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Abstract. Let Σ be a semi-simple algebra over a number field F . In
this paper, we prove that for all n ≥ 0, the wild kernel WKn(Σ) :=
Ker(Kn(Σ) −→

∏
finite v

Kn(Σv)) is contained in the torsion part of the

image of the natural homomorphism Kn(Λ) −→ Kn(Σ), where Λ is a
maximal order in Σ. In particular, WKn(Σ) is finite. In the process, we
prove that if Λ is a maximal order in a central division algebra D over
F , then the kernel of the reduction map K2n−1(Λ)

πv−→
∏

finite v

K2n−1(dv)

is finite. In Section 3 we investigate the connections between WKn(D)
and div(Kn(D)) and prove that divK2(Σ) ⊂ WK2(Σ); if the index of D
is square free, then div(K2(D)) ' div(K2(F )) , WK2(F ) ' WK2(D)
and |WK2(D)/div(K2(D))| ≤ 2. Finally we prove that if D is a central
division algebra over F with [D : F ] = m2, then (1) div(Kn(D))l =
WKn(D)l for all odd primes l and n ≤ 2; (2) if l does not divide m,
then div(K3(D))l = WK3(D)l = 0; (3) if F = Q and l does not divide
m, then div(Kn(D))l ⊂ WKn(D)l for all n.
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1. Introduction

Let F be a number field and R the ring of integers of F . For all n ≥ 0, the wild
kernel WKn(F ) is defined in [4] by

WKn(F ) := Ker(Kn(F ) −→
∏

finite v

Kn(Fv)),

where v runs through all the finite places of F and Fv is the completion of F at
v. In Proposition A of [4], it is proved that WKn(F ) is contained in the torsion
part of Kn(R) and in particular that WKn(F ) is finite.

In this paper, we at first generalize this result to the non-commutative case.
Let D be a central division algebra over F and let Λ be a maximal R-order in D.
We define the wild kernel WKn(D) of D to be the kernel of

Kn(D) −→
∏

finite v

Kn(Dv),

and prove that WKn(D) is a finite group for all n ≥ 0. We shall denote by
W

′
Kn(D) the kernel of

Kn(D) −→
∏

non complex v

Kn(Dv),

which is a generalization of the definition

W
′
K2(F ) = Ker(K2(F ) −→

∏
non complex v

K2(Fv))

given in [3], with the observation that W
′
Kn(D) is a subgroup of WKn(D) for

any n ≥ 0. We shall refer to W
′
Kn(D) as pseudo-wild-kernel of D.

The above definitions of WKn(D) and W
′
Kn(D) extend naturally to WKn(Σ)

and W
′
Kn(Σ), where Σ is a semi-simple algebra over F .

Soulé had proved in [22] that the natural homomorphism

Kn(R) −→ Kn(F )

is always injective for all n ≥ 1. However this is not true in the non-commutative
case since if n is odd and Λ is a maximal order in a semi-simple F -algebra Σ, then

Kn(Λ) −→ Kn(Σ)

is not always injective (cf. Theorem 2 of [11]). So Kn(Λ) can not be regarded as
a subgroup of Kn(Σ) if n is odd, even though it is known that

SKn(Λ) := Ker(Kn(Λ) −→ Kn(Σ))

is finite for all n ≥ 0 and SK2n(Λ) = 0 (see [13], [14]). We apply these considera-
tions to the proof of finiteness of WK2n−1(D) (cf. Proposition 2.3).
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Let R be the ring of integers in a number field F . In [1], Arlettaz and Banaszak
proved that the kernel of the reduction map

K2n−1(R)
πv−→

∏
finite v

K2n−1(kv)

is finite, where kv is the residue field of R at the finite place v. First we generalize
this result to the non-commutative case. Let D be a central division algebra over
a number field F and Λ a maximal R-order in D. Then for any finite place v of F ,
the residue ring of Λv is a matrix ring over dv, where dv is a finite field extension
of kv (see [20], IV, Theorem 5.9). We prove (Theorem 2.2) that the kernel of the
reduction map

K2n−1(Λ)
πv−→

∏
finite v

K2n−1(dv)

is finite, and then deduce that the kernel of

K2n−1(Λ) −→ K2n−1(Λv)

is finite.
By making use of Theorem 2.2, we prove that for all n ≥ 1, WK2n−1(D) is

finite if D is a central division algebra over F (Proposition 2.3) and that also
WK2n(D) is finite (see Proposition 2.4). We then generalize these two results to
the case of semi-simple algebras in Theorem 2.5.

In [4], Banaszak et al. conjectured that for all number fields F and all n ≥ 0,
we should have

WKn(F )l = div(Kn(F ))l.

They proved that under certain hypotheses, the above conjecture is equivalent to
the Quillen-Lichtenbaum Conjecture (see Theorem C of [4]). They also proved
that the above conjecture holds for all number fields F for 0 ≤ n ≤ 3 and that
when F = Q, the conjecture is true for n = 4. Motivated by above results and
considerations, we investigate the connection between WKn(D), W

′
Kn(D) and

div(Kn(D)) in Section 3 of this paper.
At the beginning of Section 3, we prove (Theorem 3.1) that if F is a number

field and Σ is a semi-simple algebra over F , then WKn(Σ)/W
′
Kn(Σ) is a finite

2-group with 8 rank 0 if n ≡ 0, 4, 6 (mod 8), and with 16 rank 0 if n ≡ 2 (mod 8).
We also prove that if D is a central division algebra over a number field F , then
div(K2(D)) ⊂ WK2(D). If the index of D is square free, then div(K2(D)) '
div(K2(F )), WK2(F ) ' WK2(D) and |WK2(D)/div(K2(D))| ≤ 2. This result is
then extended to semi-simple algebras Σ (Theorem 3.3).

Finally we prove that if D is a central division algebra over number field F
with [D : F ] = m2, then

(1) div(Kn(D))l = WKn(D)l for all odd primes l and n ≤ 2;
(2) if l does not divide m, then div(K3(D))l = WK3(D)l = 0;
(3) if F = Q and l does not divide m, then div(Kn(D))l⊂WKn(D)l for all n.

We conjecture that div(Kn(Σ))⊂WKn(Σ) for all n and all semi-simple algebras Σ.
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Notes on Notations

If F is a number field, we shall write D for a central division algebra over F , Σ for
a semi-simple algebra over F , Λ for a maximal order in D or Σ and Λv, Dv, Σv

for the completions of Λ, D, Σ respectively at a place v of F .
For any ring S, define Kn(S) = πn+1(BQ(P(S))) for all n ≥ 0 (cf. [19]),

where P(S) is the category of finitely generated projective S-modules, or Kn(S) =
πn(BGL(S)+) for n ≥ 1 (cf. [15]). For an abelian group G, we shall write div(G)
for

⋂
n≥1

Gn and Gl for
⋃

k≥1

G[lk], the l-torsion subgroup of G, where G[lk] = {g ∈

G|glk = 1}. Call div(G) the subgroup of divisible elements of G. The group
SKn(Λ) is defined for all n ≥ 1 by SKn(Λ) := Ker(Kn(Λ) −→ Kn(Σ)), where Λ
is a maximal order in Σ.
The wild kernel WKn(Σ) := Ker(Kn(Σ) −→

∏
finite v

Kn(Σv)), and the pseudo-

wild-kernel is W
′
Kn(Σ) := Ker(Kn(Σ) −→

∏
non complex v

Kn(Σv)). For any group

G, we shall write |G| for the number of elements in G.

2. The wild kernel WKn(D) for central division algebras D

The aim of this section is to prove 2.2–2.5 below. However we start with proof of
Lemma 2.1 which is used to prove the other results. We observe that Lemma 2.1
is proved in the K2 case in [9].

Lemma 2.1. Let D be a division algebra of dimension m2 over its center F . For
n ≥ 0, let

in : Kn(F ) −→ Kn(D)

be the homomorphism induced by the inclusion map i : F ↪→ D; and

trn : Kn(D) −→ Kn(F )

the transfer map. Then for all n ≥ 0, each of in ◦ trn and trn ◦ in is multiplication
by m2.

Proof. Every element d of D acts on the vector space D of dimension m2 over F
via left multiplication, i.e., there is a natural inclusion

t : D −→ Mm2(F ).

This inclusion induces the transfer homomorphism of K-groups

tn : Kn(D) −→ Kn(Mm2(F )) ' Kn(F ).

The composition of t with i : F ↪→ D, namely,

F
i−→ D

t−→ Mm2(F )
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is diagonal, i.e.,
t ◦ i(x) = diag(x, x, . . . , x).

So by Lemma 1 of [7], trn ◦ in is multiplication by m2.
The composition

D
t−→ Mm2(F )

i−→ Mm2(D)

is not diagonal. But we will prove that it is equivalent to the diagonal map.
By Noether-Skolem Theorem, there is an inner automorphism ϕ such that the
following diagram commutes,

D
t
- Mm2(F )

Mm2(D)

diag

?

ϕ

- Mm2(D)
?

i

where diag is the diagonal map. By the Lemma 2 of [7], the induced homomor-
phism Kn(ϕ) is an identity. So in ◦ trn is multiplication by m2, also by Lemma 1
of [7].

Theorem 2.2. Let F be a number field and D a central division algebra of di-
mension m2 over F . Let R be the ring of integers of F and Λ a maximal R-order
in D. For any place v of F , let kv be the residue ring of R at v. Then the residue
ring of Λv is a matrix ring over dv, where dv is a finite field extension of kv and
the kernel of the reduction map

K2n−1(Λ)
(πv)−→

∏
finite v

K2n−1(dv)

is finite. Hence the kernel of

K2n−1(Λ)
(ϕ)−→

∏
finite v

K2n−1(Λv)

is finite.

Proof. It is well known that the residue ring of Λv is a matrix ring over dv, where
dv is a finite field extension of kv (see [11], [20]).

By [14] or [13], K2n−1(Λ) is finitely generated. So it suffices to prove that the
kernel of the reduction map is a torsion group, in order to show that it is finite.

Let
i : K2n−1(R) −→ K2n−1(Λ)

be the homomorphism induced by inclusion and let

tr : K2n−1(Λ) −→ K2n−1(R)



6 X. Guo, A. Kuku: Wild Kernels for Higher K-theory of Division and . . .

be the transfer homomorphism. Then

i ◦ tr(x) = xm2

for any x ∈ K2n−1(Λ) by a suitable modification of the proof of Lemma 2.1 above.
So if there is a torsion free element x ∈ Ker(πv), then tr(x) is a torsion free

element in K2n−1(R). Consider the following commutative diagram

K2n−1(R)
(πv

′)
-

∏
finite v

K2n−1(kv)

K2n−1(Λ)

ι

?

(πv)

-
∏

finite v

K2n−1(dv) ,

?

(ιv)

By Theorem 1 of [1], the kernel of (π
′
v) is finite. So (ιv) ◦ (π

′
v) ◦ tr(x) is torsion

free. But x ∈ ker(πv) and so (ιv) ◦ (π
′
v) ◦ tr(x) must be 0 since from the above

diagram
(ιv) ◦ (π

′

v) ◦ tr(x) = (πv)(x
m2

) = 0.

This is a contradiction. Hence Ker(πv) is finite.
The last statement follows from the following commutative diagram

K2n−1(Λ) -
∏

finite v

K2n−1(Λv)

Q
Q

Q
QQs

πv

�
�

�
��+

ϕv∏
finite v

K2n−1(dv)

and the fact that Ker(πv) is finite (as proved above).

Proposition 2.3. Let F be a number field, D a central division algebra over F .
Then the wild kernel WK2n−1(D) is finite.

Proof. By the Theorem 2 of [11], the following sequence is exact

0 −→
⊕

finite v

K2n−1(dv)/K2n−1(kv) −→ K2n−1(Λ) −→ K2n−1(D) −→ 0. (I)

Since K2n−1(dv)/K2n−1(kv) is trivial for almost all v, it follows that⊕
finite v

K2n−1(dv)/K2n−1(kv)

is a finite group. Kuku had proved in [13] and [14] that K2n−1(Λ) is finitely
generated. So K2n−1(D) is finitely generated which implies that WK2n−1(D) is
finitely generated. So it suffices to prove that WK2n−1(D) is a torsion group.
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If x ∈ WK2n−1(D) ⊂ K2n−1(D) is torsion free, then from (I) above, we can
find an element x1 ∈ K2n−1(Λ) such that the image of x1 under the homomorphism

i : K2n−1(Λ) −→ K2n−1(D)

is x, and x1 is also torsion free. By Theorem 2.2, the kernel of the composite of
the following maps

K2n−1(Λ) −→
∏

finite v

K2n−1(Λv) −→
∏

finite v

K2n−1(dv)

is finite. If x2 is the image of x1 in
∏

finite v

K2n−1(Λv), then x2 is torsion free. Con-

sider the following commutative diagram (II) with the maps of elements illustrated
in diagram (III)

K2n−1(Λ) -
∏

finite v

K2n−1(Λv)

K2n−1(D)
?

-
∏

finite v

K2n−1(Dv) ,

?

x1
- x2

x
?

- x3 ,
?

(II)

(III)

where x3 is the image of x2 in
∏

finite v

K2n−1(Dv). Since D is ramified at finitely

many places of F , kv = dv for almost all v. So K2n−1(Λv) ' K2n−1(Dv) for almost
all v by Theorem 1 of [11]. Hence the kernel of the right vertical arrow in diagram
(II) is finite. So x3 is torsion free. However x ∈ WK2n−1(D) and so x3 = 0. This
is a contradiction. Hence WK2n−1(D) is finite.

Proposition 2.4. Let F be a number field and D a central division algebra over
F . Then for all n ≥ 0 the wild kernel WK2n(D) is contained in the image of
K2n(Λ) −→ K2n(D). In particular, WK2n(D) is finite.

Proof. Consider the following commutative diagram

0 - WK2n(D) - K2n(D)
f

-
∏

v

K2n(D)

0 - K2n(Λ)
?

- K2n(D)

=

?

g
-

∏
v

K2n−1(dv) ,

?

τ
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where the middle vertical arrow is an identity. By this commutative diagram,

g = τ ◦ f

which implies kerf ⊂ kerg. So WK2n(D) ⊂ K2n(Λ).
Let

tr : K2n(Λ) −→ K2n(R)

be the transfer homomorphism and let

i : K2n(R) −→ K2n(Λ)

be the homomorphism induced by the inclusion. Then for any x ∈ K2n(Λ),

i ◦ tr(x) = xm2

,

where m2 is the dimension of D over F . Since K2n(R) is a torsion group, K2n(Λ)
is also a torsion group. So it must be finite which implies WK2n(D) is finite.

Theorem 2.5. Let Σ be a semi-simple algebra over a number field F . Then the
wild kernel WKn(Σ) is contained in the torsion part of the image of the homo-
morphism

Kn(Λ) −→ Kn(Σ),

where Λ is a maximal order of Σ. In particular, WKn(Σ) is finite.

Proof. Assume Σ =
k∏

i=1

Mni
(Di), where Di is a finite dimensional F -division al-

gebra with center Ei. Let Λ be a maximal order of Σ. We know that Λ =
k∏

i=1

Mni
(Λi), where Λi is maximal order of Di. So WKn(Σ) =

k∏
i=1

(WKn(Di)) and

Kn(Λ) =
k∏

i=1

Kn(Λi). This theorem follows from Proposition 2.3 and 2.4.

3. Connections between WKn(D), W
′
Kn(D) and div(Kn(D))

Theorem 3.1. Let F be a number field and Σ a semi-simple algebra over F . Then
WKn(Σ)/W

′
Kn(Σ) is a finite 2-group with 8-rank 0 if n ≡ 0, 4, 6 (mod 8), and

with 16-rank 0 if n ≡ 2 (mod 8).

Proof. (1) If n ≡ 0, 4, 6 (mod 8), then Kn(R) is a uniquely divisible group by
Corollary 2.9.2 of [23]. Let D be a central division algebra over F . If D is not
ramified at a real place v, then Dv = D⊗Fv = D⊗R is a matrix ring over R. So
Kn(Dv) ' Kn(R) is a uniquely divisible group. Since Kn(F ) is a torsion group
for even n (see [5] or [6]) , then by Lemma 2.1 Kn(D) is also a torsion group for
even n. The image of a torsion element in a uniquely divisible group must be 0.
So, if D is not ramified at a real place v, then the map

Kn(D) −→ Kn(Dv) ' Kn(R)
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is 0. If D is ramified at a real place v, then Dv is a matrix ring over the Hamilton
quaternion algebra H. For any torsion element x ∈ Kn(H), we have x4 = 0 by
Lemma 2.1. So if D is ramified at a real place v, then every element of the image
of

Kn(D) −→ Kn(Dv) ' Kn(H)

is a 4-torsion element. Using the same arguments as in the proof of Theorem 2.5,
we know the image of

Kn(Σ) −→
∏

real places v

Kn(Σv)

is a finite 2-group with 8-rank 0. By the definitions of wild kernel and pseudo-
wild-kernel, WKn(Σ)/W

′
Kn(Σ) is isomorphic to a subgroup of the image of

Kn(Σ) −→
∏

real places v

Kn(Σ⊗ R).

So WKn(Σ)/W
′
Kn(Σ) is a finite 2-group with 8-rank 0 if n ≡ 0, 4, 6 (mod 8).

If n ≡ 2 (mod 8), then the torsion part of Kn(R) is Z/2Z. Using the
same arguments as above, we have WKn(Σ)/W

′
Kn(Σ) is a finite 2-group with

16-rank 0.

Theorem 3.2. Let F be a number field and D a central division algebra over F .
Then

(1) div (K2(D)) ⊂ WK2(D).

If the index of D is square free, then

(2) div (K2(D)) ' div (K2(F )),

(3) WK2(D) ' WK2(F ),

(4) |WK2(D)/div (K2(D))| ≤ 2.

Proof. (1) Let v be a non-complex place of F . It is known that K2(Fv) is a direct
sum of cyclic group r and an infinitely divisible torsion free group (K2(Fv))

s,
where s is the number of roots of unity of F (cf. Theorem A.14 of [18]). Let E
be the maximal divisible subgroup of K2(Dv). By Theorem 3 in §5 of [10], E is a
direct summand of K2(Dv), i.e., there is a subgroup T such that K2(Dv) = E⊕T .
By Lemma 2.1, the reduced norm Nrd2 induces an isomorphism E ' (K2(Fv))

s.
So T must be a torsion group. If [D : F ] = m2, then T sm2

= 1 by Lemma 2.1.
Consider the following commutative diagram

K2(D)
(iD)

-
∏

non complex v

K2(Dv)

K2(F )

Nrd2

?

(iF )

-
∏

non complex v

K2(Fv),

?

(Nrdv
2)
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where the map Nrd2 and (Nrdv
2) are the reduced norms, (iD) and (iF ) are the

homomorphisms induced by the inclusion. For any x ∈ div(K2(D)), (iD)(x) is
divisible and torsion in

∏
non complex v

K2(Dv) since K2(D) is a torsion group. So

(iD)(x) = 0 which implies div(K2(D)) ⊂ WK2(D).

(2) If the index of D is square free, then by [17], Proposition 26.6 and Theorem
26.7 of [24], Nrd2 is injective. So we need only to prove that the restriction map

div(K2(D)) −→ div(K2(F ))

is surjective.
Since K2(F ) is a torsion group and K2(R) is the direct sum of a divisible

group and Z/2Z, we have

div(K2(F )) ⊂ Ker(K2(F ) −→
⊕

real ramified v

Z/2Z).

Let K+
2 F be the subgroup of K2F generated by the Steinberg symbols {a, b}

with a ∈ F ∗ and b ∈ F+ = {b ∈ F |v(b) > 0 for all real places v such that D is
ramified at v}. Since every element of F+ is a norm of some element of D∗, K+

2 F
is generated by the Steinberg symbols {a, n(d)} with a ∈ F ∗ and d ∈ D∗, where
n is the reduced norm of D. By Theorem 1 of [2] and Theorem 2.2 of [8], the
image of the reduced norm Nrd2 is

K+
2 F = Ker(K2(F ) −→

⊕
real ramified v

Z/2Z).

So
div(K2(F )) ⊂ Nrd2(K2(D)).

Since
K2(F ) −→

⊕
real ramified v

Z/2Z

is split (cf. 2.1 of [12]), we can write K2(F ) as

K+
2 F

⊕
(

⊕
real ramified v

Z/2Z).

So
x ∈ div(K2(F )) = div(K+

2 F
⊕

(
⊕

real ramified v

Z/2Z))

= div(K+
2 F )

⊕
div(

⊕
real ramified v

Z/2Z)

= div(K+
2 F ) ⊂ Nrd2(K2(D)).

So for x ∈ div(K2(F )), we can find y ∈ div(K2(D)) such that

x = Nrd2(y).
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So
Nrd2 : div(K2(D)) −→ div(K2(F ))

is an isomorphism.

(3) Consider the following commutative diagram

1 - WK2(D) - K2(D) -
∏

non complex v

K2(Dv)

1 - WK2(F )
?

Nrdw
2

- K2(F )
?

Nrd2

-
∏

non complex v

K2(Fv)

?

(Nrdv
2)

By [17] and Proposition 26.6, Theorem 26.7 of [24] Nrd2 is injective. So Nrdw
2 is

injective. Next we will prove that Nrdw
2 : WK2(D) −→ WK2(F ) is surjective.

By Theorem 1 of [2],

WK2(F ) = Ker(K2F −→
∏

non complex v

K2(Fv))

⊂ Ker(K2F −→
∏

real ramified v

K2(Fv))

= Image(Nrd2 : K2D −→ K2F ).

By [17] and [25], (Nrdv
2) is injective. So

Nrd2
−1(WK2(F )) = WK2(D).

So Nrd2 : WK2(D) −→ WK2(F ) is surjective which implies it is bijective.

(4) Tate had proved that

|WK2(F )/div(K2(F ))| ≤ 2

(cf. page 250 of [3]). So (4) follows from (2) and (3).

By Theorem 3.2 and the arguments in the proof of Theorem 2.5, we have the
following theorem.

Theorem 3.3. Let F be a number field, Σ =
k∏

i=1

Mni
(Di) a semi-simple alge-

bra over F , where each Di is a finite dimensional division algebra over F with
square free index. Then div(K2(Σ)) ⊂ WK2(Σ) and WK2(Σ)/div(K2(Σ)) is an
elementary abelian 2-group, with 2-rank less than or equal to k.

Theorem 3.4. Let F be a number field and D a central division algebra over F
with [D : F ] = m2. Then

(1) div(Kn(D))l = WKn(D)l for all odd primes l and n ≤ 2;

(2) if l does not divide m, then div(K3(D))l = WK3(D)l = 0;
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(3) if F = Q and l does not divide m, then div(Kn(D))l ⊂ WKn(D)l for all n.

Proof. (1) If n ≤ 1, then div(Kn(D)) = WKn(D) = 0. If n = 2, this result follows
from Theorem 3.3.

(2) By Theorem 5.5 of [4], div(K3(F ))l = WK3(F )l for any odd prime l. However
K3(F ) is finitely generated, so div(K3(F )) = 0 which implies WK3(F )l = 0 for
any odd prime l. Consider the composite of following maps.

WK3(D)
tr3−→ WK3(F )

i3−→ WK3(D),

where tr3 is the transfer map and i3 is the map induced by the inclusion. For any
x ∈ WK3(D),

i3 ◦ tr3(x) = xm2

.

Since WK3(F )l = 0, tr3(x) ∈ WK3(F )2. So

xm2

= i3 ◦ tr3(x) ∈ WK3(D)2.

However l does not divide m, and so, x ∈ WK3(D)2, i.e., WK3(D)l = 0 for any
odd prime l. So if l does not divide m, then

WK3(D)l = div(K3(D))l = 0.

(3) If Λ is a maximal order of the semi-simple algebra Σ, then K2n−1(Σ) is a
quotient of K2n−1(Λ) and K2n−1(Λ) is finite by Quillen’s localization sequence
(cf. [13]). Kuku proved in [13] and [14] that Kn(Λ) is finitely generated if n > 1.
So K2n−1(Σ) must be finitely generated which implies div(K2n−1(Σ)) = 0 if n ≥ 1.
So we need only to prove this assertion for K2n. By (4.2) of [4], K2n(Qv)l is finite.

By Lemma 2.1, the composite of following maps

K2n(Dv)l

trv
2n−→ K2n(Qv)l

iv2n−→ K2n(Dv)l

is multiplication by m2, where trv
2n is the transfer and iv2n is the map induced by

inclusion. Since (l, m) = 1, this composite is injective. So K2n(Dv)l is a finite
group also. Assume |K2n(Dv)l| = av. Consider the following sequence

0 −→ div(K2n(D))
i−→ K2n(D)

iv−→ K2n(Dv).

If x ∈ div(K2n(D))l, then we can find y ∈ K2n(D) such that yav = x. Since

iv ◦ i(x) ∈ (K2n(Dv))l,

we have
iv ◦ i(x) = iv(y)av = 0.

So
div(K2n(D))l ⊂ Ker(K2n(D) −→ K2n(Dv))
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for any finite v. So

div(K2n(D))l ⊂ Ker(K2n(D) −→
∏

finite v

K2n(Dv))

which implies
div(K2n(D))l ⊂ WK2n(D)l.

So if F = Q, then div(Kn(D))l ⊂ WKn(D)l for all n and all odd primes l such
that l does not divide m.
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