Using the Frattini Subgroup and Independent Generating Sets to Study RWPRI Geometries

Claude Archer Philippe Cara¹ Jan Krempa

Université Libre de Bruxelles, C.P.165/11 -Physique et Mathématique Faculté des Sciences Appliquées avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium e-mail: carcher@ulb.ac.be

> Vrije Universiteit Brussel, Department of Mathematics Pleinlaan 2, B-1050 Brussel, Belgium e-mail: pcara@vub.ac.be

Warsaw University, Institute of Mathematics Banacha 2, 02-097 Warszawa, Poland e-mail: jkrempa@mimuw.edu.pl

Abstract. In [4], Cameron and Cara showed a relationship between independent generating sets of a group G and RWPRI geometries for G. We first notice a connection between such independent generating sets in G and those in the quotient $G/\Phi(G)$, where $\Phi(G)$ is the Frattini subgroup of G. This suggests a similar connection for RWPRI geometries. We prove that there is a one-to-one correspondence between the RWPRI geometries of G and those of $G/\Phi(G)$. Hence only RWPRI geometries for Frattini free groups have to be considered. We use this result to show that RWPRI geometries for p-groups are direct sums of rank one geometries. We also give a new test which can be used when one wants to enumerate RWPRI geometries by computer.

0138-4821/93 \$ 2.50 © 2005 Heldermann Verlag

¹Corresponding author; postdoctoral fellow of the Fund for Scientific Research-Flanders (Belgium) (F.W.O.-Vlaanderen).

1. Geometries

1.1. Basic definitions and notation

After Tits [11], there is a standard way to define an (incidence) geometry from a group and a collection of subgroups. In this section, we recall this construction.

Let $I = \{1, \ldots, n\}$ be a finite set whose elements are called *types*. Let G be a group together with a finite nonempty family of distinct subgroups $(G_i)_{i \in I}$. The (coset) pregeometry $\Gamma = \Gamma(G, (G_i)_{i \in I})$ is defined as follows. The set X of *elements* of Γ consists of all cosets G_ig , $g \in G, i \in I$. An incidence relation * is defined on X by:

$$G_ig_1 * G_jg_2 \iff G_ig_1 \cap G_jg_2 \neq \emptyset.$$

The type function t on Γ is $X \longrightarrow I : G_i g \longmapsto i$ and we call |I| = n the rank of Γ . The group G acts on Γ as an automorphism group. Indeed, by right multiplication, $g \in G$ maps $G_i g_1$ to $G_i g_1 g$ and this action preserves each type as well as the incidence between elements. For each type i, the action of G on the elements of type i is transitive and G_i is the stabilizer of the element G_i of type i.

A flag is a set of pairwise incident elements and a flag containing an element of each type is called a *chamber*. The *type* of a flag F is simply the image t(F) of F under the type function. We call the cardinality of t(F) the *rank* of F.

The residue Γ_F of a flag F is the pregeometry induced on the set X_F of all elements of type $I \setminus t(F)$ incident with each element of F.

1.2. More axioms

As such, the structure of a coset pregeometry is too general. In order to have a structure that is more similar to classical geometries more axioms are needed. We follow the set of axioms proposed by the team of Buekenhout in [3].

A pregeometry Γ is said to be *flag-transitive* (FT) provided that G acts transitively on all flags of any given type $J \subseteq I$. We call Γ a *(coset) geometry* if every flag of Γ is contained in a chamber.

For $J \subseteq I$, we put $G_J := \bigcap_{j \in J} G_j$. If Γ is a flag-transitive geometry, every flag of type $J \subseteq I$ is the image under G of the flag $F_J := \{G_j : j \in J\}$. The stabilizer of F_J is G_J and the residue of F_J is isomorphic to the coset geometry

$$\Gamma_{F_J} = \Gamma(G_J, (G_{J \cup \{k\}} : k \in I \setminus J)).$$

The Borel subgroup of Γ is the subgroup $B := G_I = \bigcap_{i \in I} G_i$.

We call Γ firm (F) provided that every non maximal flag is contained in at least two chambers. The geometry Γ is said to be residually connected (RC) whenever the incidence graph $(X_F, *_F)$ of each residue of rank ≥ 2 is connected.

We call Γ primitive (PRI) if the action of G is primitive on the elements of any given type (i.e. all G_i are maximal in G). We call Γ weakly primitive (WPRI) provided G acts primitively on the set of elements of type i in Γ for some $i \in I$. The geometry Γ is said to be residually weakly primitive (RWPRI) whenever the residue Γ_F of any flag F is weakly primitive for the group induced on Γ_F by the stabilizer G_F of F. Similarly we define residually primitive (RPRI) where we require that every residue is PRI.

The reader can find a complete survey of the origins of these concepts in the Handbook of Incidence Geometry [2].

1.3. Group theoretic formulations

When dealing with coset geometries, we have to translate the axioms mentioned above into group theory. Assuming flag-transitivity allows us to do this easily. Detailed proofs can be found in [5].

- (F) The subgroups G_J , for $J \subseteq I$, are all distinct.
- (**RC**) If $J \subseteq I$ and |J| < |I| 1, then $G_J = \langle G_{J \cup \{k\}} : k \in I \setminus J \rangle$.
- (FT) If a family $(G_j x_j : j \in J)$ of right cosets has pairwise non-empty intersection, then there is an element of G lying in all these cosets.

Since the action of G on the cosets of G_i is primitive if and only if G_i is a maximal subgroup of G, the RWPRI condition means that the group G_J acts primitively on the elements of at least one type in the residue of the standard flag $F_J = \{G_j \mid j \in J\}$ of type J. Hence the coset geometry is residually weakly primitive if and only if the following condition holds:

(**RWPRI**) For any $J \subset I$, there exists $k \in I \setminus J$ such that $G_{J \cup \{k\}}$ is a maximal subgroup of G_J .

2. Independent generating sets

2.1. Definitions

Let $S = \{s_i : i \in I\}$ be a family of elements of a group G. For $J \subseteq I$, let $G_J = \langle s_i : i \notin J \rangle$; we abbreviate $G_{\{i\}}$ to G_i . We say that S is *independent* if $s_i \notin G_i$ for all $i \in I$. A family of elements which generates G is independent if and only if it is a minimal generating set (that is, no proper subset generates G).

Like in [4], we also define a relativized version. Let B be a subgroup of G. A family $S = \{s_i : i \in I\}$ of elements of G, is *independent relative to* B if $s_i \notin \langle B, s_j : j \neq i \rangle$, and it is an *independent generating set relative to* B if in addition $\langle B \cup S \rangle = G$.

2.2. Independent generating sets and the Frattini subgroup

The Frattini subgroup $\Phi(G)$ of a group G is defined as the intersection of all maximal subgroups of G. We briefly recall the connection between $\Phi(G)$ and generating sets for G. An element $x \in G$ is a *nongenerator* if for every subset S of G such that $\langle x, S \rangle = G$ we have $\langle S \rangle = G$. An important property is that the set of all nongenerators is exactly $\Phi(G)$ (see [10], p. 156). Hence $\langle \Phi(G) \cup S \rangle = G$ if and only if $\langle S \rangle = G$.

Theorem 2.1. Let B be a subgroup of a group G and let $\Phi := \Phi(G)$. A subset $\{s_i : i \in I\}$ is an independent generating set of G relative to B if and only if $\{\Phi s_i : i \in I\}$ is an independent generating set of G/Φ relative to $\Phi B/\Phi$. *Proof.* Observe that every subset of cardinality |I| in G/Φ may be written as $\tilde{S} := \{\Phi s_i : i \in I\}$, where $S := \{s_i : i \in I\}$ is a subset of G. First we prove the equivalence for the generating property. Obviously $\langle S \cup B \rangle = G$ implies that $\tilde{S} \cup \Phi B/\Phi$ generates G/Φ .

Conversely, if $\tilde{S} \cup \Phi B/\Phi$ generates G/Φ then every coset Φg in G is a product of cosets in $\tilde{S} \cup \Phi B/\Phi$. This means that $\Phi g = \Phi h$, where h is a product of elements of $S \cup B$. Hence for all $g \in G$ we have $g \in \langle \Phi \cup S \cup B \rangle$ and thus, by the non generating property of Φ , we get $G = \langle S \cup B \rangle$. This shows that $\tilde{S} \cup \Phi B/\Phi$ generates G/Φ if and only if $S \cup B$ generates G. We still have to prove the independence. First remark that if $\langle X, H \rangle = T$ for a subset X and a subgroup H of a group T, then

$$X \not\subseteq H \Leftrightarrow H \neq T. \tag{(\star)}$$

Let $G_i := \langle B, s_j : j \neq i \rangle$ and let $\tilde{G}_i := \langle \Phi B / \Phi, \Phi s_j : j \neq i \rangle$. Notice that $\tilde{G}_i = \langle \Phi \cup G_i \rangle / \Phi$. Thus $\{ \Phi s_i : i \in I \}$ being an independent generating set of G/Φ relative to $\Phi B / \Phi$ means $\Phi s_i \notin \tilde{G}_i$ which is thus equivalent to $\Phi s_i \notin \langle \Phi, G_i \rangle$. Since we have shown previously that $\langle \Phi s_i, \langle \Phi, G_i \rangle / \Phi \rangle = G/\Phi$ if and only if $\langle s_i, \langle \Phi, G_i \rangle \rangle = G$, we can use (\star) with $T = G/\Phi$ to replace $\Phi s_i \notin \langle \Phi, G_i \rangle$ by $\langle \Phi, G_i \rangle \neq G$. This is equivalent to $G_i \neq G$ (by the non generating property) and by (\star) again (with T = G), this happens if and only if $s_i \notin G_i$.

2.3. Independent generating sets and RWPRI geometries

In [4], Cameron and Cara have shown that any firm RWPRI coset geometry gives rise to an independent generating set S relative to the Borel subgroup.

Their construction is the following. Let $\Gamma = \Gamma(G, (G_i)_{i \in I})$. Choose elements s_i , for $i \in I$, so that s_i fixes the elements G_j for $j \neq i$ but moves the element G_i . In other words, $s_i \in G_{I \setminus \{i\}}$ where G_J denotes the stabilizer of the standard flag F_J . Then $S := \{s_i \mid i \in I\}$ is an independent set relative to the Borel subgroup B. Furthermore if the coset geometry Γ happens to be RWPRI, then $S \cup B$ also generates the whole group G and hence $\{s_i : i \in I\}$ is an independent generating set for G relative to B.

Moreover this construction yields a *strongly* independent set of G relative to B, i.e. $G_J \cap G_K = G_{J\cup K}$ for all $J, K \subseteq I$. Nevertheless, the converse is not true. If $\{s_i : i \in I\}$ is a strongly independent generating set for G relative to B, and we put $G_i := \langle B, s_j : j \neq i \rangle$, then conditions (F) and (RC) hold, but (FT) and (RWPRI) may fail.

A natural question

Theorem 2.1 states a correspondence between independent generating sets (IGS for short) in G and in $G/\Phi(G)$. Since a part of the IGS of G (respectively $G/\Phi(G)$) yields the firm RWPRI geometries of G (respectively $G/\Phi(G)$), it is natural to ask whether the correspondence also holds between firm RWPRI geometries in G and in $G/\Phi(G)$. This problem is the main motivation for this paper and we will solve it in next section.

3. New applications to RWPRI geometries

3.1. Bijection between firm RWPRI geometries of G and of $G/\Phi(G)$

In general for a normal subgroup N in G, any RWPRI geometry of G/N lifts to an RWPRI geometry of G whose Borel subgroup contains N. This is due to the bijection between subgroups (respectively maximal subgroups) of G_J/N and subgroups (respectively maximal subgroups) of G_J containing N. However, not all geometries for G come from a single quotient G/N because we cannot be sure that all G_i contain the fixed normal subgroup N. We show, with the (F) axiom, that for $N = \Phi(G)$, all RWPRI geometries of G can be obtained from the quotient $G/\Phi(G)$.

The following theorem also holds when the group G is infinite.

Theorem 3.1. Let $\Gamma = \Gamma(G, (G_i)_{i \in I})$ be a firm RWPRI coset geometry. Then $\Phi(G) \subset G_i$ for all $i \in I$.

Proof. For $J \subseteq I$, let $G_J := \bigcap_{j \in J} G_j$. By the RWPRI condition and the firm axiom (F), there is a chain of subgroups

$$B = G_I \subset \cdots \subset G_{\{i_1, i_2, i_3\}} \subset G_{\{i_1, i_2\}} \subset G_{i_1} \subset G$$

where every inclusion is strict and maximal. To simplify notation we relabel the indexes, replacing i_k by k and $\{1, \ldots, k\}$ by \overline{k} . The chain is now written as $B \subset \cdots \subset G_{\overline{3}} \subset G_{\overline{2}} \subset G_{\overline{1}} \subset G =: G_{\overline{0}}$ and we prove that $\Phi = \Phi(G) \subset G_i, \forall i \in I$.

We proceed by induction. Since G_1 is maximal in G we have $\Phi \subset G_{\overline{1}}$. Assume that up to an index k we have $\Phi \subset G_{\overline{m}}$ for all m < k, then if $\Phi \not\subseteq G_{\overline{k}}$, we derive a contradiction as follows. Assume that the following holds:

$$\forall m < k, \quad \Phi G_{\overline{m} \cup \{k\}} = G_{\overline{m}} \quad \text{implies} \quad \Phi G_{\overline{m-1} \cup \{k\}} = G_{\overline{m-1}} \,. \tag{1}$$

We will prove statement (1) in the last paragraph. We claim that the first part of (1) holds for m = k - 1. Indeed, by our induction hypothesis, Φ is a normal subgroup of $G_{\overline{k-1}} = \bigcap_{m < k} G_m$ and the subgroup $\Phi G_{\overline{k-1} \cup \{k\}} = \Phi G_{\overline{k}}$ is strictly larger than $G_{\overline{k}}$ since $\Phi \not\subseteq G_{\overline{k}}$. Hence maximality of $G_{\overline{k}}$ in $G_{\overline{k-1}}$ implies $\Phi G_{\overline{k}} = G_{\overline{k-1}}$. Now we use statement (1) from m = k - 1 up to m = 1, we obtain $\Phi G_k = G$. As Φ is the Frattini subgroup of G, this is only possible when $G_k = G$ which contradicts axiom (F).

It remains to prove statement (1). Assume $\Phi G_{\overline{m} \cup \{k\}} = G_{\overline{m}}$ for some m < k. Then $G_{\overline{m}} = \Phi G_{\overline{m} \cup \{k\}} \subset \Phi G_{\overline{m-1} \cup \{k\}} \subset \Phi G_{\overline{m-1}}$ and $\Phi G_{\overline{m-1}} = G_{\overline{m-1}}$ since $\Phi \subset G_{\overline{m-1}}$ (here m-1 < k). Now $G_{\overline{m}} \subset \Phi G_{\overline{m-1} \cup \{k\}} \subset G_{\overline{m-1}}$ together with the maximality of $G_{\overline{m}}$ in $G_{\overline{m-1}}$ implies

either (A) :
$$\Phi G_{\overline{m-1}\cup\{k\}} = G_{\overline{m-1}}$$
 or (B) : $G_{\overline{m}} = \Phi G_{\overline{m-1}\cup\{k\}}$.

As (A) is what we want to prove, let us show that (B) does not occur. (B) implies $G_{\overline{m-1}\cup\{k\}} \subset \Phi G_{\overline{m-1}\cup\{k\}} = G_{\overline{m}}$. Since $G_{\overline{m-1}\cup\{k\}} = G_k \cap G_{\overline{m-1}}$, we can say that $G_k \cap G_{\overline{m-1}}$ is a subgroup of $G_k \cap G_{\overline{m}}$. The inclusion $G_{\overline{m}} \subset G_{\overline{m-1}}$ then shows that $G_{\overline{m-1}\cup\{k\}}$ and $G_{\overline{m}\cup\{k\}}$ are equal. This contradicts axiom (F), since $\overline{m-1} \cup \{k\} \neq \overline{m} \cup \{k\}$ when $m \neq k$.

A geometry where all stabilizers G_i contain a normal subgroup K of G is isomorphic to a geometry of the quotient group G/K. More precisely:

Proposition 3.2. [2] If $\Gamma(G, (G_i)_{i \in I})$ is a pregeometry and if K is a normal subgroup of G such that $K \leq G_i$ for every $i \in I$, then

$$\Gamma(G, (G_i)_{i \in I}) \cong \Gamma(G/K, (G_i/K)_{i \in I}).$$

From Theorem 3.1 we now conclude

Corollary 3.3. A firm RWPRI coset geometry $\Gamma(G, (G_i)_{i \in I})$ is isomorphic to $\Gamma(G/\Phi(G), (G_i/\Phi(G))_{i \in I}).$

The groups of the form $G/\Phi(G)$ are called *Frattini free groups* and they are quite exceptional among finite groups (see section 4.1). By the corollary we obtain:

Theorem 3.4. Every firm RWPRI geometry is isomorphic to a firm RWPRI geometry of a Frattini free group.

3.2. Firm RWPRI geometries are trivial for *p*-groups

3.2.1. Direct sums of geometries

If in a rank 2 pregeometry Γ each element of type i is incident with every element of type j, the geometry $\Gamma(G, (G_i, G_j))$ is called a *direct sum* $\Gamma_i \oplus \Gamma_j$. More generally if the type set I is a union $I = I_1 \cup \cdots \cup I_r$ of disjoint subsets such that each element of type $i \in I_k$ is incident with every element of type $j \in I_l$ whenever $k \neq l$, we write Γ as a direct sum $\Gamma = \Gamma_1 \oplus \cdots \oplus \Gamma_r$, where the summand $\Gamma_k = \Gamma(G, (G_i)_{i \in I_k})$.

In fact, it can be proved easily that the structure and the properties of a pregeometry Γ are fully determined by those of its summands $\Gamma_1, \ldots, \Gamma_r$. A flag F of Γ is a union $F = F_1 \cup \cdots \cup F_r$ of (possibly empty) flags of the summands. The residue Γ_F of F is the direct sum $\Gamma_{F_1} \oplus \Gamma_{F_2} \oplus \cdots \oplus \Gamma_{F_r}$ of the residues in the corresponding summands (where F_k is the intersection of F with $t^{-1}(I_k)$). In the same way, a chamber is a union of disjoint chambers. Γ is residually connected if and only if the summands have this property. For these reasons, direct sum decompositions of pregeometries have a great importance (see Valette [12] for further details and [1] for the following well-known proposition).

Proposition 3.5. $\Gamma(G, (G_1, G_2))$ is a direct sum if and only if $G_1G_2 = G$.

3.2.2. Firm RWPRI geometries for p-groups

Let us recall that for a finite p-group P, the quotient $P/\Phi(P)$ is elementary abelian and has the structure of a vector space over \mathbb{F}_p . Proving the following lemma is an easy exercise.

Lemma 3.6. Let G_1 and G_2 be proper subgroups of \mathbb{Z}_p^k with $G_2 \not\subseteq G_1$. If G_1 is maximal and $G_1 \cap G_2$ is maximal in G_1 , then G_2 is a maximal subgroup of \mathbb{Z}_p^k .

Proposition 3.7. For a finite p-group G, a firm coset geometry is RWPRI if and only if it is RPRI.

Proof. Since RPRI implies RWPRI, it is sufficient to show that RWPRI implies RPRI. By Theorem 3.1 it is enough to show the property in $G/\Phi(G)$, which is elementary abelian. So we may assume without restriction that $G = \mathbb{Z}_p^k$. Write G_J for $\bigcap_{j \in J} G_j$. For a given subset Jof I, the RWPRI and firm property, allows us (after relabeling) to achieve that all inclusions in the following chain are strict and maximal

$$B = G_I \subset \cdots \subset G_{J \cup \{1,2\}} \subset G_{J \cup \{1\}} \subset G_J$$

Write \tilde{G}_K for $G_{J\cup K}$ and \overline{k} for $\{1, \ldots, k\}$ (we also put $\overline{0} := \emptyset$). Observe that $\tilde{G}_{\overline{k}} = \tilde{G}_{\{k\}\cup\overline{k-2}} \cap \tilde{G}_{\overline{k-1}}$. As a subgroup of an elementary abelian group, $\tilde{G}_{\overline{k-2}}$ is also elementary abelian and we may apply Lemma 3.6. Thus a pair of strict maximal inclusions $\tilde{G}_{\overline{k}} \subset \tilde{G}_{\overline{k-1}} \subset \tilde{G}_{\overline{k-2}}$ implies that $\tilde{G}_{\{k\}\cup\overline{k-2}}$ is proper maximal in $\tilde{G}_{\overline{k-2}}$.

Induction on m with $k \ge m \ge 2$ yields that $\tilde{G}_{\{k\}\cup\overline{k-m}}$ is a proper maximal subgroup of $\tilde{G}_{\overline{k-m}}$ so that finally $G_{J\cup\{k\}} = \tilde{G}_{\{k\}}$ is maximal in $\tilde{G}_{\overline{0}} = G_J$ and this for all k. \Box

Theorem 3.8. A firm RWPRI coset geometry for a p-group is a direct sum of PRI geometries of rank 1.

Proof. Again by Theorem 3.1 it is sufficient to show the property in $G = \mathbb{Z}_p^k$. The previous theorem ensures that all stabilizers G_i are maximal subgroups of G and hence (k-1)-dimensional subspaces. For $i \neq j$ Grassmann's dimension formula yields

$$\dim(G_i + G_j) = \dim G_i + \dim G_2 - \dim(G_i \cap G_j) = k - 1 + k - 1 - (k - 2) = k.$$

Hence $G_i + G_j$ must be equal to G. Proposition 3.5 terminates the proof.

4. Implications for RWPRI geometries

4.1. Reduction to Frattini free groups

Let us first remark that the Frattini subgroup of $G/\Phi(G)$ is the trivial subgroup $\{\Phi(G)\}$. Such a group for which the Frattini subgroup is the identity, is called a Frattini free group. The following theorem describes the structure of such groups as semi-direct products (see [9]). We say that a group K acts semi-simply on an abelian group A if the intersection of all maximal K-normal subgroups of A is trivial.

Theorem 4.1. Let F be a finite Frattini free group with socle $S = A \times B$ where A (resp. B) is a direct product of abelian (resp. non-abelian) simple groups. Then $F = A \rtimes K$ where K is a subgroup of $Aut(S) = Aut(A) \times Aut(B)$ which contains B = Inn(S) and acts semi-simply on A.

4.1.1. Frattini free groups are scarce

Considering only geometries on Frattini free groups reduces considerably the number of groups to take into account. According to the SmallGroups library in GAP (see [8] and [7]), there are 49,500,460,704 finite groups of order less than 1536 = 3 * 512 and among them

175

only 7818 are Frattini free (a proportion less than 100 - 99,999%). This is easily understandable since *p*-groups form the overwhelming majority of finite groups up to order 2000. There are for instance more than $49 \cdot 10^9$ groups of order 2^{10} and the library of Eick, Besche and O'Brien ([8]) suggests even that the proportion of *p*-groups among all finite groups up to order *n* tends to 1 when *n* tends to infinity. Nevertheless, although there could exist billions of groups of order p^k , there is only one Frattini free group of order p^k , namely the elementary abelian group.

4.2. The Φ -test for a residue

Suppose we want to test whether a collection of subgroups $\{G_i, i \in I\}$ defines an RWPRI geometry $\Gamma(G, (G_i)_{i \in I})$. According to Theorem 3.1, a first obvious test is to check whether $\Phi(G) \subset G_i$ for all $i \in I$.

The original aim of RWPRI coset geometries was to obtain a geometrical interpretation of sporadic simple groups. All these groups have a trivial Frattini subgroup and hence $\Phi(G) \subset G_i$ is certainly true. However, RWPRI property must hold for any residue and the groups G_J involved in residues are not, in general, Frattini free.

Let F be a flag of Γ . The residue of F must be an RWPRI geometry $\Gamma_F = \Gamma(G_{t(F)}, (G_i \cap G_{t(F)})_{i \in I \setminus t(F)})$. Therefore $\Phi(G_{t(F)})$ must be included in every $G_i \cap G_{t(F)}$ but in general $\Phi(G)$ is not the Frattini subgroup of $G_{t(F)}$. Sometimes $\Phi(G_{t(F)})$ is not even contained in $\Phi(G)$, so that a trivial $\Phi(G)$ does not imply a trivial $\Phi(G_{t(F)})$. Even if $\Phi(G) \subset G_i$ for all $i \in I$, there is no guarantee that $\Phi(G_{t(F)})$ is contained in every $G_i \cap G_{t(F)}$. Hence this provides a new test for every subgroup G_J . We refer to this as the Φ -test.

Therefore, even in the geometric study of sporadic simple groups, the Φ -test can be a useful tool.

4.2.1. How to compute $\Phi(G)$?

For finite soluble groups there exist specific methods for computing the Frattini subgroup without computing all maximal subgroups (see [6]). For non soluble groups, Eick suggests to use the fact that $\Phi(G)$ is contained in the Fitting subgroup of G.

4.3. Other reduction in some cases

In order to reduce the geometries of a group G to geometries of a quotient G/K (see Proposition 3.2), we would like to determine the largest G-normal subgroup K of the Borel subgroup $B = \bigcap_{i \in I} G_i$. By definition this group is $K := Core_G(B) = \bigcap_{i \in I} Core_G(G_i)$. For firm, RWPRI geometries, we have shown that $\Phi(G) \subset K$ and it is easy to find examples where $\Phi(G) = K$ (if $G/\Phi(G)$ is simple for instance).

In some cases K is a larger subgroup of G. For example in [1] we have proved that an RPRI geometry that is not a direct sum must be a geometry $\Gamma(G, (G_i)_{i \in I})$ where G belongs to a very specific family of Frattini free groups, namely that of primitive groups.

Acknowledgement. The authors gratefully acknowledge the support of the Flemish-Polish bilateral agreement Bil01/31.

References

- [1] Archer, C.: Direct sum decomposition of geometries based on maximal subgroups. J. Geometry 79 (2004), 12–18.
 Zbl pre02101771
- Buekenhout, F.: Foundations of incidence geometry. In: Handbook of Incidence Geometry (ed. F. Buekenhout), North-Holland, Amsterdam 1995, 63–105. Zbl 0823.51003
- [3] Buekenhout, F.; Cara, Ph.; Dehon, M.; Leemans, D.: Residually weakly primitive geometries of small sporadic and almost simple groups: a synthesis. In: A. Pasini (editor), Topics in Diagram Geometry, Quaderni Mat. 12 (2003), 1–27.
- [4] Cameron, P. J.; Cara, Ph.: Independent generating sets and geometries for symmetric groups. J. Algebra 258 (2002), 641–650.
 Zbl 1030.20002
- [5] Dehon, M.: *Classifying geometries with Cayley.* J. Symb. Comput. **17** (1994), 259–276. Zbl 0824.51009
- [6] Eick, B.: Special presentations for finite soluble groups and computing (pre-)Frattini subgroups. Proceedings "Groups and Computation II" 1995, L. Finkelstein and W. M. Kantor, (ed.), Amer. Math. Soc. 101–112, 1997.
- [7] The GAP Group: GAP Groups, Algorithms, and Programming. Version 4.3; 2002, (http://www.gap-system.org).
- [8] Besche, H. U.; Eick, B.; O'Brien, E. A.: *The groups of order at most 2000.* Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1–4.
- [9] Gaschütz, W.: Uber die Φ-Untergruppe endlicher Gruppen. Math. Z. 58 (1953), 160– 170. Zbl 0050.02202
- [10] Hall Jr., M.: The theory of groups. The Macmillan Company, 1968. cf. Zbl 0919.20001
- [11] Tits, J.: Géométries polyédriques et groupes simples. Atti 2^a Riunione Groupem. Math. Express. Lat., Firenze 1961, 66–88.
 Zbl 0199.24102
- [12] Valette, A.: Direct sums of Tits geometries. Simon Stevin 56 (1982), 167–180.

Zbl 0504.51011

Received March 17, 2004