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Abstract. We define some conformally invariant differential 1-forms along the
curvature lines of a hypersurface M and we observe that the ridges of M can be
viewed as their zeros. We characterize the highest order ridges, which are isolated
points generically, as zeros of these conformally invariant differential 1-forms along
special curves of ridges. We also prove that the highest order ridges are vertices of
the curvature lines when they are considered as curves in n-space.

Introduction

Conformal maps of Rn are defined as those preserving the angles. For n ≥ 3 they are
characterized by the fact that they transform k-spheres of Rn into k-spheres (here the k-
planes are considered as a special case of k-sphere with infinite radius). Several conformal
invariants for submanifolds in Rn have been defined by different authors ([5], [9], [10]). We
are interested here in the study of hypersurfaces from the viewpoint of their contacts with
hyperspheres and we follow an alternative approach, based on the fact that the conformal
maps preserve these contacts. A straightforward consequence of this is that they preserve
the contact directions of hypersurfaces with their focal hyperspheres, classically known as
principal directions, and therefore the curvature lines. We use this fact in order to obtain
some differential 1-forms defined along the curvature lines (considered as curves in n-space)
which are preserved by conformal maps (Theorems 1, 2 and 3).
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For surfaces in 3-space and locally conformally flat and no quasi-umbilical 3-manifolds
in 4-space, we show how extend these 1-forms over the whole surface so that their exterior
products define conformally invariant volume forms (Theorem 4 and Corollary 1). We obtain
in this way the expressions for the conformal principal curvatures of surfaces introduced by
Tresse in [21] and include a generalization of these results to locally conformally flat and no
quasi-umbilical 3-manifolds in 4-space (Corollary 2).

We also apply this procedure to the study of ridges. These are conformally invariant
subsets of the hypersurfaces arising from the analysis of their contacts with the family of
hyperspheres in the ambient space. These subsets happen to be relevant from the Image
Analysis viewpoint ([11]). Their introduction from the viewpoint of generic contacts with
hyperspheres is due to I. R. Porteous ([18]). In fact, an exhaustive study of ridges in the case
of surfaces in 3-space can be found in his book [19]. They can be viewed, roughly speaking,
as sets made of points at which the hypersurface has a contact of higher order with some of
its focal hyperspheres. An interesting fact is that the ridges can be characterized as the zeros
of some of the previously mentioned conformally invariant 1-forms.

We can define ridges of different orders, according to the order of contact of the hypersur-
face with the corresponding focal hypersphere at the given point. The ridge points of order
≥ n of a generic hypersurface in Rn form (conformally invariant) immersed curves containing
the ridges of order n + 1 as isolated points. The last are characterized here as the zeros of
certain conformally invariant 1-forms defined along these curves (Theorem 7).

On the other hand, the ridge points can be characterized through the contacts of focal
hyperspheres with the curvature lines of the hypersurface. This fact can be deduced from the
work of I. R. Porteous for surfaces in R3 [19]. Its proof for the general case of hypersurfaces
in Rn requires cumbersome technical manipulations and has not been published anywhere.
We have included here a proof (Theorems 5 and 6), which is based on the handling of
the expressions of the focal centers in terms of certain coefficients related to the Frenet
paraphernalia of the curvature lines of the hypersurface considered as a curve in Rn. Such
coefficients were introduced in [20] in order to study the conformal invariants of curves in Rn

and provide an important simplification to the computations associated to the problem that
concerns us here. A nice consequence of this is that the highest order ridges are vertices if
the curvature lines are considered as curves in n-space (Corollary 3).

1. Distance squared functions, focal sets, ridges and curvature lines

Since the conformal maps of Rn are defined as those that transform k-spheres of Rn into
k-spheres, we have that given a hypersurface M ⊂ Rn, any conformal map φ : Rn → Rn

preserves the contacts of M with the hyperspheres of Rn. This means that if a hypersphere S
has contact of a given type with M at a point m, then the hypersphere φ(S) has the same type
of contact with φ(M) at the point φ(m). The contact of M with the set of hyperspheres of Rn

can be described through the analysis of the singularities of the distance squared functions
on M . If M is viewed as the image of some embedding g : Rn−1 → Rn, then the family of
distance squared functions on M is given by

d : Rn−1 × Rn −→ R
(x, a) 7−→ da(x) = ‖g(x)− a‖2.
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A consequence of the work of J. Montaldi ([16]) is that the contact of M with a hypersphere
of center a ∈ Rn and radius r = ‖g(x)− a‖ at the point g(x) is completely characterized by
the K-equivalence class of the germ of the function da at the point x. More precisely:

Defininition 1. Let Xi and Yi, i = 1, 2 be submanifolds of Rn, with dim X1 = dim X2

and dim Y1 = dim Y2. The contact of X1 and Y1 at a point y1 is said to be of the same
type of contact as X2 and Y2 at a point y2 if there is a diffeomorphism-germ H : (Rn, y1) →
(Rn, y2), such that H(X1) = X2 and H(Y1) = Y2. In this case we shall write K(X1, Y1; y1) =
K(X2, Y2; y2).

J. Montaldi ([16]) proved that given immersion-germs gi : (Xi, xi) → (Rn, yi) and maps
fi : (Rn, yi) → (Rp, 0) such that Yi = f−1

i (0), i = 1, 2, we have that

K(X1, Y1; y1) = K(X2, Y2; y2) ⇔ f1 ◦ g1 ∼K f2 ◦ g2,

where K is the Mather’s contact group. (We refer to [14] for the definition and details on
K-equivalence). The map φi = fi ◦ gi is called the contact map for Xi and Yi, i = 1, 2.

Suppose now that p = 1, so Yi is a hypersurface and φi is a function on Rn which has
a degenerate singularity at the point xi, i = 1, 2. This means that the Hessian, H(φi),
defines a degenerate quadratic form, i.e. there is some unit vector ui ∈ Txi

Xi, such that
H(φi)(ui, v) = 0, ∀v ∈ Txi

Xi, i = 1, 2. We call such a vector, a contact direction for Xi and
Yi at yi = gi(xi). In fact, the contact of some curve through xi in Xi with tangent direction
ui with the submanifold Yi at the point xi is of higher order (i.e. the corresponding contact
map has a degenerate singularity at xi) than that of any other curve through xi in Xi (whose
corresponding contact map has a Morse singularity at xi).

In the case that M is a hypersurface immersed by g : Rn−1 → Rn in n-space and S(a, r) is a
hypersphere with center a and radius r, that is S(a, r) = f−1

a,r (0), where

fr : Rn × Rn −→ R
(x, a) 7−→ fa,r(x) = ‖x− a‖2 − r2.

The contact map for M and S(a, r) is given by the function fa,r(g(x)) = ‖g(x)− a‖2 − r2 =
da(x) − r2. Clearly, fa,r(g(x)) and da(x) have the same singularities. So, as we pointed out
above, we have that the contacts of the hypersurface M with all the hyperspheres of Rn can
be described through the analysis of the singularities of the family of all the distance squared
functions on M .

It follows from the work of Looijenga [12] that for a generic M = g(Rn−1) ⊂ Rn (in the
sense that it belongs to a dense subset of submanifolds embedded in Rn with the Whitney
topology), the family d is a generic family of functions on Rn−1. For a detailed description
of the term “generic family of functions” we refer to [12] or [22]. This means, in particular,
that these families are topologically stable, and for n ≤ 5, smoothly stable too.

The generic singularities of d were initially studied by Porteous [18], who observed that its
singular set,

Σ(d) = {(g(x), a) ∈ M × Rn|∂da

∂x
= 0}

is precisely the normal bundle, NM , of M in Rn.
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Defininition 2. The restriction of the projection π : M × Rn → Rn to the singular set
Σ(d) = NM ⊂ M × Rn : π|Σ(d), is the catastrophe map associated to the family d. In this
particular case we have that it coincides with the normal exponential map of M , expN . The
bifurcation set

B(d) = {a ∈ Rn|∃x ∈Rn−1 where da has a degenerate singularity }

is made of all the centers of hyperspheres having contact of higher order at least 2 with M
in the sense that the contact function-germ da at x has codimension at least 1, i.e. it is not
a Morse function. This subset is classically known as focal set of M and the hyperspheres
tangent to M whose centers lie in B(d) are called focal hyperspheres of M .

We remind that if M is a hypersurface in Rn (locally embedded through g) and Γ : M →
Sn−1 represents its normal Gauss map, then the eigenvectors of DΓ(g(x)) are the principal
directions of curvature of M at the point g(x) and the corresponding eigenvalues, {Ki(x)}n−1

i=1 ,
are the principal curvatures. A curve all of whose tangents are in principal directions is a
curvature line. We shall say that a point g(x) ∈ M is umbilic if at least two of the principal
curvatures coincide at this point. It can be seen that the principal directions coincide with
the contact directions of the hypersurfaces with its focal hyperspheres at each point (see [13]).
Moreover, we have that these directions fill up at least a whole tangent plane at the umbilics
of M , in other words, the umbilics are singularities of corank at least two of distance squared
functions on M . We shall denote by U(M) the subset of the umbilics of M . For a generic
M , the subset M − U(M) is an open and dense submanifold of M .

Provided g(x) ∈ M − U(M), we can find exactly n − 1 focal hyperspheres at g(x), whose
centres are given by ai(x) = g(x) + ri(x)N(g(x)), where N(g(x)) is the normal vector of
the hypersurface in the point g(x), and whose radii are ri(x) = 1/Ki(x). If some of the
principal curvatures vanishes, i.e. g(x) is a parabolic point of M, then the corresponding
focal hypersphere becomes a tangent hyperplane. We shall denote by P (M) the subset of
the parabolics of M . For a generic M , the subset P (M) is a (n− 2)-submanifold immersed
in M .

Consider the deformation associated to the family d,

Ψ : M × Rn −→ R× Rn

(g(x), a) 7−→ (da(x), a),

and its different singularities, labelled by their corresponding Boardman symbols, Σk1,...,krΨ.
It is not difficult to check ([18]) that

Σn−1,i1,...,irΨ = Σi1,...,ir expN .

For a generic embedding in the sense of Looijenga ([12]), Ψ is a Boardman map and hence the
subspace NM = Σ(d) = Σn−1Ψ of M ×Rn is stratified by the subsets Σn−1,i1,...,irΨ, n− 1 ≥
i1 ≥ · · · ≥ ir. Moreover, this induces in turn a stratification on the lifting of the focal set

LB(d) = {(g(x), a) ∈ NM : da has a degenerate singularity at x}.
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We shall pay special attention to the strata of type Σn−1,1,...,1Ψ = Σ1,...,1 expN . An interesting
feature, being expN the catastrophe map of the family d, is that (g(x), a) ∈ Σ1,..k..,1 expN if
and only if x is a singularity of type Ak+1 of the function da (i.e., the germ of da at x is
A-equivalent to one of the normal forms xk+2

1 ± x2
2 ± · · · ± x2

n−1). Thus the part of LB(d)
included in N(M̄), where M̄ = M − (U(M) ∪ P (M)), is given by the (n − 1)-submanifold
Σ1 expN , which is an (n − 1)-fold covering of M̄ . So, if we denote by p : NM → M the
natural projection, we have that p|Σ1 expN

: Σ1 expN → M̄ is a local diffeomorphism. And

hence each subset p(Σ1,..k..,1 expN) is a regular submanifold of dimension (n − k) immersed
with normal crossings in M .

On the other hand, the restrictions of the map expN to the submanifolds Σ1,..k..,1,0 expN are
also local diffeomorphisms onto their images. Therefore, expN(Σ1,..k..,1,0 expN) is an immersed
regular (n − k + 1)-submanifold of Rn (contained in the focal set of M). We remark that
expN(Σ1,..k..,1 expN) is not a regular submanifold, its singular set being expN(Σ1,..k+1..,1 expN).

Σ1expN ↪→ NM
expN−→ Rn

(g(x), ai(x)) 7−→ ai(x) = g(x) + 1/Ki(x)N(g(x))

p ↓ ↗
M̄

g(x)

Defininition 3. The different connected components of

expN(Σ1,..k..,1,0 expN), k > 2

are called ribs of order k of M , whereas those of

p(Σ1,..k..,1,0 expN), k > 2

are the ridges of order k of M .

These subsets, as mentioned in the Introduction, have been introduced by I. Porteous in
[18], who has explored them with great details in the case of surfaces in R3 (see [19] for
instance). Nevertheless, their properties are not so well stablished in the higher dimensional
cases. We study them in the next two sections, providing some characterizations in terms
of the conformal geometry of the hypersurface, as well as in terms of the analysis of the
Euclidean geometry of the curvature lines of the hypersurface.

Remark 1. We observe that:

a) In the parabolic points at least one of the focal centers lies in the infinity. Some
parabolic points can be seen as ridge points. They are characterized by the fact of
being singularities of type Σ1,..k..,1, k > 2 of Γ the normal Gauss map of M ([1]) and
belong to the clausure of the subset expN(Σ1,..k..,1 expN). In fact, by considering

CM = {(g(x), v) ∈ M × TxM : v⊥Tg(x)M}
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and Γ̄ : CM → Sn−1 where Γ̄(g(x), v) = v = Γ(g(x)) the set Σ1,..k..,1 Γ̄ can be seen as a
part of Σ1,..k..,1 expN throng the family

G : M × Sn −→ R
(g(x), (a, t)) 7−→ t‖g(x)‖2 − 2a · g(x)− r

which measures the contacts of M with all the hyperspheres and hyperplanes (consid-
ered as degenerate hyperspheres) of Rn.

b) We shall denote Rk = p(Σ1,..k..,1 expN)∪ p̄(Σ1,..k..,1 Γ̄), k ≥ 2, where p̄ : M×Sn−1 → M
is the natural projection. These are submanifolds of codimension k in M , made of points
g(x) ∈ M − U(M) for which there exists some (a, t) ∈ Rn+1 such that the germ G(a,t)

has some singularity equivalent to some Aj, j ≥ k + 1. We notice that each connected
component of Rk will in general be a union of several ridges of order at least k.

c) There may be self-intersections in both the ribs and the ridges, and also transversal
intersections between different ribs or different ridges. So, a given point a of the focal
set may belong at the same time to several ribs, which means that it is the center of
some hypersphere osculating with contacts of order higher than 2 (in the sense that
G(a,t) has a singularity of type Ak>2) at more than one point of M . On the other hand,
a point g(x) ∈ M belonging to a ridge-intersection occurs whenever more than one of
the focal hyperspheres at g(x) has contact of type Ak>2 with M at this point.

d) The subset Rn−1 is a union of non-necessarily closed curves immersed in M whose end
points lie in U(M). On the other hand, Rn is made of isolated points in M lying inside
those curves.

2. Invariant 1-forms along curvature lines

We shall show first that the curvature lines grid is preserved by conformal maps.

Proposition 1. Conformal maps preserve curvature lines of hypersurfaces.

Proof. Suppose a hypersphere tangent to the hypersurface M (embedded through g in Rn)
at some point g(x) = p. The corresponding contact map is given by the function G(a,t).
Furthermore, suppose that S(a, t) is a focal hypersphere of M at p. So the contact direction
of G(a,t)(x) is one principal direction of curvature (see [13], Lemma 2). Conformal maps
transform hyperspheres into hyperspheres, and since there are diffeomorphisms, they must
preserve their corresponding contacts with the hypersurface. Therefore they take focal hy-
perspheres into focal hyperspheres, preserving the contact directions. Consequently they take
principal curvature directions into principal curvature directions and hence curvature lines
into curvature lines. 2

Coxeter defined in [6] the inversive distance between couples of circles in R2. This is preserved
under conformal maps. The generalized expression of this formula for two hyperspheres
Si(ai, ri), i = 1, 2 in Rn, is given by

d(S1, S2) =

∣∣∣∣∣r1
2 + r2

2 − ‖a1 − a2‖2

2r1r2

∣∣∣∣∣ ,
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where ai, ri, i = 1, 2 denote their centers and radii, respectively, [2].

Let us denote by ϕi,m0(t) the i-th curvature line of M passing through a point m0 = g(x0) ∈
M − U(M). By considering two nearby focal hyperspheres of the hypersurface M along
the curve ϕi,m0 , and applying the fact that the generalized inversive distance is a conformal
invariant, we obtain below several invariant 1-forms on each one of the curvature lines of M
considered as curves in Rn, in the sense that any conformal map φ : Rn → Rn takes the
1-forms associated to a given curvature line of M to the corresponding ones on its image
curve, which is itself a curvature line in the hypersurface φ(M).

Theorem 1. The differential 1-form defined by

ωi,m0(t) =
√
| Ki

′(t) |dt, 1 ≤ i ≤ n− 1

is a conformal invariant along the curvature line ϕi,m0(t), where Ki
′ represents the derivative

of the principal curvature Ki of M restricted to the curve ϕi,m0 .

Remark 2. We observe that:

a) The 1-form ωi,m0 depends only on the considered curvature line ϕi,m0 and not on the
point m0 chosen to determine it. Clearly, varying the point m0 in a convenient man-
ner (for instance along a curve transversal to the i-th curvature lines), we obtain a
differentiable family of differential 1-forms, one on each i-th curvature line of M . To
simplify notation we shall drop the suffix m0 in what follows, understanding that ϕi(t)
represents someone of the i-th curvature lines of M.

b) We shall proof the conformal invariance of the 1-forms proposed by Theorems 1, 2, 3
and 6 only at non-parabolic points. The result extends easily by continuity to the
parabolic ones.

Proof. Let us consider Si(t), Si(t + h) two nearby focal hyperspheres of M with centers in
the i-th focal sheet and radii ri(t) = 1/Ki(t), ri(t + h) = 1/Ki(t + h), respectively, lying
along the i-th curvature line. The square of the inversive distance between the centers
ai(t) = ϕi(t) + ri(t)N(ϕi(t)) of Si(t) and ai(t + h) = ϕi(t + h) + ri(t + h)N(ϕi(t + h)) of
Si(t + h) is given by

d2(Si(t), Si(t + h)) =

∣∣∣∣∣ri(t + h)2 + ri(t)
2 − ‖ai(t + h)− ai(t)‖2

2ri(t + h)ri(t)

∣∣∣∣∣
2

.

We denote d(Si(t), Si(t + h)) = di(h) and by expanding in Taylor series, we get:

d2
i (h) = 1− ‖ai

′‖2 − ri
′2

ri
2

h2 +
‖ai

′‖2ri
′ − ri

′3 − ai
′ai

′′ri + riri
′ri

′′

ri
3

h3 + O(h4).

Now, the Olinde Rodrigues theorem for hypersurfaces tells us that along all the curvature
lines the equality N ′(ϕi) = −Kiϕ

′
i holds. By applying this formula we simplify the above

Taylor series:

d2
i (h) = 1 +

1

4!
Ki

′2h4 + O(h5).
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As the inversive distance di(h) is invariant under the action of the conformal group, so is
4
√

d2
i (h)− 1. And we get that the 1-form

ωi,m0(t) =
√
| Ki

′(t) |dt, 1 ≤ i ≤ n− 1

is a conformal invariant along the given corresponding curvature line passing through m0.2

In an analogous way, we can consider the focal hyperspheres corresponding to the j-th prin-
cipal direction of M, along the curve ϕi,m0 . The same principles as above lead us to:

Theorem 2. Given any curvature line ϕi,m0 , 1 ≤ i ≤ n− 1 of M , the 1-forms defined by

ω̂i,j,m0(t) = (Kj(t)−Ki(t))dt, 1 ≤ j 6= i ≤ n− 1

are conformal invariants along ϕi,m0 .

Proof. The above argument for two nearby focal hyperspheres along the i-th curvature
line: Sj(t) and Sj(t + h), with centers in the j-th focal sheet and radii rj(t) = 1/Kj(t),
rj(t + h) = 1/Kj(t + h), respectively, leads to

d2
j(h) = 1− ‖aj

′‖2 − rj
′2

rj
2

h2 + O(h3), 1 ≤ j 6= i ≤ n− 1.

And by applying again the generalized Olinde Rodrigues theorem N ′(ϕi) = −Kiϕi
′, we obtain

this time
d2

j(h) = 1− (Kj −Ki)
2h2 + O(h3), 1 ≤ j 6= i ≤ n− 1.

Now, by taking into account, as above, that the inversive distance is invariant under the

action of the conformal group and considering the variation of
√

1− d2
j(h) with respect to

the parameter of the given curve ϕi,m0 , we get that

ω̂i,j,m0(t) = (Kj(t)−Ki(t))dt, 1 ≤ j 6= i ≤ n

are conformal invariants along this curvature line. 2

Theorem 3. The following differential 1-form

ω̄i,m0(t) =

√
(n− 2)

∑n−1
j=1 Kj(t)

2 − 2
∑

1≤j<k≤n−1 Kj(t)Kk(t)

(n− 1)2(n− 2)
dt,

is a conformal invariant along each curvature line ϕi,m0 , 1 ≤ i ≤ n− 1 of M.

Proof. By using the above argument for two nearby focal hyperspheres Sk(t) and Sk(t + h)
along a curvature line ϕi, with centers in the k-th focal sheet k = 1, . . . , n−1, applying again
the generalized O. Rodrigues theorem, the fact that the inversive distance is invariant under
the action of the conformal group and considering the variation of the function:√√√√ 2

(n− 1)2(n− 2)

(
1−

n−1∏
j=1

dj(h) +
∑

1≤j<k≤n−1

(√
1− dj(h)−

√
1− dk(h)

)2
)
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=

√(n− 2)
∑n−1

j=1 Kj
2 − 2

∑
1≤j<k≤n−1 KjKk

(n− 1)2(n− 2)

h + O(h2),

we get that:

ω̄i,m0(t) =

√
(n− 2)

∑n−1
j=1 Kj(t)

2 − 2
∑

1≤j<k≤n−1 Kj(t)Kk(t)

(n− 1)2(n− 2)
dt,

is a conformal invariant along each i-th curvature line ϕi,m0 . 2

The next result tells us how all the 1-forms of the families {ωi,m0}m0∈M−U(M),
{ω̂i,j,m0}m0∈M−U(M) and {ω̄i,m0}m0∈M−U(M) along each i-th curvature line ϕi,m0 , can be respec-
tively glued in order to define conformally invariant 1-forms ωi, ω̂i,j and ω̄i 1 ≤ i 6= j ≤ n− 1
on the open and dense submanifold M − U(M) when M is a locally conformally flat and no
quasi-umbilical hypersurface. This happens to be the case of any surface in 3-space and a
large class of 3-manifolds in 4-space. Unfortunately, hypersurfaces of higher dimensions can-
not be included in our analysis for local conformal flatness is equivalent to quasi-umbilicity
(M = U(M)) in this case (Cartan’s Theorem, [8]).

Theorem 4. Suppose that M is a locally conformally flat and no quasi-umbilical hypersurface
in Rn, n = 3, 4. The following differential 1-forms for all 1 ≤ i ≤ n− 1 :

ωi(x) =
√
| Ki

′(x) |dxi,

ω̂ij(x) = (Kj(x)−Ki(x))dxi, 1 ≤ j 6= i ≤ n− 1,

and

ω̄i(x) =

√
(n− 2)

∑n−1
j=1 Kj(x)2 − 2

∑
1≤j<k≤n−1 Kj(x)Kk(x)

(n− 1)2(n− 2)
dxi,

are conformally invariant on the open submanifold M − U(M).

Proof. We consider the parametrization of M − U(M) given by the curvature lines of M in
a neighborhood of m0 = g(x0) [7]. Let {Xi}n−1

i=1 be the principal direction fields of M. We
observe that this is the dual basis of the one given by the differential 1-forms {dxi}n−1

i=1 in the
chosen coordinates, so we have:

ωi(Xi) =
√

Ki
′,

ωi(Xj) = 0, 1 ≤ j 6= i ≤ n− 1,

ω̂i,j(Xi) = Kj −Ki,
ω̂i,j(Xj) = 0, 1 ≤ j 6= i ≤ n− 1,

ω̄i(Xi) =

√
(n− 2)

∑n−1
p=1 Kj

2 − 2
∑

1≤p<k≤n−1 KpKk

(n− 1)2(n− 2)
,

ω̄i(Xj) = 0, 1 ≤ j 6= i ≤ n− 1.
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Now, since the basis {Xi}n−1
i=1 is a conformal invariant, the fact that the {ωi}n−1

i=1 , {ω̂i,j}1≤j 6=i≤n−1

and {ω̄i}n−1
i=1 are conformally invariants along the curvature lines implies that so they are on

the whole manifold M [17]. 2

We now see how to obtain some of the well-known conformal invariants on surfaces and
locally conformally flat and no quasi-umbilical 3-manifolds in 4-space:

Corollary 1. If M is a surface in 3-space, the following differential 2-form defined on M −
U(M): √

(H2
1 −H2)2 dx1 ∧ dx2

is a conformal invariant, where 2 H1 = K1 + K2 and H2 = K1K2. If M is locally conformally
flat and no quasi-umbilical 3-manifold in 4-space, the following differential 3-form defined on
M − U(M): √

(H2
1 −H2)3 dx1 ∧ dx2 ∧ dx3

is a conformal invariant, where:

3 H1 = K1 + K2 + K3, 3 H2 = K1K2 + K1K3 + K2K3.

Proof. We know that Hr =

(
n
r

)−1∑
1≤i1<···<ir≤n Ki1 · · ·Ki1 , then we get that

H2
1 −H2 =

∑n−1
i=1 Ki

2 + 2
∑

1≤i<j≤n−1 KiKj

(n− 1)2
−

2
∑

1≤i<j≤n−1 KiKj

(n− 1)(n− 2)

=
(n− 2)(

∑n−1
i=1 Ki

2 + 2
∑

1≤i<j≤n−1 KiKj)− 2(n− 1)
∑

1≤i<j≤n−1 KiKj

(n− 1)2(n− 2)

=
(n− 2)

∑n−1
i=1 Ki

2 − 2
∑

1≤i<j≤n−1 KiKj

(n− 1)2(n− 2)
. 2

Remark 3. The above differential (n − 1)-form is known as the conformal volume. This
conformal invariant was first obtained W. J. Blasche for surfaces in R3, [4]. A generalization
for surfaces in Rn was later given by B.-Y. Chen in [9]. The general case of a m-submanifold
in Rn has been traited by Ch.-Ch. Hsiung and L. R. Mugridge in [10]. We point out that the
approach followed in all these cases is essentially different from ours.

A further consequence of Theorem 4 is the obtention of the following conformal invariants,
that can be seen as a generalization of the conformal principal curvatures of surfaces in 3-space
defined by Tresse ([21]) to locally conformally flat and no quasi-umbilical 3-submanifolds in
R4.
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Corollary 2. The functions

∂Ki

∂xi

(
(n− 2)

∑n−1
j=1 Ki

2 − 2
∑

1≤j<k≤n−1 KjKk

(n− 1)2(n− 2)

)−1

,

are conformal invariant of a locally conformally flat and no quasi-umbilical hypersurface in
Rn, n = 3, 4.

The above results tell us that the conformal geometry of the hypersurface can be recognized
from its conformal geometry along its curvature lines. This idea leads us, in the following
section, to detect the points at which the hypersurface has the highest possible contact with
hyperspheres through the geometry of these “special” curves.

3. On the existence and detection of higher order ridges

Let α : R → Rn be a curve parametrized by arc-length and consider its associated family of
squared functions

dα : R× Rn −→ R
(t, a) 7−→ dα

a (t) = ‖α(t)− a‖2.

The focal set Fα of α is made by all the centers if hyperspheres of Rn, having contact of order
at least 2 with the curve, i.e. the focal hyperspheres of α. In other words Fα is composed
of all the points a ∈ Rn such that the distance squared function on α from a, dα

a , has some
singularity of type Ak, k ≥ 2 at some point α(t) (in which case we say that the hypersphere
of center a passing through α(t) has contact of order k with the curve). For k ≥ n we have
the osculating hypersphere of α at α(t).

Consider the Frenet frame {T (t), N1(t), . . . , Nn−1(t)} and the corresponding curvature func-
tions {ki(t)}n−1

i=1 at the point α(t) of a generic curve α. The centers of the osculating hyper-
spheres form a smooth curve in Rn, given by (see [20])

cα(t) = α(t) +
n−1∑
i=1

µi(t)Ni(t),

where {µi(t)}n−1
i=1 are rational functions of the curvatures {ki(t)}n−1

i=1 and their derivatives and
satisfy the following relation (as shown in [20]):

µ1(t)k1(t) = 1,

µ2(t)k2(t) = µ′1(t),

µi(t)ki(t) = µ′i−1(t) + µi−2(t)ki−1(t), i = 3, ..., n− 1.

We call cα the generalized evolute of α. The singular points of cα, called vertices, are pre-
cisely the points at which the curve has contact of order higher than n with its osculating
hyperspheres and we characterize its in [20] by the formula µ′n−1(t) + µn−2(t)kn−1(t) = 0.

A curve in the n-space with ki(t) 6= 0 and free of i-vertices i = 1, . . . , n − 2 [15] is a
generic curve.
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Let α be a generic curve and take coordinates {γ1, ..., γn−1} in the normal plane Nα(t0)α =
α(t0)+ < N1(t0), . . . , Nn−1(t0) > of α at the point α(t0).

Suppose that S(a, r) is a hypersphere tangent to α at α(t0), it is not difficult to verify
that S(a, r) has contact of order ≥ k (for k ≤ n) with the curve if and only if the point a
belongs to the (n− k)-subspace of Nα(t0)α defined by the linear equations

γ1 = µ1(t0),
...

γk−1 = µk−1(t0).

We observe that, in general, the i-th focal hypersphere Si(ai, ri) of M at a given point
m0 ∈ M−U(M) and the osculating hypersphere on the i-th curvature line ϕi at this point do
not need to coincide. Moreover, the last one does not need to be tangent to M. Nevertheless,
we have:

Proposition 2. The focal hypersphere Si(ai, ri) of M at a non umbilic point m0 has contact
of order at least 2 with the corresponding curvature line ϕi,m0 considered as curves in the
n-space.

Proof. We know that the focal hyperspheres of the hypersurface M, along the curvature lines,
are given by Si(ai, ri), where ri(t) = 1/Ki(t), with Ki 6= 0 the i-th principal curvature of M,
and ai(t) = ϕi(t) + ri(t)N(ϕi(t)), 1 ≤ i ≤ n − 1. The derivative of ϕi respect its arc-length
is the tangent of the curvature line considered as a curve in the n-space, i.e. ϕi

′(t) = T (t).
So < N(ϕi(t)), T (t) > = 0. By deriving in the above expression, with respect the arc-length,
we obtain

< N(ϕi(t)), T (t) >′ = < N ′(ϕi(t)), T (t) > + < N(ϕi(t)), T
′(t) > = 0.

And then, by applying the Frenet’s formulas for the curvature line and the Olinde Rodrigues
theorem, N ′(ϕi(t)) = −Ki(t)ϕi

′(t), we get

< N(ϕi(t)), N1(t) > =
Ki(t)

k1(t)
, 1 ≤ i ≤ n− 1,

where N1(t) and k1(t) are the first normal vector and the first Euclidean curvature of the curve
ϕi in the n-space, respectively. Then, we observe that the center of the focal hypersphere of
the hypersurface Si(ai, ri), along the curvature line, can be rewritten as

ai(t) = ϕi(t) + ri(t)N(ϕi(t))
= ϕi(t) + µ1(t)N1(t) +

∑n
i=2γiNi(t), 1 ≤ i ≤ n− 1,

where Ni(t) are the i-th normal vector of the curve ϕi at the point ϕi(t) and µ1(t) = 1/k1(t).
Hence the focal hypersphere of the hypersurface Si(ai, ri) has contact at least 2 with the
curvature line in the n-space.

In a parabolic point ϕi(t0) the focal hypersphere becomes to a tangent hyperplane. In
this case, by using the below formula, we know that

< N(ϕi(t0)), T (t0) > = 0, < N(ϕi(t0)), N1(t0) > = 0
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and this implies that the tangent hyperplane has contact at least of order 2 with the curvature
line in the n-space. 2

The ridges points of a surface in R3 can be recognized as critical points of the principal
curvatures along the principal curvature lines (see [3] and [19]). This is naturally generalized
to the case of hypersurfaces in Rn by using the methods of [19], as follows:

Lemma 1. Let h : Rn → R be a smooth function with a degenerate singularity at the origin
and suppose that θ ∈ Ker(H(h)(0)). Then we have that θ is a singularity of type Ak of h if
and only if the vector θ belongs to the kernel of the k-linear form, Dkh(0), given by the k-th
differential of h, k ≥ 2.

Proof. By taking an appropriate change of coordinates in Rn we can write

h(x1, . . . , xn) = ±xk+1
1 ± x2

2 ± · · · ± x2
n.

Then the result follows from a straightforward verification for this function and the fact that
if Φ is a change of coordinates in Rn, the isomorphism DΦ transforms the kernel of the
differential Dkh(0) into the kernel of the differential Dk(h · Φ)(0). 2

Proposition 3. A point m0 ∈ M − U(M) belongs to a k-th order ridge (k ≥ 2) if and
only if there is some curvature line ϕi,m0(t) on M , with m0 = ϕi(t0) = g(x0) and such
that the corresponding principal curvature Ki restricted to it (as a function of t) satisfies:

K ′
i(t0) = ... = K

(k−1)
i (t0) = 0.

Proof. We know that the point m0 = g(x0) ∈ M − (U(M) ∪ P (M)) belongs to a second
order ridge (i.e. (m0, a) ∈ Σ1,1,0(expN)) if and only if Dda(x0) = 0 and there exists a tangent
vector X ∈ TxRn, such that D2da(x0)(X) = 0, i.e. Dg(x0)(X) is a contact direction for M
and the focal hypersphere at m0 = g(x0) and D3da(x0)(X, X, X) = 0, where:

D2da(x) = 2(a− g(x)) ·D2g(x)− 2Dg(x) ·Dg(x) ∈ LS(Rn(L(Rn, R))),

D3da(x) = 2(a− g(x)) ·D3g(x)− 6Dg(x) ·D2g(x) ∈ LS(Rn(LS(Rn(L(Rn, R)))).

We remind that the principal directions coincide with the contact direction, therefore, we
consider the contact map da, with a(t) = ϕi(t) + 1/Ki(t)Nϕi(t) along the curvature line
ϕi(t) = g(αi(t)), where αi(t) ⊂ Rn, corresponding to the principal direction Dg(αi(t))(X)
i.e. αi(t) = x and α′i(t) = X. In this case D2da(αi(t))(α

′
i(t)) = 0 along ϕi. By deriving

the function D2da(αi(t))(α
′
i(t)) along the curvature line and applying the generalized O. Ro-

drigues theorem, we get:

0 = (D2da(αi(t))(α
′
i(t)))

′ = D3da(αi(t))(α
′
i(t), α

′
i(t)) + D2da(αi(t))(α

′′
i (t))

+ 2( 1
Ki(t)

)′Ng(αi(t)) ·D2g(αi(t))(α
′
i(t))

= (Dda(αi(t)))
′′ + 2( 1

Ki(t)
)′Ng(αi(t)) ·D2g(αi(t))(α

′
i(t)).
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As the point m0 = g(x0) ∈ M − (U(M) ∪ P (M)) belongs to a second order ridge, by the
Lemma 1 we say that

0 = (Dda(αi(t0)))
′′(α′i(t0)) = D3da(αi(t0))(α

′
i(t0), α

′
i(t0), α

′
i(t0))

+ D2da(αi(t0))(α
′′
i (t0), α

′
i(t0)),

then (
1

Ki(t0)

)′
=

K ′
i(t0)

K2
i (t0)

= 0,

and we obtain m0 = g(x0) = ϕi(t0) belongs to a second order ridge if and only if K ′
i(t0) = 0,

i.e., t0 is a critical point of Ki along ϕi.
By deriving again, we get:

0 = (D2da(αi(t))(α
′
i(t)))

′′ = D4da(αi(t))(α
′
i(t), α

′
i(t), α

′
i(t))

+ 3D3da(αi(t))(α
′′
i (t), α

′
i(t)) + D2da(αi(t))(α

′′′
i (t))

+ 2
(
( 1

Ki(t)
)′Ng(αi(t)) ·D2g(αi(t))(α

′
i(t))

)′
= (Dda(αi(t)))

(3) + 2
(

1
Ki(t)

)′
(Ng(αi(t)) ·D2g(αi(t))(α

′
i(t)))

′

+ 2
(

1
Ki(t)

)′′
(Ng(αi(t)) ·D2g(αi(t))(α

′
i(t))).

If the point m0 = g(x0) ∈ M − (U(M) ∪ P (M)) belongs to a ridge of order 3, by using the
Lemma 1 we say that

0 = (Dda(αi(t0)))
(3)(α′i(t0)) = D4da(αi(t0))(α

′
i(t0), α

′
i(t0), α

′
i(t0), α

′
i(t0))

+ 3D3da(αi(t0))(α
′′
i (t0), α

′
i(t0), α

′
i(t0)) + D2da(αi(t0))(α

′′′
i (t0), α

′
i(t0)),

then g(x0) = ϕi(t0) belongs to a ridge of order 3, if and only if K ′
i(t0) = 0 and K ′′

i (t0) = 0
along ϕi.

By using an induction argument we obtain that

(D2da(αi(t))(α
′
i(t)))

(k) = (Dda(αi(t)))
(k+1)

+ 2
(
( 1

Ki(t)
)(Ng(αi(t)) ·D2g(αi(t))(α

′
i(t))

)(k−1)

.

By the Lemma 1 we get that a point m0 ∈ M − (U(M) ∪ P (M)) belongs to a k-th order
ridge if and only if there is the corresponding principal curvature Ki restricted to ϕi satisfies:
K ′

i(t0) = · · · = K
(k−1)
i (t0) = 0.

By applying the generalized O. Rodrigues theorem

N ′
g(αi(t))

(Dg(αi(t))(α
′
i(t)) = −Ki(t)Dg(αi(t))(α

′
i(t),
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we get that m0 ∈ P (M) − U(M) if and only if m0 is a singular point of the normal Gauss
map.

By deriving this expression along the curvature line

(
N ′

g(αi(t))
(Dg(αi(t))(α

′
i(t)))

)(k)
= −

k∑
j=1

(
k
j

)
K

(k−j)
i (t)(Dg(αi(t))(α

′
i(t))

(j),

we obtain m0 is a singular point of order at least k of the normal Gauss map if and only
Ki(t0) = K ′

i(t0) = · · · = K
(k−1)
i (t0) = 0 along the curvature line ϕi. 2

We shall see now how to obtain the order of the ridge from the kind of contact that the focal
hyperspheres have with the curvature lines.

Remark 4. Let be a hypersurface M locally given by some embedding g : Rn−1 → Rn. We
observe, as a consequence of Thom’s Transversality Theorem [14], that points determined by
more than n− 1 conditions on the derivatives of g do not appear generically on M. Since we
are considering generic hypersurfaces, we have that its curvature lines ϕi, i = 1, . . . , n − 1
are generic curves.

Theorem 5. Let m0 be a non umbilic point of a generic hypersurface M. The point m0

belongs to some ridge of M if and only if a focal hypersphere of M at m0 has contact of order
al least 3 with the corresponding curvature line.

Proof. By deriving with respect to the arc-length of the curvature line ϕi the expression
< N(ϕi(t)), N1(t) > = Ki(t)/k1(t), obtained in the proof of Proposition 2, we get

< N ′(ϕi(t)), N1(t) > + < N(ϕi(t)), N
′
1(t) > =

(
Ki(t)

k1(t)

)′
.

If we are considering hypersurfaces of dimension n ≥ 3, where the curvature lines are generic
curves, then we have that ki(t) 6= 0 and free of i-vertices, i = 1, . . . , n− 2. From the Frenet’s
formulas for the curvature line ϕi considering as a curve in the n-space and the O. Rodrigues
theorem we obtain

k2(t) < N(ϕi(t)), N2(t) > =
−k′1(t)Ki(t)

k1(t)
2 +

K ′
i(t)

k1(t)
. (1)

Therefore, the point m0 = ϕi(t0) ∈ M̄ belongs to a second order ridge point, i.e. K ′
i(t0) = 0,

if and only if < N(ϕi(t0)), N2(t0) > = Ki(t0)µ2(t0), where

µ2(t) =
1

k2(t)

(
−k′1(t)

k1(t)
2

)
.

So, the center of the focal hypersphere of the hypersurface, at the point ϕi(t0) of the curvature
line is given by

ai(t0) = ϕi(t0) + 1/Ki(t0)N(ϕi(t0)

= ϕi(t0) + µ1(t0)N1(t0) + µ2(t0)N2(t0) +
∑n

i=3γiNi(t0),
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where Ni(t0) are the i-th normal vectors of the curve ϕi at the point ϕi(t0). Hence, the point
m0 belongs to a ridge of M if and only if Si(ai, ri) has contact of order at least 3 with the
curve ϕi in the n-space.

In a parabolic point ϕi(t0), when Ki(t) = 0, and the focal hypersphere becomes to a
tangent hyperplane, by using the formula (1), we know that

< N(ϕi(t0)), T (t0) > = 0, < N(ϕi(t0)), N1(t0) > = 0, < N(ϕi(t0)), N2(t0) > = 0.

This implies that the tangent hyperplane has contact at least of order 3 with the curvature
line in the n-space.

In the particular case of a surface, if m0 = ϕi(t0) ∈ M̄ belongs to a second order ridge (i.e.
K ′

i(t0) = 0), then we obtain that the focal sphere is also the osculating sphere. By using the
equation (1) and the fact that the surface is generic and m0 is not a 1-vertex (i.e. k′1(t0) 6= 0),
we obtain that if ϕi(t0) belongs to a second order ridge then it is a parabolic point (i.e.
Ki(t0) = 0) if and only if k2(t0) = 0, because in this particular case < N(ϕi(t)), N2(t) > 6= 0.
Hence, the degenerate focal sphere (tangent plane) has contact of order at least 3 with the
curve ϕi in the space, i.e. coincides with the degenerate osculating sphere (osculating plane)
of ϕi. When < N(ϕi(t0)), N1(t0) > = 0 and k2(t0) = 0, we have that m0 belongs to a ridge
of at least order 2 of M . 2

Theorem 6. Let m0 be a non umbilic point of a generic hypersurface M. The point m0

belongs to some ridge of order k of M if and only if a focal hypersphere of M at m0 has
contact of order al least k + 1 with the corresponding curvature line.

Proof. We consider hypersurfaces of dimension n ≥ 4. By deriving the expression

< N(ϕi(t)), N2(t) > =
K ′

i(t)

k1(t)k2(t)
+ Ki(t)µ2(t),

we obtain:

< N ′(ϕi(t)), N2(t) > + < N(ϕi(t)), N
′
2(t) > =

K ′′
i (t)

k1(t)k2(t)
+

+
−(k1(t)k2(t))

′K ′
i(t)

k2
1(t)k

2
2(t)

+ K ′
i(t)µ2(t) + Ki(t)µ

′
2(t).

By applying O. Rodrigues theorem, Frenet’s formula N ′
2(t) = −k2(t)N1(t) + k3(t)N3(t) and

< N(ϕi(t)), N1(t) > = Ki(t)µ1(t) we have

< N(ϕi(t)), k3(t)N3(t) > =
K ′′

i (t)

k1(t)k2(t)
+
−(k1(t)k2(t))

′K ′
i(t)

k2
1(t)k

2
2(t)

+K ′
i(t)µ2(t) + Ki(t)(µ

′
2(t) + k2(t)µ1(t)),

(2)

and using the formula k3(t)µ3(t) = µ′2(t) + k2(t)µ1(t) we obtain the coefficient of the cen-
ter ai in N3. Therefore, 1/Ki(t0)N(ϕi(t0)) = µ1(t0)N1(t0) + µ2(t0)N2(t0) + µ3(t0)N3(t0) +
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i=3aiNi(t0) if and only if K ′

i(t0) = K ′′
i (t0) = 0. Hence, m0 = ϕi(t0) ∈ M̄ belongs to a ridge

of order 3 of M if and only if Si(ai, ri) has contact of order at least 4 with ϕ in ϕi(t0).
If the point m0 belongs to a ridge of order 3 and is a parabolic point of M, i.e. Ki(t0) =

K ′
i(t0) = K ′′

i (t0) = 0, and the focal hypersphere becomes to a tangent hyperplane, by using
the formula (2), we know that

< N(ϕi(t0)), T (t0) > = 0, < N(ϕi(t0)), Ni(t0) > = 0, i = 1, 2, 3

and this implies that the tangent hyperplane has contact at least of order 4 with the curvature
line in the n-space.

When M is a 3-submanifold in 4-space, if m0 ∈ M̄ belongs to a ridge of order 3, the focal
sphere is also the osculating 3-sphere of ϕi.

By using the equation (2) and the fact that M is generic (m0 is not a 2-vertex i.e. µ′2(t0)+
k2(t0)µ1(t0) 6= 0), we obtain that if m0 = ϕi(t0) belongs to a ridge of at least order 3 of M (i.e.
K ′

i(t0) = K ′′
i (t0) = 0), then Ki(t0) = 0 if and only if k3(t0) = 0, because in this particular case

< N(ϕi(t)), N3(t) > 6= 0. Then the degenerate focal hypersphere (tangent hyperplane) has
contact of order at least 4 with the curve ϕi in the 4-space, i.e. coincides with the degenerate
osculating 3-sphere (osculating hyperplane) of ϕi. When < N(ϕi(t0)), Ni(t0) > = 0, i = 1, 2
and k3(t0) = 0 we have that m0 belongs to a ridge of at least order 3 of M.

Finally, when M is a surface in R3 the Frenet formula N ′
2(t) = −k2(t)N1(t), and we get

0 =
K ′′

i (t)

k1(t)k2(t)
+
−(k1(t)k2(t))

′K ′
i(t)

k2
1(t)k

2
2(t)

+ K ′
i(t)µ2(t) + Ki(t)(µ

′
2(t) + k2(t)µ1(t)).

If we suppose that m0 = ϕi(t0) is not parabolic point at the curvature line ϕi(t), then
Ki(t0) 6= 0. Hence if K ′

i(t0) = K ′′
i (t0) = 0, we know by Theorem 5 that k2(t0) 6= 0, then

µ′2(t0) + k2(t0)µ1(t0) = 0. So if m0 belongs to a ridge of order 3 of the surface then it is a
2-vertex of ϕ.

By deriving the expression (1), we obtain:

k′2(t) < N(ϕi(t)), N2(t) > +k2(t) < N(ϕi(t)), N2(t) >′=
K ′′

i (t)

k1(t)
− K ′

i(t)k
′
1(t)

k2
1(t)

+K ′
i(t)µ

′
1(t) + Ki(t)µ

′′
1(t).

Hence, we obtain that if a parabolic point m0 belongs to a ridge of order 3 then k2(t0) =
k′2(t0) = 0, because in this case < N(ϕi(t)), N2(t) > 6= 0. So if the parabolic point m0 belongs
to a ridge of order 3 of the surface then it is a degenerate 2-vertex of ϕ.

We consider now hypersurfaces of dimension n ≥ k +2, where the curvature lines are generic
curves. We will obtain by induction the following expression for all 1 ≤ j ≤ k + 1:

< N(ϕi(t)), Nj(t) > =
K

(j−1)
i (t)∏j

m=1 km(t)
+ Ki(t)µj(t) +

j−2∑
m=1

ηm(t)K
(m)
i (t),

where {ηm(t)}j−2
m=1 are functions of km(t), m = 1, . . . , j − 1 and their derivatives. In the

particular case j = 1, 2, 3 we are proved that this expression occurs.
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Therefore, m0 ∈ M̄ belongs to a ridge at least of order k + 1 i.e. K
(j)
i (t0) = 0, j = 1, . . . , k if

and only if < N(ϕi(t0)), Nj(t0) > = Ki(t0)µj(t0), j = 1, . . . , k + 1 and

1/Ki(t0)N(ϕi(t0)) =
∑k+1

j=1
µj(t0)Nj(t0) +

∑n

j=k+2
ajNj(t0).

Hence, the focal hypersphere of the hypersurface has contact of order at least k + 1 with the
curvature line ϕi at the point m0.

When m0 belongs to a ridge at least of order k+1 and is a parabolic point, i.e. K
(j)
i (t0) =

0, j = 0, . . . , k + 1, the focal hypersphere becomes to a tangent hyperplane and by using the
previous formula, we know that

< N(ϕi(t0)), T (t0) > = 0, < N(ϕi(t0)), Ni(t0) > = 0, i = 1, . . . , k + 1.

Hence, the tangent hyperplane has contact at least of order k + 1 with the curvature line in
the n-space.

If m0 = ϕi(t0) belongs to a ridge of order k = n− 1 and m0 ∈ M̄, then we get

< N(ϕi(t0)), Nj(t0) > = Ki(t0)µj(t0), j = 1, . . . , n− 1

and ai(x0) = ϕi(t0) + 1/Ki(t0)N(ϕi(t0)) = ϕi(t0) +
∑n−1

j=1 µj(t0)Nj(t0), then the focal hyper-
sphere is also the osculating hypersphere.

When m0 ∈ P (M) belongs to a ridge of order n− 1, by using the formula:

kn−1(t) < N(ϕi(t)), Nn−1(t) > =
K

(n−2)
i (t)∏n−2

m=1 km(t)
+

n−3∑
m=1

η̌m(t)K
(m)
i (t)

+Ki(t)(µ
′
n−2(t) + µn−3(t)kn−2(t)),

(3)

and considering the genericity of the hypersurface M (m0 is not a (n−2)-vertex, i.e. µ′n−2(t0)+
µn−3(t0)kn−2(t0) 6= 0) then Ki(t0) = 0 if and only if kn−1(t0) = 0. Then the degenerate focal
hypersphere (tangent hyperplane) has contact of order at least n with the curve ϕi in the
n-space, i.e. coincides with the degenerate osculating n-sphere (osculating hyperplane) of ϕi.
When < N(ϕi(t0)), Ni(t0) > = 0, i = 1, . . . , n− 2 and kn−1(t0) = 0 we have that m0 belongs
to a ridge of at least order n of M.

Finally if m0 belongs to a ridge of order n, from the last Frenet formula that in this case
is given by N ′

n−1(t) = −kn−1(t)Nn−2(t), thus

0 =
K

(n−1)
i (t)∏n−1

m=1 km(t)
+ Ki(t)(µ

′
n−1(t) + µn−2(t)kn−1(t)) +

n−2∑
m=1

η̄m(t)K
(m)
i (t),

where {η̌m(t)}n−2
m=1 are functions of km(t), m = 1, ..., n − 2 and their derivatives. Hence if

K
(j)
i (t0) = 0, j = 1, . . . , n − 1, we know by formula (3) that kn−1(t0) 6= 0, then µ′n−1(t0) +

µn−2(t0)kn−1(t0) = 0. Therefore m0 belongs to a ridge of order n of M , then it is a (n − 1)-
vertex of ϕ.



M. C. Romero-Fuster, E. Sanabria-Codesal: Lines of Curvature, Ridges and . . . 633

When m0 = ϕi(t0) is parabolic, by deriving the expression (3), we obtain:

k′n−1(t) < N(ϕi(t)), Nn−1(t) > +kn−1(t) < N(ϕi(t)), Nn−1(t) >′ =

K
(n−1)
i (t)∏n−2

m=1 km(t)
+

n−2∑
m=1

η̌m(t)K
(m)
i (t) + Ki(t)(µ

′
n−2(t) + µn−3(t)kn−2(t))

′.

Hence, if m0 is a parabolic point that belongs to a ridge of order n, then kn−1(t0) = k′n−1(t0) =
0, because in this case < N(ϕi(t)), Nn−1(t) > 6= 0. So if the parabolic point m0 belongs to a
ridge of order n of M, then it is a degenerate (n− 1)-vertex of ϕ. 2

As a consequence of the Theorems 5 and 6 we get the following characterization for the curves
of ridges of order higher or equal to n:

Corollary 3. Let m0 be a non umbilic point:

a) The point m0 lies on a ridge of order higher or equal to n − 1 for the i-th principal
direction if and only if the i-th focal hypersphere of M coincides with the osculating
hypersphere of the i-th curvature line at the point m0.

b) The points in the ridges of order higher or equal than n of a hypersurface M are (n−1)-
vertices of its curvature lines.

We finally see that for generically immersed hypersurfaces the ridges of order n (isolated
points) can also be detected as zeros of conformally invariant 1-forms along curves made of
ridges of order ≥ n − 1. Again, by saying that ωϕ is a conformally invariant 1-form along a
curve ϕ in Rn−1 we understand that if φ : Rn → Rn is any conformal map, then φ ◦ϕ = ϕ̄ is
a curve contained in the subset of ridges of order ≥ n of φ(M) and φ∗(ωϕ̄) = ωϕ.

Theorem 7. Let ϕ(t) be a parametrization by arc-length of any of the curves given by the
connected components of the subset Rn−1(M), i.e. ϕ(t) is a union of ridges of order ≥ n− 1.
Then any conformal map φ : Rn → Rn transforms connected components of Rn−1(M) into
connected components of Rn−1(h(M)) and the differential 1-form ω(t) = ‖Ki(t)dα(t)g(α′(t))+
N ′

g(α(t))(dα(t)g(α′(t)))‖dt, is a conformal invariant on the curve ϕ(t).

Proof. Given the curve ϕ consider the osculating hyperspheres of the hypersurface M corre-
sponding to two nearby points on it. By applying the generalized squared inversive distance
between them and by expanding in Taylor series, we obtain

d2(h) = 1− ‖a′‖2 − r′2

r2
h2 + O(h3).

A simple calculation leads to

‖c′i(t)‖
2 − r′i

2(t) = ‖dα(t)g(α′(t)) + 1
Ki(t)

N ′
g(α(t))(dα(t)g(α′(t)))‖2

=
‖Ki(t)dα(t)g(α′(t)) + N ′

g(α(t))(dα(t)g(α′(t)))‖2

K2
i (t)

.
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Now, by using again a similar argument to the one used in the case of the curvature lines,
we consider the function

√
1− d2(h) and we get that

ω(t) = ‖Ki(t)dα(t)g(α′(t)) + N ′
g(α(t))(dα(t)g(α′(t)))‖dt,

is a conformal invariant defined over the curve ϕ(t). 2

Corollary 4. A non umbilic point m0 over Rn−1 ⊂ M − U(M) belongs to a ridge of order
higher or equal to n if and only if it is a zero of the 1-form associated to the curve ϕ as in
the theorem above.

Proof. We know that

‖Ki(t0)dα(t0)g(α′(t0)) + N ′
g(α(t0))(dα(t0)g(α′(t0)))‖ = 0

m

N ′
g(α(t0))(dα(t0)g(α′(t0))) = −Ki(t0)dα(t0)g(α′(t0))

and it follows from the theorem of O. Rodrigues for hypersurfaces that this is true if and
only if the corresponding principal direction coincides with the tangent line to the ridge at
the point m0. But this is equivalent to asking that the point m0 = ϕ(t0) belongs to a higher
order ridge. 2
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