the Petrie polygons of P (see [5]).

For a regular 3-polytope P , the length of a j-hole or j-zigzag is given by the
period of ρ0ρ1(ρ2ρ1)

j−1 or ρ0(ρ1ρ2)
j in Γ(P), respectively (see [17, pp. 196–197]);

note here that ρ0ρ1(ρ2ρ1)
j−1 = σ1σ

1−j
2 ∈ Γ+(P) (but ρ0(ρ1ρ2)

j ∈ Γ+(P) only if
Γ+(P) = Γ(P)). Similarly, for a chiral 3-polytope P , the length of a j-hole is the
period of σ1σ

1−j
2 in Γ(P).

If a regular 3-polytope of type {p, q} is completely determined by the lengths
hj of its j-holes, for 2 ≤ j ≤ k := bq/2c, and lengths rj of its j-zigzags, for
1 ≤ j ≤ k := bq/2c, then we denote it by

P = {p, q |h2, . . . , hk}r1,...,rk
,

with the convention that any unnecessary hj or rj (that is, one not needed for the
specification) is replaced by a ·, with those at the end of the sequence omitted.
More generally, we say that a regular 3-polytope is of type {p, q |h2, . . . , hk}r1,...,rk

if its j-holes and j-zigzags have lengths hj or rj, respectively, with j as above;
we also use this terminology for chiral 3-polytopes when applicable (that is, when
only the hj’s are specified).

For chiral or regular 4-polytopes P we define two particular automorphisms

πL := σ1σ3 and πR := σ1σ
−1
3 .

Let F0 and F1 be the base vertex and base edge (of the base flag Φ), respectively.
Then the orbits F0〈πL〉 and F1〈πL〉, respectively, are the vertex-set and edge-set of
a polygon; its images under Γ(P) are called the left-handed Petrie polygons, or for
short left-Petrie polygons , of P . Similarly, we obtain right-Petrie polygons from
πR. Generally, for chiral polytopes, πL and πR have different orders, so the left-
and right-Petrie polygons have different lengths. Left- and right-Petrie polygons
were employed by Coxeter in [4] to construct chiral (or, in his terminology, twisted)
4-polytopes. For regular 4-polytopes, the elements πL and πR are conjugate in
Γ(P), so left- and right-Petrie polygons necessarily have the same lengths.
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4. Chiral maps from improperly self-dual chiral polytopes

From [16] we know that with any self-dual regular 4-polytope P of type {p, q, p}
is associated a certain regular map of type {4, 2q |p} (with group Γ(P)), called
the Petrie-Coxeter polyhedron of P ; its dual is of type {2q, 4 |p}. When P is
the universal polytope {p, q, p} (see [17]), we obtain (the universal) {4, 2q |p} (as
well as its dual {2q, 4 |p}). For example, from the 4-simplex {3, 3, 3} and 24-cell
{3, 4, 3} in Euclidean 4-space E4 we derive Coxeter’s finite skew polyhedra {4, 6 |3}
and {4, 8 |3} in E4 (see [3], and for figures of projections into E3 see [20]), while
the regular tessellations {4, 3, 4} and {5, 3, 5} of Euclidean or hyperbolic 3-space
E3 or H3, respectively, yield the (classical) Petrie-Coxeter polyhedron {4, 6 |4}
in E3 and the hyperbolic skew polyhedron {4, 6 |5} in H3 (see [3, 10, 13]). The
toroidal regular skew polyhedra {4, 4 |p} in E4 are related in a similar fashion to
the double p-gonal prism {p} × {p} (or {p, 2, p} in S3).

The construction of [16] employs the self-duality of P . Since P is regular, it has
a (unique) polarity ω that fixes the base flag and thus permutes (by conjugation)
the generators of Γ(P) = 〈ρ0, . . . , ρ3〉 according to ωρiω = ρ3−i, with i = 0, 1, 2, 3.
For the universal polytope {p, q, p}, this polarity corresponds to the symmetry of
the underlying (string) Coxeter diagram. For an arbitrary (self-dual and regular)
polytope P , the generators τ0, τ1, τ2 of the automorphism group Γ(P) of its Petrie-
Coxeter polyhedron are obtained from a twisting operation (in the sense of [17,
Chapter 8]) on Γ(P),

(ρ0, ρ1, ρ2, ρ3, ω) 7→ (ρ0, ω, ρ2) =: (τ0, τ1, τ2). (6)

Alternatively we may view (6) as a mixing operation (in the sense of [17, Chapter

7]) on Γ(P).
We now make use of the fact that the automorphism groups of chiral polytopes

of rank greater than 3 are generated by involutions, and apply similar techniques
to construct new “Petrie-Coxeter type” maps from self-dual chiral polytopes. In
this section we discuss improper self-duality.

Henceforth, we assume that P is a chiral 4-polytope of type {p, q, p}, Φ its
base flag, and σ1, σ2, σ3 the distinguished generators of Γ(P) (with respect to Φ).
Then these generators satisfy (at least) the following relations

σp
1 = σq

2 = σp
3 = (σ1σ2)

2 = (σ1σ2σ3)
2 = (σ2σ3)

2 = ε. (7)

Note that σ1σ2, σ1σ2σ3, σ2σ3 is a set of involutory generators of Γ(P).
Let P be improperly self-dual. Then there exists a duality δ which exchanges

the two flag orbits. In fact, by multiplying δ with an automorphism of P (if need
be), we may choose δ so that Φδ = Φ0. Then,

Φ0δ = Φ0,3, Φ0,3δ = Φ3, Φ3δ = Φ.

Bear in mind here that δ, being a duality, maps a j-face in a flag to the (3− j)-
face in the image flag. It follows that the distinguished duality δ has period 4 and
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satisfies the relations
δ2 = σ1σ2σ3,

δ−1σ1δ = σ−1
3 ,

δ−1σ2δ = σ1σ2σ
−1
1 ,

δ−1σ3δ = σ1,

(8)

in Γ(P) (see [12, Theorem 3.5]). Moreover, it is easy to see that δ fixes the basic
involution σ1σ2σ3, that is, δ−1σ1σ2σ3δ = σ1σ2σ3, while

δ−1σ1σ2δ = σ1σ2σ3σ
−1
1 ,

δ−1σ1σ2σ3σ
−1
1 δ = σ−1

3 σ1σ2σ3,
δ−1σ−1

3 σ1σ2σ3δ = σ2σ3,
δ−1σ2σ3δ = σ1σ2.

(9)

Note that the action of δ on the five involutory generators

σ1σ2, σ1σ2σ3σ
−1
1 , σ−1

3 σ1σ2σ3, σ2σ3, σ1σ2σ3

of Γ(P) can be illustrated by a Coxeter-type diagram on five nodes such that δ
corresponds to a symmetry of the diagram (see Figure 3 below for an example of
a diagram on three nodes). In particular, if the nodes are given by the vertices
and the center of a square diagram, with the central node representing σ1σ2σ3

and the vertices representing the other four generators (in the order in which they
are listed), then the action of δ on these generators corresponds to the 4-fold
rotational symmetry of the diagram.

We now consider the mixing operation

(σ1σ2, σ1σ2σ3, σ2σ3, δ) 7→ (δ, σ1σ2δ
−1) =: (κ1, κ2) (10)

on Γ(P), bearing in mind that the first three involutions on the left side generate
Γ(P). Set Λ := 〈κ1, κ2〉. Then Λ = Γ(P); in fact, we have

σ1 = δ2σ2σ3 = δ−2σ2σ3δδ
−1 = δ−1σ1σ2δ

−1 = κ−1
1 κ2,

σ2 = σ2(σ3σ1σ2)
2 = δδ−1σ2σ3δ

2σ1σ2 = (δσ1σ2)
2 = (σ1σ2δ

−1)−2 = κ−2
2 ,

σ3 = σ1σ2δ
2 = σ1σ2δ

−2 = κ2κ
−1
1 .

(11)

Clearly, κ1 is of order 4, κ1κ2 = δσ1σ2δ
−1 is an involution, and κ1κ

−1
2 = σ−1

3 is of
order p. Furthermore,

κ2
2 = σ1σ2δ

−1σ1σ2δδ
2 = σ1σ2σ1σ2σ3σ

−1
1 δ2 = σ3σ

−1
1 σ1σ2σ3 = σ−1

2 , (12)

and hence κ2q
2 = ε. Moreover, κ2 has order 2q; in fact, κ2, being a duality, has

even order, and σ−1
2 = κ2

2 has order q. Hence, κ1, κ2 satisfy (at least) the following
relations

κ4
1 = κ2q

2 = (κ1κ2)
2 = (κ1κ

−1
2 )p = ε. (13)

These observations suggest that 〈κ1, κ2〉 could be the automorphism group of a
chiral map. Indeed, this is true.
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Theorem 1. Let P be an improperly self-dual chiral 4-polytope of type {p, q, p},
let Γ(P) be its extended group, and let Λ := 〈κ1, κ2〉, with κ1, κ2 as in (10). Then
Λ is the automorphism group of a chiral 3-polytope M of type {4, 2q |p}, and
Λ = Γ(P).

Proof. We need to verify the intersection condition 〈κ1〉 ∩ 〈κ2〉 = {ε} for Λ.
Suppose that γ ∈ 〈κ1〉 ∩ 〈κ2〉. Then γ = κj

1 = δj for some j ∈ {0, 1, 2, 3}, and
γ = κi

2 = (σ1σ2δ
−1)i for some i with 0 ≤ i < 2q. It suffices to rule out the

possibility that j = 2; then, by replacing γ by γ2, we have also ruled out the cases
j = 1, 3, and hence must have j = 0.

Now suppose that j = 2. Then δ2 = γ = κi
2 is an automorphism of P , and

hence i is even, i = 2k (say). But then (12) implies that

σ1σ2σ3 = δ2 = (κ2
2)

k = σ−k
2 ,

and hence σ1 ∈ 〈σ2, σ3〉, a contradiction to the intersection condition of Γ(P).
Hence we cannot have j = 2.

We now know that Λ determines a chiral or regular mapM. It remains to show
that M cannot be regular. Suppose that M is regular. Then Λ = Γ+(M). Let ρ
denote the 0th distinguished involutory generator of Γ(M). Then conjugation in
Γ(M) by ρ gives

ρκ1ρ = κ−1
1 , ρκ2ρ = κ2

1κ2.

Hence ρδρ = δ−1, and by (9) and (11) we have

ρσ1ρ = ρκ−1
1 κ2ρ = κ1κ

2
1κ2 = κ3

1κ2 = κ−1
1 κ2 = σ1,

ρσ2ρ = ρκ−2
2 ρ = (κ−1

2 κ−2
1 )2 = κ1κ

2
2κ

−1
1 = δ(σ1σ2δ

−1)2δ−1 = δσ1σ2δ
−1σ1σ2δ

2

= δ2(δ−1σ1σ2δ)δ
2σ1σ2δ

2 = δ2(σ1σ2σ3σ
−1
1 )σ1σ2σ

2
3 = σ2σ

2
3,

ρσ3ρ = ρκ2κ
−1
1 ρ = κ2

1κ2κ1 = δ2σ1σ2δ
−1δ = σ−1

3 .

Thus ρ determines an involutory group automorphism of Γ(P) that acts on the
generators σ1, σ2, σ3 as indicated. Now it follows from [18, Theorem 1] that P must
be regular, contrary to our assumptions; in fact, ρ corresponds to conjugation by
the 3rd distinguished involutory generator of Γ(P). Hence M must be chiral. This
completes the proof. 2

It is interesting to investigate the above construction in the context of regular
polytopes. Let P be a self-dual regular 4-polytope, let ρ0, ρ1, ρ2, ρ3 be the distin-
guished generators of Γ(P) with respect to some base flag Φ, and let σ1, σ2, σ3 be
the corresponding distinguished generators of the rotation subgroup Γ+(P), that
is, σi := ρi−1ρi for i = 1, 2, 3. As before, let δ be the duality (of period 4) defined
by Φδ = Φ0, and let κ1, κ2 be as in (10). Then the equations (8), (9) and (11)
carry over. Clearly, Γ(P) = 〈ρ0, ρ1, ρ2, ρ3, δ〉. Since P is regular, we also have a
polarity ω that fixes Φ. Then δ = ωρ0 (= ρ3ω). Once again, bear in mind here
that dualities map a j-face in a flag to the (3−j)-face in the image flag. Moreover,

δ−1ρjδ = ρ0ωρjωρ0 = ρ0ρ3−jρ0,
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so δ acts on the generators of Γ(P) as follows:

δ−1ρ0δ = ρ3, δ−1ρ1δ = ρ2, δ−1ρ2δ = ρ0ρ1ρ0, δ−1ρ3δ = ρ0.

Define ρ := ρ3. (Recall that the supposed group automorphism of Γ(P) in the
proof of Theorem 1 was determined by conjugation with ρ3.) Then, using δ = ωρ0,
the generators of Γ(P) can be expressed in terms of κ1, κ2, ρ as follows:

ρ0 = ρκ2
1 (= ρδ2), ρ1 = ρκ1κ2, ρ2 = ρκ1κ

−1
2 , ρ3 = ρ.

Now the mixing operation (10) can be rewritten in terms of the generators ρi as
follows:

(ρ0, ρ1, ρ2, ρ3, δ) 7→ (ρ3, ρ3δ, ρ1) = (ρ, ρκ1, ρκ1κ2). (14)

(Recall here that, in the proof of Theorem 1, the element ρ acted on M like
the 0th distinguished generator.) Note that (ρκ1)

2 = ε, so the generators of the
corresponding rotation subgroup are indeed κ1, κ2. Moreover, ρ3δ = ω, so the
operation (14) is simply the dual version of (6) (obtained by conjugating the new
generators with ω).

We summarize our observations in

Remark 1. Let P be a self-dual regular 4-polytope of type {p, q, p}, let Γ(P)
be its extended group, and let Λ := 〈κ1, κ2〉, with κ1, κ2 as in (10). Then Λ is
the rotation subgroup of a regular 3-polytope M of type {4, 2q |p}, whose full
automorphism group is Γ(P). In particular, M is the regular map described in
[16] and defined by (6).

We now give some examples of chiral maps that are associated with improperly
self-dual locally toroidal chiral 4-polytopes. For notation we refer to [19, §2].

Example 1. The universal chiral 4-polytope P = {{4, 4}(1,3), {4, 4}(1,3)} is im-
properly self-dual and has an automorphism group of order 2000 (see [12, p. 132]).
The induced chiral map M of Theorem 1, with an automorphism group of order
4000, is of type {4, 8 |4}. Eight quadrangular faces meet at each vertex of the
map. The local structure is seen in Figure 1, where the 4-gonal holes of the map
are highlighted (they are not faces of the map). In a sense, the set of quadran-
gular faces splits into blocks of 4, each associated with a hole and corresponding
to the block of rectangular faces (in the mantle) of a 4-gonal prism; in the fig-
ure, the central vertex is common to the four prisms that are associated with the
four highlighted square-shaped holes. It should be noted that the valency of each
vertex is 8, but some edges in the figure are hidden. In addition we observe that
the polytope P has no polarity and hence the group of the map M cannot be
generated by involutions.

Example 2. The universal chiral 4-polytope P = {{6, 3}(1,2), {3, 6}(2,1)} is im-
properly self-dual and has an automorphism group of order 20160. The polytope
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Figure 1. A chiral map of type {4, 8 |4}

has (at least) two quotients, with groups of orders 10080 and 5040 (in the latter
case, isomorphic to the symmetric group S7), which are also improperly self-dual
chiral polytopes of type {6, 3, 6} with toroidal facets {6, 3}(1,2) and vertex-figures
{3, 6}(2,1); both can be derived from P by identifying vertices separated by a cer-
tain number of steps along Petrie polygons. The polytope P and its two quotients
have Petrie polygons of length 28, 14 and 7, respectively. Now all three polytopes
possess a polarity (see [12, Theorem 3.4]), so their extended groups are generated
by involutions. The automorphism groups of the three induced maps M, of type
{4, 6 |6}, are thus generated by involutions. The local structure of the maps, with
hexagonal holes highlighted, can be seen in Figure 2; now the set of quadrangular
faces splits into blocks of 6, each associated with a hole and corresponding to a
6-gonal prism.

Figure 2. A chiral map of type {4, 6 |6}

It should be noted that, for improperly self-dual chiral 4-polytopes, the elements
πL = σ1σ3 and πR = σ1σ

−1
3 = δ−1σ3σ1δ are conjugate in Γ(P) (since σ3σ1 and
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σ1σ3 are conjugate in Γ(P)) and the left- and right-handed Petrie polygons are
thus of the same length.

5. Regular maps from properly self-dual chiral polytopes

As before, let P be a chiral 4-polytope of type {p, q, p}, and let σ1, σ2, σ3 be the
distinguished generators of Γ(P) defined with respect to a base flag Φ. We now
assume that P is properly self-dual. Then P admits a (unique) polarity ω which
fixes Φ, and

ωσ1ω = σ−1
3 , ωσ2ω = σ−1

2 (15)

in Γ(P) (see [12, Theorem 3.1]). It follows that

ωσ1σ2ω = σ2σ3, ωσ1σ2σ3ω = σ1σ2σ3, (16)

so that (under conjugation) ω fixes σ1σ2σ3 and interchanges σ1σ2 with σ2σ3. Hence
ω induces the twisting operation

(σ1σ2σ3, σ1σ2, σ2σ3, ω) 7→ (σ1σ2σ3, σ1σ2, ω) =: (τ0, τ1, τ2) (17)

t

t
t

��
���

���

HH
HHH

HHHτ2 = ω 6
?

σ2σ3

σ1σ2 = τ1

σ1σ2σ3 = τ0s

p

p

(t)

Figure 3. The polarity ω acting on Γ(P).

on Γ(P) shown in Figure 3; the notation used in the figure is explained in more
detail below. Note that each τi is an involution, and that τ0 and τ2 commute.
Furthermore,

σ1 = σ1(σ2σ3)
2 = σ1σ2σ3ωσ1σ2ω = τ0τ2τ1τ2 = τ2τ0τ1τ2,

σ2 = σ−1
1 τ1 = τ2τ1τ2τ0τ1,

σ3 = σ1σ2τ0 = τ1τ0.

Hence 〈τ0, τ1, τ2〉 = Γ(P), and τ0τ1 = σ−1
3 is of order p.

Theorem 2. Let P be a properly self-dual chiral 4-polytope of type {p, q, p}, let
Γ(P) be its extended group, and let Λ := 〈τ0, τ1, τ2〉, with τ0, τ1, τ2 as in (17). Then
Λ is the automorphism group of a regular 3-polytope M of type {p, 2s}, where s
is the length of the left-Petrie polygons of P. Moreover, Λ = Γ(P).
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Proof. First observe that

(τ1τ2)
2 = (σ1σ2ω)2 = σ1σ

2
2σ3 = σ−1

2 σ−1
1 σ−1

3 σ−1
2 = σ−1

2 σ2σ3σ1 = σ3σ1,

which is conjugate to πL := σ1σ3 and hence is of order s. Then, since the order
of a duality is even, τ1τ2 must have order 2s.

It remains to verify the intersection condition for Λ. Suppose that γ ∈ 〈τ0, τ1〉∩
〈τ1, τ2〉. By multiplying γ by τ1 if need be, we may assume that γ = (τ1τ0)

j = σj
3

for some j, so that γ fixes the base vertex F0 of Φ. We claim that γ = ε. Now,
since γ ∈ 〈τ1, τ2〉 = 〈σ1σ2, σ2σ3〉n 〈ω〉 and γ ∈ Γ(P), we also have

γ = (σ1σ
2
2σ3)

k(σ2σ3)
l = (σ3σ1)

k(σ2σ3)
l

for some integer k and l = 0, 1. If l = 0, then γ must shift the base vertex F0 k
steps along a left-Petrie polygon (the image under σ−1

3 of the left-Petrie polygon
associated with πL), so that necessarily k = 0; it follows that γ = ε, as required.
On the other hand, the case l = 1 cannot occur. In fact, when l = 1, the element
(σ3σ1)

k = γ(σ2σ3)
−1 also fixes F0, so that again k = 0 and now γ = σ2σ3; but

from γ = σj
3 we then obtain σ2 = σj−1

3 , a contradiction.
It follows that Λ is the group of a regular 3-polytope, which then must be of

type {p, 2s}. 2

We can also determine the lengths of the Petrie polygons and 2-zigzags of M.

Remark 2. Let P and M be as in Theorem 2, and let t be the length of the
right-Petrie polygons of P . Then M is of type {p, 2s}2t,q; that is, the length of
the Petrie polygons of M is 2t, and the length of the 2-zigzags of M is q.

The proof is straightforward. In fact,

(τ0τ1τ2)
2 = (σ−1

3 ω)2 = σ−1
3 σ1

is conjugate to πR = σ1σ
−1
3 and hence has order t. On the other hand, since

dualities have even order, the duality τ0τ1τ2 then must have order 2t. Finally,
τ0(τ1τ2)

2 is conjugate to σ2.

The diagram shown in Figure 3 exhibits the group Γ(P) as a quotient of the
abstract group Γ3(s, t; p, p) described in [17, Sect. 9D]. As usual, the mark on a
branch of the diagram is the period of the product of the two generators at its
ends. The interior mark, t, represents the extra relation

(σ1σ2 · σ1σ2σ3 · σ2σ3 · σ1σ2σ3)
t = ε,

which holds in Γ(P) because of

σ1σ2 · σ1σ2σ3 · σ2σ3 · σ1σ2σ3 = (σ1σ2)
2σ3σ

−1
1 (σ1σ2σ3)

2 = σ3σ
−1
1 = π−1

R .

Note that the mark t is placed in parentheses to indicate the fact that the other
analogous products of four generators, with one repeated, will not in general have
the same order t (see [17, p. 320] for more details).
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Example 3. The universal chiral 4-polytope P = {{3, 6}(1,2), {6, 3}(1,2)} is prop-

erly self-dual. Its automorphism group, of order 672, is the group L
〈±1〉
2 (Z7) of all

2× 2 matrices of determinant ±1 over Z7 (see [19]). The induced regular map M
is of type {3, 16} (more exactly, of type {3, 16}28,6) and has 42 vertices and 224

faces; its automorphism group is L
〈±1〉
2 (Z7) n C2 of order 1344. The quotient P ′

of P by the central subgroup 〈±I〉 (with I the identity matrix) of L
〈±1〉
2 (Z7) again

has facets {3, 6}(1,2) and vertex-figures {6, 3}(1,2), and yields a regular map of type
{3, 8} with 42 vertices, 112 faces, and automorphism group PGL2(7)nC2 of order
672. The latter has Petrie polygons of length 14, and doubly covers {3, 8}7, the
dual of the Petrial of the Klein map {7, 3}8 (see [5]).

6. Involutory generators for chiral maps

In the construction of polytopes from those of higher rank we often encounter
the question whether or not the automorphism group or a certain subgroup is
generated by involutions. We know that the group of a regular polytope of any
rank n is a C-group and comes with a distinguished set of generators consisting of
involutions. The group of a chiral polytope P of rank n ≥ 4 is also generated by
involutions (see [18, p. 496]), although its distinguished generators σ1, . . . , σn−1

are not involutory; for example, when n = 4, the elements σ1σ2σ3, σ1σ2, σ2σ3 are
involutory generators. However, this is no longer true for rank 3, as shown by the
chiral map described in Example 1 (as well as the toroidal maps below). On the
other hand, many chiral 3-polytopes (see Example 2) do have the desired prop-
erty. In this section we briefly discuss obstructions for the existence of involutory
generators for rank 3.

Let P be a chiral 3-polytope of type {p, q} with group Γ(P) = 〈σ1, σ2〉. Let
τ := σ1σ2, and let

N(τ) := 〈ϕ−1τϕ | ϕ ∈ Γ(P)〉 (18)

(that is, N(τ) is the normal closure of τ in Γ(P)). Then τ is the “half-turn”
about the base edge (in Φ), and since Γ(P) is edge-transitive, N(τ) is the group
generated by all the half-turns about edges of P . Clearly, since τ is an involution,
N(τ) is generated by involutions (although their number may not be finite if P is
infinite). Now, since Γ(P) = 〈τ, σ2〉 = 〈σ1, τ〉, we have

Γ(P) = N(τ) · 〈σ2〉 = N(τ) · 〈σ1〉

(a product of subgroups), where the second factors are cyclic of orders q or p,
respectively. In particular, Γ(P)/N(τ) is a cyclic group, whose order divides p
and q if the latter are finite.

Lemma 1. Let Γ be any group, and let N be a normal subgroup of Γ such that
Γ/N is cyclic. If Γ is generated by involutions, then N has index 1 or 2 in Γ.

Proof. Suppose that N 6= Γ. If Γ is generated by involutions, then so is its
quotient Γ/N . A non-trivial cyclic group contains an involution only if it has
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finite even order, and it is generated by involutions only if its order is 2. This
proves the lemma. 2

The following proposition follows immediately from Lemma 1, applied with Γ =
Γ(P) and N = N(τ).

Proposition 1. Let P be a chiral 3-polytope of type {p, q} with group Γ(P) =
〈σ1, σ2〉, and let N(τ) be as in (18).
(a) If Γ(P) is generated by involutions, then N(τ) has index 1 or 2 in Γ(P).
(b) If Γ(P) = N(τ) or N(τ) n C2, then Γ(P) is generated by involutions.

The proposition basically says that, if P is a chiral 3-polytope with involutory
generators, then in fact the half-turns about edges provide a “nice” generating
set of involutions for a subgroup of very small index, at most 2. The second part
of Proposition 1 is a partial converse of the first. Note that, if N(τ) has index

2 and p ≡ 2 (mod 4) or q ≡ 2 (mod 4), respectively, then Γ(P) = N(τ) n 〈σ p/2
1 〉

or Γ(P) = N(τ) n 〈σ q/2
2 〉; in any case, Γ(P) = N(τ) n C2 and hence Γ(P) is

generated by involutions.
We remark that there is an exact analogue to Proposition 1 for the rota-

tion subgroup Γ+(P) of a regular 3-polytope. The rotation subgroups of regular
polytopes of rank at least 4 are always generated by involutions.

We conclude this section with a brief discussion of the chiral maps on the torus.
None of these maps {4, 4}(b,c), {3, 6}(b,c) and {6, 3}(b,c) has a group generated by
involutions.

Consider, for example, P := {4, 4}(b,c). Then P is a quotient of the regu-
lar plane tessellation {4, 4} with vertex-set Z2. Let [4, 4]+ denote the rotation
subgroup of {4, 4}, with distinguished generators σ1, σ2, let T be its translation
subgroup generated by the translations τ1, τ2 by the vectors (1, 0) and (0, 1), re-
spectively, and let T(b,c) denote the subgroup of T defined by

T(b,c) = 〈τ b
1τ

c
2 , τ

−c
1 τ b

2〉.

Then [4, 4]+ = T n 〈σ2〉 ∼= Z2 n C4 and

[4, 4](b,c) := Γ({4, 4}(b,c)) ∼= [4, 4]+/T(b,c)
∼= (T/T(b,c)) n C4

(see [5, §8.3]); note here that 〈σ2〉 ∩ T(b,c) is trivial, so the semi-direct product
structure is preserved under taking the quotient. But now we can simply appeal
to Lemma 1, applied with Γ = [4, 4](b,c) and N = T/T(b,c). It follows that [4, 4](b,c)
is not generated by involutions, since the index of N is 4.

Similar arguments also apply to the chiral maps {3, 6}(b,c). Now we must take

T(b,c) := 〈τ b+c
1 τ c

2 , τ
−c
1 τ b

2〉

(see [5, §8.4]). The dual map {6, 3}(b,c) has the same group as {3, 6}(b,c), and hence
is also not generated by involutions.

Moreover, the same arguments establish that the rotation subgroups for the
regular torus maps {4, 4}(b,c), {3, 6}(b,c) and {6, 3}(b,c) (with c = 0 or b = c) cannot
be generated by involutions.
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7. Concluding remarks

In his 1948 paper [2], Coxeter enumerated the chiral maps on the torus and showed
that they fall into the three infinite families of maps of type {4, 4}, {3, 6} or {6, 3}.
Garbe [9] proved that there are no chiral maps on surfaces of genus 2, 3, 4, 5 or
6. While there are many regular maps known to exist, the occurrence of chiral
maps is rather sporadic. Several attempts have been made to construct chiral
maps, notably by Sherk [21] and Wilson [6, 22]. More recently, in [1], Conder and
Dobcsányi have enumerated all regular and chiral maps on surfaces up to genus
15. However, of the sixteen chiral maps listed, only thirteen are in fact abstract
polyhedra, that is, their automorphism groups satisfy the intersection condition.
(Every abstract polyhedron yields a map on a surface, but not vice versa. A map
may be “too small” to be polytopal. An example is the torus map {4, 4}(1,0), which
has a single vertex, two edges and a single face.) The construction described in this
paper can be used to provide new examples of chiral maps. They all are related
to improperly self-dual chiral 4-polytopes. Unfortunately, at present, while many
examples (including infinite families) of properly self-dual chiral 4-polytopes are
known (see, for example, [19]), not many examples of improperly self-dual chiral
4-polytopes can be found in the literature.

We are grateful to Barry Monson for his help in verifying the existence of certain
polytopes using computer enumerations. We also thank the anonymous referee
for a number of helpful comments.
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