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Abstract. Complex projective nonruled surfaces S endowed with a
numerically effective line bundle L of arithmetic genus g(S, L) = 2 are
investigated. In view of existing results on elliptic surfaces we focus on
surfaces of Kodaira dimension κ(S) = 0 and 2. Structure results for
(S, L) are provided in both cases, according to the values of L2. When
S is not minimal we describe explicitly the structure of any birational
morphism from S to its minimal model S0, reducing the study of (S, L)
to that of (S0, L0), where L0 is a numerically effective line bundle with
g(S0, L0) = 2 or 3. Our description of (S, L) when S is minimal, as well
as that of the pair (S0, L0) when g(S0, L0) = 3, relies on several results
concerning linear systems, mainly on surfaces of Kodaira dimension 0.
Moreover, several examples are provided, especially to enlighten the
case in which S is a minimal surface of general type, (S, L) having
Iitaka dimension 1.
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1. Introduction

Polarized smooth surfaces with sectional genus g = 2 have been studied and
classified in [5], [10], [26], and [12]. There is also a classification result for normal
Gorenstein surfaces endowed with a nef and big line bundle of arithmetic genus
2, with special regard to singularities [4]. On the other hand Maeda [18] classified
surfaces with a merely nef line bundle of arithmetic genus g ≤ 1. All these
results led us to study semipolarized surfaces with sectional genus g = 2. The
case in which the surface is elliptic has been considered in [16]. In this paper we
consider the same situation for surfaces of non-negative Kodaira dimension. In
fact, studying semipolarized normal surfaces with g = 2 turns out to be equivalent,
from the birational point of view, to study smooth semipolarized surfaces with
g = 2. So, let S be a smooth projective surface and let L be a nef line bundle on
S with g(S, L) = 2.

Our analysis relies on the relation L2 + LKS = 2, given by the definition of
sectional genus. Of course L2 ≥ 0 since L is nef, and also LKS ≥ 0 provided
that S is nonruled. This restricts the two summands to three possibilities, and we
define the type of (S, L) according to them. Of course this approach cannot longer
work if S is ruled: actually, in this case LKS can be very negative. For instance,
on the Segre-Hirzebruch surface S = F2 the line bundle L = −KS + f , where f is
a fibre of the ruling projection, is nef, L2 = 12 and LKS = −10. Another point is
the following. If S is ruled and L is nef and big then the irregularity of S satisfies
the same bound q(S) ≤ 2 as for polarized surfaces (e. g., see [13], Lemma 1.2 (3)).
However if L is simply nef, we can only say that q(S) ≤ 2+h1(KS +L), although
we have no examples with q(S) ≥ 3. For these reasons in this paper we confine
our study to nonruled surfaces.

Since we work up to birational equivalence, we can also assume that the pair
(S, L) is L-minimal, i. e., LE > 0 for every (−1)-curve E ⊂ S. Moreover, in view
of [16], we need only to analyze surfaces with κ(S) = 2 and 0.

For surfaces of Kodaira dimension zero, our general result is as follows.

Theorem 1. Let (S, L) be a smooth L-minimal semipolarized surface with g(S, L)
= 2 and κ(S) = 0. Then one of the following cases holds:

I) L2 = 2, LKS = 0, S is minimal and either L is ample or S is Enriques or
K3;

II) L2 = LKS = 1 and (S, L) has a simple reduction as in case I);

III) L2 = 0, LKS = 2 and either

i) there is a morphism σ : S → S1 contracting a single (−1)-curve E, L =
σ∗L1 − 2E, where S1 is a minimal surface and L1 is a nef line bundle with
g(L1) = 3, or

ii) (S, L) has a simple reduction as in case II).

For each case we supply more details along the paper. In particular, in case III-i)
we have that L1 has to be ample if S1 is abelian or bielliptic.
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Case I) with L ample has been studied in [5] (see also [10]). So here we
determine the structure of Enriques and K3 surfaces carrying a nef non-ample line
bundle of genus two. As to cases II) and III) there are some restrictions on the
point p where a birational morphism contracts the (−1)-curve of S. In general
they can be expressed in terms of suitable Seshadri constants, but, sometimes,
they can be made very explicit and this allows us to rule out some possibilities.
More specifically, in case III-i) we combine these restrictions with several results
from [23], [6], [7], [1], and [25] to describe all admissible line bundles L1 of genus
3 on minimal surfaces of Kodaira dimension zero. One of the most delicate point
is that of K3 surfaces when the linear system |L1| has a fixed part. In fact, due to
a result of Nikulin, we show that this case does not occur in connection with case
III-i). The form of L1 as well as the restrictions on p can be easily determined also
for bielliptic surfaces, thanks to the basis of Num(S) described by Serrano [25],
according to the seven types occurring in the Bagnera-De Franchis classification.

As to surfaces of general type the result we get is the following.

Theorem 2. Let (S, L) be a smooth L-minimal semipolarized surface with g(S, L)
= 2 and κ(S) = 2. Then one of the following cases holds:

II) L2 = LKS = 1, S is minimal, and L ≡ KS;

III) L2 = 0, LKS = 2 and either

i) (S, L) has a simple reduction as in case II), or

ii) S is minimal.

Cases have been enumerated according to the types defined in Section 2. Note
that type (I) cannot occur for κ(S) ≥ 1.

Case II) with L ample has been studied in [5], so here we provide examples where L
is nef but not ample. As to case III-i), some restrictions on the reduction (S1, L1)
are needed: e. g., the point at which the reduction morphism contracts the (−1)-
curve of S cannot lie on any (−2)-curve of S1. However the more interesting
case is III-ii). Here, different situations may correspond to the same type. The
standard situation is that of fibrations having a multiple fibre whose support is
an irreducible curve of genus 2, which of course includes the case of genus two
fibrations. This corresponds to a line bundle L with Iitaka dimension κ(S, L) = 1.
In this setting we produce several examples, by constructing some double covers.
However, also κ(S, L) = −∞ can occur. In fact we can easily relate our L to the
“numerical type” studied by Sakai [24], but, unfortunately we have not been able
to confirm or to exclude the possibility that κ(S, L) = 0. We are grateful to L.
Bădescu for several discussions on this last point.

2. Notations and preliminaries

We work over the complex number field C. We use standard notation and ter-
minology in algebraic geometry: in particular we denote additively the tensor
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products of line bundles and we use the symbol ≡ to denote the numerical equiv-
alence. Following a current abuse of notation we do not distinguish between line
bundles and the corresponding invertible sheaves.

We are interested in the classification of nonruled projective surfaces endowed
with a nef line bundle of arithmetic genus 2. To make our set-up clear let us fix
some more terminology.

Let X be a projective surface and let L be a line bundle on X. If L is nef,
i.e., LC ≥ 0 for all integral curves C on X, we call the pair (X,L) a semipolarized
surface. Two semipolarized surfaces (X1,L1), (X2,L2) are said to be birationally
equivalent if there exist a projective surface Y and birational morphisms fi :
Y → Xi (i = 1, 2) such that f ∗1L1 = f ∗2L2. If X is normal, the sectional genus
g(X,L) of the semipolarized normal surface (X,L) is defined by the formula
2g(X,L)−2 = (ωX +L)L, where ωX denotes the canonical sheaf of X. Let (X,L)
be a semipolarized normal surface with g(X,L) > 0. Then, by [18] Theorem
1 there exist a smooth surface S and a nef line bundle L on S such that the
semipolarized surface (S, L) is birationally equivalent to (X,L) and KS +L is nef,
where KS is the canonical bundle of S. Moreover, by [11], Lemma 1.8, (see also
[18], Lemma 3.1) we have g(S, L) = g(X,L). In particular this shows that to study
semipolarized normal surfaces of sectional genus 2 up to birational equivalence it
is enough to consider semipolarized smooth surfaces (S, L) where

2 = 2g(S, L)− 2 = (KS + L)L = KSL+ L2. (1)

So from now on the word ‘surface’ will mean smooth projective surface. In par-
ticular, in this paper we are interested in nonruled surfaces.

Since L is nef and a positive multiple of KS is effective or trivial, both summands
appearing in the right hand of (1) are non-negative. Hence we get the following
three possibilities for the pair (L2, LKS): (2, 0), (1, 1) and (0, 2). We will call them
types (I), (II), and (III) respectively.

Let (S, L) be a semipolarized surface. If S is not relatively minimal there
exists a (−1)-curve E ⊂ S, let σ : S −→ S ′ be a contraction of E and let
p = σ(E). Then there exists a line bundle L′ on S ′ such that L = σ∗L′ − rE,
where r = LE ≥ 0 since L is nef. It is immediate to check that L′ is nef. Since
KS = σ∗KS′ + E, we have KS + L = σ∗(KS′ + L′)− (r − 1)E, so that

2 = 2g(S, L)− 2 = L(KS + L) = L′(KS′ + L′)− r(r − 1)

= 2g(S ′, L′)− 2− r(r − 1).

If r = 1, by using the adjunction theoretic terminology, we say that (S ′, L′) is a
simple reduction of (S, L). In this case note that g(S, L) = g(S ′, L′).

Let (S, L), E, σ and (S ′, L′) be as above. Checking the nefness of L′ we see in
fact much more. Actually, if C ⊂ S ′ is an irreducible curve having a point of
multiplicity m(≥ 0) at p = σ(E), we have

0 ≤ Lσ−1(C) = (σ∗L′ − rE)(σ∗C −mE) = L′C −mr.
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Conversely, starting from the semipolarized surface (S ′, L′) and blowing-up p, we
see that the line bundle L := σ∗L′ − rE is nef if and only if

ε(L′, p) ≥ r,

where

ε(L′, p) = infC3p
L′C

multp(C)

is the Seshadri constant of L′ at p. So we get the following conclusion.

Fact 2.1. Let S be a smooth surface and let σ : S → S ′ be the contraction of
a (−1)-curve E to a point p ∈ S ′. Let L′ be a nef line bundle on S ′ and let
L := σ∗L′ − rE, with r ≥ 0. Then L is nef if and only if ε(L′, p) ≥ r.

As a consequence, if σ is a reduction morphism, for instance (S ′, L′) is a simple
reduction of (S, L) as in cases II) and III-ii) of Theorem 1 and in case III-i) of
Theorem 2, then the nefness of L is equivalent to the condition that ε(L′, p) ≥ 1.
In particular:

(1) no curve C ⊂ S ′ with L′C = 0 can pass through p, and

(2) p cannot be a singular point of any irreducible curve E ⊂ S ′ with L′E = 1;
otherwise ε(L′, p) ≤ L′E

multp(E)
≤ 1

2
.

Similarly, in case III-i) of Theorem 1 it must be ε(L1, p) ≥ 2. In particular this
says that p cannot lie on any curve C ⊂ S1 such that L1C = 1; moreover it
cannot be a singular point of any irreducible curve E ⊂ S1 with L1E = 2. These
conditions will be relevant in Sections 3 and 4.

We want to use birational equivalence to reduce the study of our pairs (S, L) to
the case when S is a minimal surface. It is useful to recall the following definition
([13], Definition 1.9, see also [4], Definition 0.9).

Definition 2.2. (S, L) is said to be L-minimal if LE > 0 for every (−1)-curve
E ⊂ S.

Recall that up to a birational morphism we can always replace our semipolarized
pair (S, L) with another (S], L]), which is L]-minimal and has the same type as
(S, L) ([16], Fact 2.4). Moreover we have

Lemma 2.3. Let (S, L) be an L-minimal semipolarized nonruled pair with LKS

= 1. If S is non-minimal then there exists a simple reduction (S1, L1) of (S, L)
which is L1-minimal.

Proof. Since S is not minimal consider a birational morphism η : S → S0 onto
the minimal model S0. Then KS = η∗KS0 + E , where E is an effective divisor
contracted by η. We have

1 = LKS = Lη∗KS0 + LE ≥ LE .
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Since E contains at least a (−1)-curve, say E, as a component and (S, L) is L-
minimal this gives LE = 1. Let σ : S → S1 be the contraction of E (note that
η factors through σ and in fact η = σ, “a posteriori”). Let L1 ∈ Pic(S1) be the
nef line bundle such that L = σ∗L1 − E. Moreover (S1, L1) is L1-minimal. To
see this, let E1 ⊂ S1 be a (−1)-curve and let p ∈ S1 be the point blown-up by σ.
Then σ∗E1 = Ẽ1 + νE, where Ẽ1 = σ−1(E1) and ν = Ẽ1E = multp(E1) is 0 or 1
according to whether p 6∈ E1 or p ∈ E1. Since L = σ∗L1 − E we have

L1E1 = σ∗L1σ
∗E1 = σ∗L1(Ẽ1 + νE) = σ∗L1Ẽ1 = (L+ E)Ẽ1

= LẼ1 + EẼ1.

Now both summands on the right hand are non-negative since L is nef. Moreover,
if ν = 0, then Ẽ1 is a (−1)-curve in S, hence the first summand is positive, since
(S, L) is L-minimal. On the other hand, if ν = 1 then the second summand is
positive. This shows that L1E1 > 0 in every case. �

We conclude this section by recalling some technical facts on K3, bielliptic, and
abelian surfaces, which will be used later on in the paper. Linear systems on K3
surfaces have been studied by Saint-Donat [23]. The fixed part of a nef and big
complete linear system on a K3 surface is much simpler than expected, as shown
by Nikulin [20]. We rediscovered this result in the course of our study (see also
[28]).

Proposition 2.4. (see [20], Proposition 0.1) Let L be a nef and big line bundle
on a K3 surface S, such that |L| has a fixed part. Then |L| = |kE|+ Γ, where the
fixed part Γ is an irreducible (−2)-curve, E is a curve with E2 = 0, EΓ = 1, and
k = g(S, L).

A bielliptic surface S can be of seven types, according to a classical result of
Bagnera-de Franchis ([3], p. 87). Explicit bases of Num(S) have been found by
Serrano ([25], Theorem 1.4) according to the seven types. For the convenience of
the reader we recall this result in the form we need it.

Proposition 2.5. (see [25], Theorem 1.4 and Proposition 1.2) Let S be a bielliptic
surface, S = (A×B)/G, where A,B, are elliptic curves and G is an abelian group
acting on A and on B such that A/G is elliptic and B/G ∼= P1. Then { 1

h
A, 1

k
B}

is a basis of Num(S), with

(h, k) = (2, 1), (2, 2), (4, 1), (4, 2), (3, 1), (3, 3), (6, 1),

according to the seven types. Moreover the classes induced by the two factors in
Num(S), still denoted by A,B, intersect as follows: A2 = B2 = 0; AB = hk = γ,
where γ is the order of G.

We also recall the following fact.

Lemma 2.6. Let S be a smooth minimal surface which is either abelian or biel-
liptic. Let L be a nef and big line bundle on S. Then L is ample.
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Proof. Since L is nef and big, if it is not ample, there exists an irreducible
curve C ⊂ S such that LC = 0. By the Hodge index theorem this implies
that C2 < 0. This combined with the fact that KS is numerically trivial says
that C is a (−2)-curve. In particular C is a smooth rational curve. Recall that
abelian surfaces cannot contain rational curves. The same fact is true for bielliptic
surfaces. Actually, if C ⊂ S is any effective divisor on a bielliptic surface, by using
Proposition 2.5 it follows that C2 ≥ 0. Hence S cannot contain smooth curves of
genus 0. �

3. L nef and big

In this section we will consider the case in which the line bundle L is nef and big.
Hence the semipolarized surface (S, L) is either of type (I): (L2, LKS) = (2, 0) or
of type (II): (L2, LKS) = (1, 1).

Lemma 3.1. If (S, L) is L-minimal of type (I) with κ(S) ≥ 0, then S is a minimal
surface with κ(S) = 0.

Proof. Assume that S is not minimal. Then there exists a birational morphism
η : S → S0 onto the minimal model S0, and KS = η∗KS0 + E , where E is an
effective divisor contracted by η. Note that since η is nontrivial, E contains at
least one (−1)-curve as a component; hence LE > 0, because (S, L) is L-minimal.
On the other hand Lη∗KS0 ≥ 0, mKS0 being effective or trivial for m >> 0. Thus,
since (S, L) is of type (I), we get

0 = LKS = η∗KS0L+ LE ≥ LE > 0,

a contradiction. This shows that S is minimal. Now, by the Hodge index theorem,
we conclude from LKS = 0 that either KS ≡ 0, or K2

S < 0. But S is a nonruled
minimal surface, hence K2

S ≥ 0, so that the second possibility cannot occur. Thus
KS ≡ 0, which proves the assertion. �

Let us continue to study type (I). If L is ample, then the classification of pairs
(S, L) where S is a minimal surface with κ(S) = 0 can be found in [5], Theorem 2.7.
Note that, by Proposition 2.5, for all seven types of bielliptic surfaces occurring
in case (d) of the table in [5], p. 202 we have L = 1

h
A + 1

k
B. So we can assume

that L is not ample.

Recalling Lemma 2.6 we have the following

Proposition 3.2. If (S, L) is L-minimal of type (I) with κ(S) ≥ 0 and L is not
ample, then S can only be either Enriques or K3.

This gives case I) in Theorem 1. Now we investigate further the structure of our
pairs (S, L) when L is not ample.

K3 surfaces

If |L| has no fixed part then |L| is base point free and ϕL : S −→ P2 is a generically
finite morphism of degree two. If L is ample this is a double cover branched along
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a smooth sextic, while if L is nef but not ample then (S, L) appears as the minimal
desingularization of a double plane branched along a singular sextic. A concrete
example of the second case is as follows.

Example 3.3. Let π : Y −→ P2 be a double cover of P2 branched along a sextic
B with one node. Let p : X −→ Y be a minimal resolution of Y and consider
the map f = π ◦ p : X −→ P2. Then X is a K3 surface. Set L = f ∗(OP2(1)).
We have L2 = 2 and of course LKX = 0, hence g(X,L) = 2. Let Γ ⊂ X be the
exceptional curve arising from the resolution. Note that Γ is a (−2)-curve, (see
[2], III, 7) and LΓ = 0. Moreover we have LC = f ∗(OP2(1))C > 0 for any curve
C ⊂ X with C 6= Γ, by the projection formula. Hence we conclude that L is nef
and not ample.

If |L| has a fixed part then by Proposition 2.4 we know that |L| = |kE| + Γ,
where Γ is an irreducible (−2)-curve, E is a curve with E2 = 0, EΓ = 1, and
k = 1 + 1

2
L2. Hence L = 2E + Γ. Note that this case is effective. It corresponds

to the following example.

Example 3.4. Let X be the K3 surface considered in Example 3.3 and let ` be a
line in P2 passing through the node of the branch divisor B. Let E = f−1(`) and
let Γ be as in Example 3.3. Note that |E| is an elliptic pencil and EΓ = 1. The line
bundle L′ = 2E+Γ = E+f ∗(`) is nef. In fact for every curve C ⊂ X with C 6= Γ,
we have L′C = 2EC + ΓC ≥ 0. On the other hand L′Γ = EΓ + (E + Γ)Γ = 0,
thus L′ is nef and not ample being L′Γ = 0. Moreover L′ satisfies the condition
L′2 = 2. Finally note that |L′| has Γ as fixed part.

Enriques surfaces

As to Enriques surfaces the situation is slightly more involved than for K3’s.
Actually from [7] Proposition 2.4 if the nef and big line bundle L has a fixed part
then it is of the form |L| = |P + R|, for an elliptic pencil |P | and a nodal curve
R such that PR = 2. This gives no contradiction for L2 = 2. Moreover the
adjoint linear system (which has the same numerical class as L) has no fixed part,
[7], Lemma 2.5. So, in order to describe S, up to replace L with its adjoint line
bundle, we can assume that |L| has no fixed components. Then, by [7], 2.12, |L|
is a hyperelliptic linear system since L2 = 2, and there are just two possibilities
([7], p. 590). For each of them there is an appropriate line bundle L such that the
semipolarized pair (S, L) is of type (I). They are the following.

(1) (non-special pencil of genus two) Let S be a non-special Enriques surface and
let L be a nef line bundle with L2 = 2. Then |L| = |E1 +E2| with E1E2 = 1,
where |2E1|, |2E2| are two elliptic pencils on S. The linear system |2L|
defines a morphism of degree 2, f : S −→ V1 ⊂ P4 onto a 4-nodal quartic in
P4.

(2) (special pencil of genus two) Let S be a special Enriques surface and let |L|
be a nef line bundle with L2 = 2 on S. Let |2E| be the elliptic pencil and
R the nodal curve such that ER = 1. Then |L| = |2E + R + KS|. The
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linear system |2L| defines a morphism of degree 2, f : S −→ V2 ⊂ P4 onto
a degenerate 4-nodal quartic V2.

Note that in both cases 2L = f ∗OVi
(1), hence S contains (−2)-curves C corre-

sponding to the nodes of Vi, such that LC = 0. This shows that L cannot be
ample.

Now let us consider type (II): (L2, LKS) = (1, 1). First suppose that S is not
minimal. Then, by Lemma 2.3 we know (S, L) has a simple reduction (S1, L1)
which is L1-minimal. Note that (S1, L1) is a semipolarized surface of sectional
genus 2. Moreover, since L2 = L2

1− 1 and LKS = L1KS1 + 1, we see that (S1, L1)
is of type (I). Recall that, according to the study of type (I) made before, S1

is a minimal surface (hence η = σ); furthermore κ(S1) = 0 and there are two
possibilities: either L1 is ample, or S1 is Enriques or K3. This gives case II) in
Theorem 1. If L1 is ample then there are no evident restrictions deriving from
(2.1). Let S1 be a K3 surface. If |L1| has a fixed part, then |L1| = |2E|+Γ, where
E is a curve with E2 = 0 and Γ is a (−2)-curve with ΓE = 1 by Proposition 2.4.
Then the effect of (2.1) is that the point p blown-up by σ cannot lie on Γ, since
L1Γ = 0. Moreover, p cannot be a singular point of any singular element of the
pencil |E|. On the other hand, if S1 is an Enriques surface an obvious effect of
(2.1) is that the point p blown-up by σ cannot lie on the (−2)-curves contracted
by the morphism associated to |2L1|.

Now suppose that S is minimal. We have L(L − KS) = 0; hence by the Hodge
index theorem there are two possibilities:

(a) L ≡ KS, or

(b) (L−KS)
2 < 0.

In case (a) we get K2
S = L2 = 1, hence κ(S) = 2, since S is minimal. Moreover L

is ample up to (−2)-curves, since it is numerically equivalent to KS.

In case (b) we have 0 > L2− 2LKS +K2
S = −1 +K2

S. Thus K2
S ≤ 0. Since S is a

minimal surface, this shows that S cannot be of general type, and then κ(S) = 0.
But in this case KS ≡ 0, since S is minimal, which clearly contradicts the fact
that LKS = 1. Thus case (b) cannot occur. This shows

Proposition 3.5. If (S, L) is of type (II) with S minimal, then either κ(S) = 1,
or S is of general type with K2

S = 1 and L ≡ KS.

The former case is studied in [16], Sections 3–5. The latter one can be studied
as in [5], Theorem 1.4, leading to the same result as in the ample case, simply
removing the condition that S cannot contain (−2)-curves. This gives case II) in
Theorem 2.

We like to remark that the Campedelli-Kulikov-Oort surface S in [9], pp. 167–171
falls exactly in the latter class. In fact its canonical class is nef and not ample
since on S there are (−2)-curves, and K2

S = 1. Recall that such a surface is the
minimal non singular double plane branched along the curveW = C1∪C2∪D1∪D2,
where C1 and C2 are conics, D1 and D2 are cubics such that one of the cubics has
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a double point, both conics pass through this point and touch both cubics at the
other points. For details see [9].

4. L nef and not big

In this section we consider type (III): (L2, LKS) = (0, 2), which is the most
intricate.

First suppose that S is not minimal and let η : S → S0 and E be as in the
proof of Lemma 3.1. Then, from

2 = LKS = Lη∗KS0 + LE ,

we see that either LE = 2 and Lη∗KS0 = 0, or LE = Lη∗KS0 = 1.

a) If LE = 2, then either
(a1) E is irreducible and LE = 2, or

(a2) E is reducible, E contains at least a (−1)-curve, say E, as a component,
with LE = 1, or 2, but E 6= E.

Let E be as in (a1). Since η is non trivial, E = E is a (−1)-curve. Let σ : S → S1

be the contraction of E. Let L1 ∈ Pic(S1) be the nef line bundle such that
L = σ∗L1 − 2E. Recall from Section 2 that (S1, L1) is a semipolarized surface of
sectional genus 3. Moreover S1 is minimal (note that in case (a1) η = σ). Since
L2 = L2

1 − 4 and LKS = L1KS1 + 2 we see that (L2
1, L1KS1)=(4, 0). Now, by

the Hodge index theorem, we conclude from L1KS1 = 0 that either KS1 ≡ 0, or
K2
S1
< 0. But S1 is a nonruled minimal surface, hence K2

S1
≥ 0, so that the second

possibility cannot occur. Thus KS1 ≡ 0. This is case III-i) of Theorem 1. We will
say more on this case later.

Let E be as in (a2). Let σ : S → S1 be the contraction of E. Let L1 ∈ Pic(S1) be
the nef line bundle such that L = σ∗L1 −mE, for m = LE = 1, or 2.

By Section 2 we have that (S1, L1) is a semipolarized surface of sectional genus
3 or 2 according to whether m = 2 or 1. The same reasoning as in Lemma 2.3
shows that (S1, L1) is L1-minimal. Moreover, since L2 = L2

1 − m2 and LKS =
L1KS1 +m we see that (L2

1, L1KS1)=(4, 0), or (1, 1) according to whether m = 2
or 1. Thus, either

(i) (S1, L1) is a semipolarized surface of sectional genus 3, L1-minimal, with
(L2

1, L1KS1) = (4, 0), this does not occur (see Claim 4.1), or

(ii) (S1, L1) is a semipolarized surface of sectional genus 2, L1-minimal, with
(L2

1, L1KS1) = (1, 1), i.e. of type (II).

Let (S1, L1) be as in (ii). The final condition in (a2) implies that S1 6= S0. So
S1 is not minimal. Hence, the study done in Section 3 says that (S1, L1) has a
simple reduction (S2, L2) which is a semipolarized surface of sectional genus 2, L2-
minimal, of type (I). In conclusion (S, L) has a reduction (S2, L2) with κ(S2) = 0
and either L2 is ample or S2 is Enriques or K3 (by Proposition 3.2). This leads
to III-ii) in Theorem 1.
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Claim 4.1. The case (i) does not occur.

Proof. Let (S1, L1) be as in (i). By the Hodge index theorem, from L1KS1 = 0
we conclude that either KS1 ≡ 0, or K2

S1
< 0. We show that the latter case cannot

occur. Assume, by contradiction, that K2
S1
< 0. This implies, since κ(S1) ≥ 0,

that S1 is non minimal. So there exists a birational morphism η1 : S1 → S0 onto
the minimal model S0, and KS1 = η∗1KS0 + E1, where E1 is an effective divisor
contracted by η1. We have

0 = L1KS1 = L1η
∗
1KS0 + L1E1.

Being L1 nef it follows that both members on the right hand side are zero. In
particular L1E1 = 0. But E1 contains at least a (−1)-curve and thus L1E1 = 0
contradicts the fact that the pair (S1, L1) is L1-minimal. Thus KS1 ≡ 0. In
particular S1 is minimal, but this contradicts the final condition in (a2). So the
claim is proved. �

b) Consider now the case LE = Lη∗KS0 = 1. Since E contains a (−1)-curve, say
E, as a component, and (S, L) is L-minimal, we have LE = 1. Let σ : S → S1

be the contraction of E, and let L1 ∈ Pic(S1) be the nef line bundle such that
L = σ∗L1 − E. Then (S1, L1) is a semipolarized surface of genus 2 and of type
(II) (a simple reduction of (S, L)). Moreover we have the following

Lemma 4.2. S1 is minimal.

Proof. Suppose that S1 is not minimal. What we have seen before shows that
(S1, L1) has a simple reduction which is a semipolarized surface of sectional genus
two, L2-minimal of type (I). Let σ2 : S1 −→ S2 be the reduction morphism
contracting the exceptional curve E1. Then L1 = σ∗2L2 − E1, L1E1 = 1. Let
p = σ(E), where σ : S −→ S1 is the contraction considered before. Then σ∗E1 =
Ẽ1 + νE, where Ẽ1 = σ−1(E1) and ν = Ẽ1E = multp(E1) is 0 or 1 according to
whether p 6∈ E1 or p ∈ E1.

If ν = 0, then Ẽ1 is a (−1)-curve in S, hence Ẽ1 is also a component of E and
thus 1 = LE ≥ LE + LẼ1 = 2, which is clearly impossible.

If ν = 1, then σ∗E1 = Ẽ1 +E, where Ẽ1 = σ−1(E1) and Ẽ1E = multp(E1) = 1
since p ∈ E1. Moreover L = η∗L2 + Ẽ1. We have that

Lη∗KS2 = (η∗L2 + Ẽ1)η
∗KS2 = L2KS2 + Ẽ1η

∗KS2

= (σ∗E1 − E)(σ∗KS1 − σ∗E1) = 0

and this contradicts the assumption 1 = Lη∗KS0 = Lη∗KS2 . Hence S1 is mini-
mal. �

As a consequence of Lemma 4.2, S1 = S0 and (S1, L1) is as in Proposition 3.5.
This leads to III-i) in Theorem 2. As to the effect of (2.1) note that p = σ(E)
cannot lie on any (−2)-curve C of S1 since otherwise L1C = KS1C = 0, being
L1 ≡ KS1 . Similarly, if pg(S) = 2 (the maximum, since K2

S1
= L2

1 = 1) then |KS1|
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is a pencil of curves of genus 2, and some curve C ∈ |KS1| can be singular. Then p
cannot be a singular point of C, otherwise L1C = KS1C = K2

S1
= 1, contradicting

(2) in (2.1).

Now we study further the case arising from (a1).
For simplicity let (Σ,M) = (S1, L1), where Σ is a minimal surface withKΣ ≡ 0

and M is a nef line bundle on Σ, with M2 = 4.

Note that the line bundle M −KΣ is nef and big, being numerically equivalent to
M . Hence hi(M) = hi(KΣ+(M−KΣ)) = 0 for i = 1, 2 by the Kawamata-Viehweg
vanishing theorem. So

h0(M) = χ(M) = χ(OΣ) +M2/2 = 2 + χ(OΣ).

Therefore |M | is a pencil when Σ is either abelian or bielliptic, a net when Σ is
an Enriques surface, and a web when Σ is K3.

Let Σ be a K3 surface. Then we know the following: if |M | has no fixed compo-
nents, then |M | is base-point-free ([23], Theorem 3.1). Moreover, since M2 = 4,
|M | cannot be composed with a pencil by [23], Proposition 2.6; hence its general
element is a smooth curve. Let ϕM be the morphism associated to |M |.

First suppose that |M | is not hyperelliptic; then ϕM : Σ → ϕM(Σ) ⊂ P3 is
exactly the normalization of a quartic surface in P3 ([23], Theorem 6.1). In this
case the effect of (2.1) is that the point p blown up by σ cannot lie on any curve
C ⊂ Σ contracted by ϕM .

Suppose now that |M | is hyperelliptic, i.e., ϕM has degree 2; then according
to [23] Proposition 5.6, either

(j) there exists an irreducible curve E with E2 = 0 and ME = 2, or
(jj) there exists an irreducible curve B of arithmetic genus two and M = OΣ(2B).

In case (jj) ϕM = v2 ◦ ϕB, where v2 : P2 −→ P5 is the Veronese embedding and
ϕB : Σ −→ P2 is a double cover branched along a sextic [23], Proposition 5.7.

In case (j) either ϕM(Σ) is a smooth quadric and ϕM is branched along a divisor in
|O(4, 4)|, or there exists an elliptic pencil |E| and one of the following conditions
holds:

(α) M = OΣ(2E + Γ0 + Γ1), where Γ0,Γ1 are rational irreducible curves such
that Γ0E = Γ1E = 1,Γ0Γ1 = 0;

(β) M = OΣ(2E + ∆), with ∆ = 2
∑N

i=0 Γi + ΓN+1 + ΓN+2(N ≥ 0), where all
Γi’s, are rational irreducible curves giving rise to a Dynkin diagram of type
DN+3 and EΓ0 = 1, EΓj = 0 for j 6= 0, Γ0 corresponding to the first vertex
of the diagram.

In both cases (α) and (β) ϕM(Σ) is the quadric cone and the pencil |E| is the
pull-back of the system of generators. Note that in both cases MΓ0 = 0, hence
M is not ample.

As to the effect of (2.1) in connection with Theorem 1, III-i), in case (jj)
there are no evident restrictions. In case (j) when ϕM(Σ) is a smooth quadric, let
E1 = ϕ∗

MO(1, 0), E2 = ϕ∗
MO(0, 1). Since MEi = 2 for i = 1, 2 it is clear that the

point p blown-up by σ cannot be a singular point of any singular element of the
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pencils |Ei|, i = 1, 2. Let ϕM(Σ) be a quadric cone. In both cases (α) and (β) we
can note that the point p cannot lie on any Γj; moreover it cannot be a singular
point of any singular element of the pencil |E|.

Finally, the case when M has a fixed part is easily settled by Proposition 2.4.
Actually |M | = |3E|+ Γ, where E is a curve with E2 = 0, Γ is a (−2)-curve and
EΓ = 1. So we have ME = ΓE = 1; on the other hand |E| is a pencil sweeping
out the whole Σ. Taking into account (2.1) this gives the following

Proposition 4.3. Let (S, L) be as in case III-i) of Theorem 1. If S1 is a K3
surface, then |L1| is base point free.

Now let Σ be an Enriques surface. First of all it is easy to see that |M | cannot
have fixed components. Otherwise, by [7], Proposition 2.4 (see also [8], Proposition
3.1.6, p. 173) our linear system would be of the form |2E + R|, where |2E| is a
genus 1-pencil and R is a smooth rational curve with ER = 1. But then we would
get 4 = M2 = 4E2 + 4ER + R2 = 0 + 4 − 2 = 2, a contradiction. Note also
that |M | is not composed with a pencil. Actually, |M | itself is not a pencil, as
we said; on the other hand, if M ≡ kB, with k ≥ 2 from 4 = M4 = k2B2 we
get k = 2 and B2 = 1, but this is impossible by the genus formula. Now, the
possibilities which can occur “a priori” are listed in [6], Lemma 3.3.3 (see also [8],
Proposition 4.1.2, p. 227). However, recall that we are working over the field of
complex numbers. So, if |M | has base points, then it can have only two distinct
base points and the map ϕM exhibits Σ as a double plane ([8], Theorem 4.4.1, p.
240). On the other hand, if |M | is base point free, then the condition M2 = 4
rules out all possibilities except the case in which ϕM exhibits Σ as a four-tuple
cover of P2. A complete description of this case can be found in [29]. As to the
effect of (2.1), in both cases it seems difficult to convert the condition ε(L1, p) ≥ 2
into explicit restrictions on the point p.

For bielliptic surfaces we know that M is an ample line bundle, by Lemma 2.6.
Recalling the explicit bases of Num(Σ), listed in Proposition 2.5, we can write
M = a 1

h
A + b 1

k
B in Num(Σ) for some positive integers a, b. Then from the

condition M2 = 4 we get ab = 2. Hence we get the following two possibilities for
each of the seven types: (a, b) = (2, 1), (1, 2). Let ψ : Σ = (A×B)/G→ B/G = P1

be the elliptic fibration and let f be the reduced component of the fibre of maximal
multiplicity. It is immediate to see that f = 1

h
A, hence if (a, b) = (2, 1) we get

Mf = M 1
h
A = (2 1

h
A + 1

k
B) 1

h
A = 1. Thus the effect of (2.1) for case III-i) of

Theorem 1 is the following. If L1 corresponds to (a, b) = (2, 1) then the point p
blown up by σ cannot belong to the fibre of maximal multiplicity of the elliptic
fibration of S1.

Finally consider abelian surfaces. In this case, note that M has to be ample by
Lemma 2.6. Let (d1, d2) be the type of the polarization induced by M on Σ ([14],
p. 47). From the equality 2 = h0(M) = 1

2
M2 = d1d2 ([14], p. 289) we thus see

that (d1, d2) = (1, 2). Abelian surfaces with a polarization of type (1, 2) have been
studied in [1]. In particular it can be that Σ = E × F , with E,F elliptic curves
and M = OΣ(E + 2F ). Hower this case cannot occur by (2.1) since MF = 1
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and the fibres F sweep out the whole Σ. Apart from this case, |M | has no fixed
components, its base locus consists of 4 distinct points, and the general element
is a smooth curve [1], Section 1. Moreover Σ with the (1, 2) polarization given by
M can be identified with the dual of the Prym variety associated with the elliptic
involution carried by the general element D ∈ |M |, with the natural polarization
[1], Theorem 1.12. Apparently, (2.1) gives no special restrictions in this case.

Now we suppose that S is minimal. Note that it cannot be κ(S) = 0; otherwise
KS would be numerically 0, but this is impossible, since LKS = 2. Since the case
κ(S) = 1 is studied in [16], we can suppose that S is minimal and of general type.
This case will be treated in the next section.

5. More on L not big on a minimal surface of general type

In this section we give a structure theorem for pairs (S, L) where S is a minimal
surface of general type, L is a nef line bundle on S with L2 = 0, LKS = 2, having
Iitaka dimension κ(S, L) = 1. Before doing that we produce two examples of pairs
(S, L) with Iitaka dimension κ(S, L) = 1,−∞, respectively.

Example 5.1. Let C,Γ be two smooth curves with g(Γ) = 2 and g(C) ≥ 2. Let
S = C × Γ and let p : S −→ C and q : S −→ Γ be the projections on the first
and second factor, respectively. Note that S is a minimal surface of general type
endowed with a genus two fibration p : S −→ C. Let L = p∗OC(x), for some point
x ∈ C. Note that L is nef, L2 = 0 and LKS = (p∗OC(x))(p∗KG + q∗KΓ) = 2.
Moreover, by the projection formula we have H0(S,mL) = H0(C,OC(mx)), hence
dim φ|mL|(S) = 1 for m >> 0. Therefore κ(S, L) = 1.

Example 5.2. Let S be as in the previous Example 5.1. Let y1, y2 ∈ Γ be
two distinct points such that y1 − y2 is not a torsion divisor and let x ∈ C.
Set L = p∗OC(x) ⊗ q∗OΓ(y1 − y2). In this example L is nef and not big, since
L2 = 2 deg(y1 − y2) = 0, and LKS = 2, as before. Moreover H0(S,mL) ∼=
H0(C,OC(mx))⊗H0(Γ,OΓ(m(y1−y2))) = 0, for everym > 0 sinceOΓ(m(y1−y2))
has no nontrivial sections. Therefore κ(S, L) = −∞.

The case in which κ(S, L) = 1, that is there exists an integer t > 0 such that
h0(S, tL) ≥ 2, is settled by the following proposition.

Proposition 5.3. Let (S, L) be a semipolarized surface with g(S, L) = 2 and
L2 = 0, with S a minimal surface of general type. If κ(S, L) = 1, then S admits
a fibration over a smooth curve B, whose general fibre F has genus g(F ) ≥ 2 and
L ≡ 1

g(F )−1
F .

Proof. Let t > 0 be an integer such that h0(tL) ≥ 2, let D ∈ |tL| and write |D| =
Z + |M |, where Z and |M | are the fixed and the moving part of |D| respectively.
The fact that D is nef along with 0 = t2L2 = D2 = D(Z + M) = DZ + DM
gives that DM = 0, DZ = 0. From 0 = DM and the fact that M moves, we
have ZM ≥ 0 and M2 ≥ 0, hence M2 = ZM = 0. Combining this with DZ = 0
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we get Z2 = 0. Therefore |M | defines a morphism Φ from S to PN whose image
is a curve Γ. Moreover the map associated to D coincides with Φ. Consider the
Remmert-Stein factorization of Φ:

Φ : S
φ→ B

ψ→ Γ ⊂ PN ,

where B is a smooth curve and φ has connected fibres. Let F be a general fibre
of φ. Then

tL = φ∗ψ∗OΓ(1) ≡ (deg Γ)(degψ)φ−1(b),

where b ∈ B. So tL ≡ mF , where m = (deg Γ)(degψ). Then

2g(F )− 2 = F 2 + FKS = FKS =
t

m
LKS =

2t

m
.

This says that (g(F )− 1)L ≡ F . �

Here are several examples of pairs (S, L) as in Proposition 5.3. The most obvious
is that of genus two fibrations.

Example 5.4. Let Y = PC(E) be a P1-bundle over a smooth curve C of genus
q ≥ 0, defined by a rank-2 vector bundle E normalized as in [15], p. 373, let E
be the section of minimal self-intersection E2 = −e = deg E , and let f be a fibre.
Recall that the classes of E and f generate Num(Y ). Let B ≡ 3E + kf , for some
integer k. For k sufficiently large, the line bundle 2B is ample and spanned so
that its linear system contains a smooth curve ∆. Let p : S → Y be the double
cover of Y , branched along ∆ ∈ |2B|. Then the line bundle L := p∗[f ] is nef and
L2 = (p∗f)2 = 2f 2 = 0. Moreover, recalling that KY ≡ −2E + (2q − 2 − e)f ,
we get LKS = (p∗f)(p∗(KY + B)) = 2f(E + (k + 2q − 2 − e)f) = 2. Let t
be a positive integer. Since p∗OS = OY ⊕ [−B], we get h0(tL) = h0(p∗tL) =
h0(tf)) + h0((tf − B)) by projection formula. But tf − B cannot be effective,
because (tf − B)f < 0. Hence h0(tL) = h0(tf) ≥ 2 for t >> 0. So (S, L) is
a semipolarized surface of sectional genus 2 endowed with a genus two fibration
over C and L corresponds to a fibre. Now we have

K2
S = (p∗(KY +B))2 = 2(KY +B)2 = 2(2k + 4q − 4− 3e).

Furthermore, recalling that χ(OS) = 2χ(OY ) + g(B)− 1 (e. g., see [22], Corollary
2.2), we get

χ(OS) = q + 2k − 3e− 1.

For k large enough we thus see that K2
S > 0 and χ(OS) ≥ 2, which implies that

S is of general type. Finally note that S is minimal, due to the construction.

This gives a concrete family. Surfaces of general type endowed with a genus two
fibration are widely discussed in [30].
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Example 5.5. Let ψ : X = (E × B)/G → C = P1 be an elliptic quasi bundle
as in [16], (1.2), p. 364. Here E is a smooth elliptic curve, B is a smooth curve
of genus ≥ 1 and G is an abelian group of type Zr × Zs (possibly cyclic, i.e.,
r = 1) acting on B with C = B/G, acting on E by translations, and acting on X
with the induced diagonal action. Denote again by E the general fibre of ψ and
by B the general fibre of the morphism X → E/G. Then E2 = B2 = 0 while
EB = γ, the order of G. Let µ be the least common multiple of the multiplicities
m1, . . . ,ml of the multiple fibres of ψ. By [26], Proposition 1.4 we know that
1
µ
E ∈ Num(X). Recall that a multiple fibre of multiplicity mi of ψ corresponds

to a branch point of the finite morphism (of degree γ) π : B → C = B/G, at
which mi branches collapse together. Then, by combining the Riemann-Hurwitz
formula for π with the canonical bundle formula for elliptic surfaces, one can easily
see that µ

γ
(2g(B) − 2) is an integer. Let δ = 0 or 1 denote its class mod 2. By

an unpublished result of Palleschi, Serrano and the third author [17] (see [19],
Theorem 2.1) Num(X) is generated by the classes of 1

µ
E and µ

γ
B + δ

2µ
E. Now let

B ∈ Pic(X) be a line bundle, whose numerical class is

a
1

µ
E + b(

µ

γ
B +

δ

2µ
E)

for some integers a and b. According to [19], Proposition 2.5 and Proposition
2.8 we know that 2B is spanned for b ≥ 1 and either a ≥ g(B)µ

γ
if δ = 0, or

2a + b ≥ µ
γ
(2g(B) − 2) + 2 if δ = 1. Note that for b = 1 these conditions simply

require that a is sufficiently large. Suppose that a and b satisfy these conditions.
Then by Bertini’s theorem there exists a smooth divisor ∆ ∈ |2B|. Let p : S → X
be the double cover branched along ∆. Then S is a smooth surface endowed
with a fibration φ = ψ ◦ p : S → C, whose general fibre, say F , is a nef divisor.
Let M ∈ Pic(X) be a line bundle whose numerical class is that of 1

µ
E and set

L := p∗M . Then L is nef and L2 = 0, being µL ≡ F . Since KS = p∗(KX + B)
and KX is a rational multiple of E by the canonical bundle formula for elliptic
surfaces, we get

KSL = p∗(KX + B)p∗(
1

µ
E) = 2B 1

µ
E =

2

µ
b
µ

γ
BE = 2b.

Thus
KSL = 2 if and only if b = 1.

So for b = 1 and a large enough we get a semipolarized surface (S, L) of sectional
genus 2 fibered over C. By looking at the invariants K2

S and χ(OS) it is easy
to check that S is of general type. As to the genus of the general fibre F of
φ : S → C, since b = 1, we immediately see that

2g(F )− 2 = F 2 + FKS = (p∗E)(p∗(KX + B)) = 2EB = 2b
µ

γ
BE = 2µ.

Hence g(F ) = µ+ 1.
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We would like to stress that pairs (S, L) as in Example 5.5 arise from every
elliptic quasi bundle over P1. In particular, we can apply the conclusion above to
the special case of bielliptic surfaces, mentioned in Proposition 2.5. For types 1,
3, 5 and 7 (see [25], Table I at p. 528) we have µ = 2, 4, 3, 6, respectively. Hence
they lead to pairs (S, L) with S of general type endowed with a fibration of genus
µ + 1 = 3, 5, 4, 7. More general quasi bundles in the sense of [27] can give other
examples.

Example 5.6. Let S be as in [21], Theorem 2.2, case i). Then S = (F × C)/G,
where C is a smooth curve of genus ≥ 2, F is a hyperelliptic curve of genus 3, G is
a finite group acting faithfully on C and F , with C/G and F/G both rational and
with the induced diagonal action on F × C being free. Moreover, the projection
p : S → C/G = P1 has exactly 6 double fibres, each having a smooth support [21],
Proof of Theorem 2.2, case i). So S is a quasi bundle over P1. Let F0 = 2f be
one of the double fibres and denote again by F the general fibre of p. Of course
L = [f ] is nef and L2 = 0. We have

4 = 2g(F )− 2 = F 2 + FKS = FKS = 2fKS = 2f 2 + 2fKS = 2(2g(f)− 2).

Hence g(f) = 2. Thus (S, L) is an example as in Proposition 5.3. In [21], Theorem
1.2 one can find the precise list (namely, cases Ia–Id) of the possibilities for the
invariants g(C) and G for a surface S as above.
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