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Abstract. Let P and P ′ be (2k + 1)-dimensional Pappian projective spaces. Let
also f : P → P∗ and f ′ : P ′ → P ′∗ be null systems. Denote by Gk(f) and Gk(f

′)
the sets of all invariant k-dimensional subspaces of f and f ′, respectively. In the
paper we show that if k ≥ 2 then any mapping of Gk(f) to Gk(f

′) sending base
subsets to base subsets is induced by a strong embedding of P to P ′.
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1. Introduction

Let P be an n-dimensional projective space. For each number m = 0, 1, . . . , n−1 we denote by
Gm(P) the Grassmann space consisting of all m-dimensional subspaces of P . Then G0(P) =
P . Note also that Gn−1(P) is an n-dimensional projective space; it is called dual to P and
denoted by P∗.

A mapping f : P → P∗ is called a polarity if

q ∈ f(p) ⇒ p ∈ f(q)

for any two points p and q of P . It is well known that any polarity is a collineation of P to
P∗.

A polarity f : P → P∗ is said to be a null system if for each point p of P the subspace
f(p) contains p. Null systems of P exist only for the case when n is odd and the projective
space P is Pappian, see [1], [2]. The last means that P is isomorphic to the projective space
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of 1-dimensional subspaces of some (n + 1)-dimensional vector space over a field. For this
case any null system of P is associated with some non-degenerate alternating form, see [2] or
[18].

From this moment we will assume that our projective space P is Pappian and n = 2k+1.
Let f : P → P∗ be a null-system. Since f is a collineation, for any m-dimensional

subspace S ⊂ P the set f(S) is an m-dimensional subspace of P∗. Then the principle of
duality of projective geometry (see, for example, [2]) shows that f(S) can be considered as
an (n −m − 1)-dimensional subspace of P . Thus for each number m = 0, 1, . . . , n − 1 the
mapping f induces some bijection

fm : Gm(P) → Gn−m−1(P);

clearly, f0 = f and fk is a bijective transformation of Gk(P). If m ≤ k then we set

Gm(f) := { S ∈ Gm(P) | S ⊂ fm(S) }.

In particular, G0(f) coincides with P and Gk(f) is the set consisting of all k-dimensional
subspaces S ⊂ P such that fk(S) = S.

Recall that two m-dimensional subspaces S and U of P are called adjacent if the dimension
of S ∩U is equal to m− 1 (this condition holds if and only if the subspace spanned by S and
U is (m + 1)-dimensional). It is trivial that any two 0-dimensional or (n − 1)-dimensional
subspaces are adjacent; for the general case this fails.

Adjacency preserving transformations of Gk(f) were studied by W.L. Chow [7] and W.-l.
Huang [11], [12]. The classical Chow’s theorem [7] states that any bijective transformation of
Gk(f) preserving the adjacency relation in both directions is induced by a collineation of P to
itself. W.-l. Huang [12] has shown that any surjective adjacency preserving transformation of
Gk(f) is a bijection which preserves the adjacency relation in both directions; a more general
result was given in Huang’s subsequent paper [13] (it will be formulated in Section 4).

Let P ′ be another n-dimensional Pappian projective space and f ′ : P ′ → P ′∗ be a null
system (P ′∗ is the projective space dual to P ′). In the present paper we consider mappings of
Gk(f) to Gk(f

′) which send base subsets of Gk(f) to base subsets of Gk(f
′) (the definition will

be given in the next section) and show that these mappings are induced by strong embeddings
of P to P ′.

2. Base subsets of Gk(f)

First of all we recall the concept of base subsets of Grassmann spaces (see [15], [16] and [17]).
Let I := {1, . . . , n + 1} and B = {pi}i∈I be a base for the projective space P . For each
natural number m = 1, . . . , n− 1 the finite set Bm consisting of all m-dimensional subspaces

{pi1 , . . . , pim+1}

is called the base subset of Gm(P) associated with B (for any set X ⊂ P we denote by X the
subspace of P spanned by X).

We say that B is an f -base if for all i ∈ I

f(pi) = B − {pσ(i)}
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where

σ(i) =

{
i + k + 1 if 1 ≤ i ≤ k + 1

i− k − 1 if k + 2 ≤ i ≤ 2k + 2.

For this case
Bfm := Bm ∩ Gm(f), m = 1, . . . , k

is said to be the base subset of Gm(f) associated with the f -base B.

Lemma 1. The following statements hold true:

(1) The set Bfm consists of all subspaces U ∈ Bm such that

pi ∈ U =⇒ pσ(i) /∈ U ∀ i ∈ I.

(2) For any subspace U ∈ Bfk and any i ∈ I we have

pi ∈ U or pσ(i) ∈ U.

Proof. These statements are direct consequences of the definition.

Proposition 1. Any base subset of Gk(f) contains

k+1∑
m=0

(
k + 1

m

)
elements.

Proof. For any m = 0, 1, . . . , k +1 we put Bm
fk for the set of all subspaces U ∈ Bfk containing

exactly m points pi such that i ≤ k + 1. The second statement of Lemma 1 shows that for
each set

{i1, . . . , im} ⊂ {1, . . . , k + 1}

there is unique subspace belonging to Bm
fk and containing pi1 , . . . pim . Hence

|Bm
fk| =

(
k + 1

m

)
and

|Bfk| =
k+1∑
m=0

|Bm
fk| =

k+1∑
m=0

(
k + 1

m

)
. �

3. Mappings of Gm(f) to Gm(f ′) induced by strong embeddings

An injective mapping g : P → P ′ is called an embedding if it is collinearity and non-
collinearity preserving (g sends triples of collinear points and non-collinear points to collinear
points and non-collinear points, respectively). Any surjective embedding is a collineation.
An embedding is said to be strong if it transfers independent sets to independent sets (recall
that a set X ⊂ P is independent if the subspace X is not spanned by a proper subset of X).
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Since our projective spaces have the same dimension, any strong embedding of P to P ′ maps
bases to bases.

For each number m = 0, . . . , n − 1 any strong embedding g : P → P ′ induces the
injection

gm : Gm(P) → Gm(P ′)

which sends an m-dimensional subspace S ⊂ P to the subspace g(S). For the case when
m = n− 1 it is a strong embedding of P∗ to P ′∗; we will denote this embedding by g∗. If

f ′g = g∗f (1)

then for any m ≤ k the gm-image of Gm(f) is contained in Gm(f ′), in other words, g induces
an injection of Gm(f) to Gm(f ′).

Proposition 2. Let g : P → P ′ be a strong embedding satisfying (1) and such that the
mapping

gm : Gm(f) → Gm(f ′) (2)

is bijective for some natural number m ≤ k. Then g is a collineation.

Proof. We show that the mapping

gm−1 : Gm−1(f) → Gm−1(f
′) (3)

is bijective.
For any subspace S ′ belonging to Gm−1(f

′) there exist subspaces U ′
1, U

′
2 ∈ Gm(f ′) such

that S ′ = U ′
1 ∩ U ′

2. Then U ′
1 and U ′

2 are adjacent and the subspace spanned by them is
(m + 1)-dimensional. By our hypothesis, the mapping (2) is bijective and the equalities

g(U1) = U ′
1 and g(U2) = U ′

2

hold for some subspaces U1 and U2 belonging to Gm(f). An immediate verification shows
that

g(U1 ∪ U2) ⊂ g(U1) ∪ g(U2) ⊂ U ′
1 ∪ U ′

2.

Since U ′
1 ∪ U ′

2 is (m + 1)-dimensional, the dimension of U1 ∪ U2 is not greater than k + 1;
this dimension is equal to k + 1 (U1 and U2 are distinct k-dimensional subspaces). In other
words, U1 and U2 are adjacent and

S := U1 ∩ U2

belongs to Gm−1(f). Then

g(S) = g(U1) ∩ g(U2) ⊂ g(U1) ∩ g(U2) = U ′
1 ∩ U ′

2 = S ′.

The subspaces g(S) and S ′ are both (k−1)-dimensional, hence g(S) = S ′. We have established
that (3) is surjective; but this mapping is injective and we get the required.

By induction, we can prove that the embedding g is surjective. This means that g is a
collineation.
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4. Result

Theorem 1. (W.-l. Huang [13]) Let g be an adjacency preserving mapping of Gk(f) to Gk(f
′)

and suppose that for each S ∈ Gk(f) there exists U ∈ Gk(f) such that

g(S) ∩ g(U) = ∅.

Then g is induced by a strong embedding of P to P ′.

In the present paper the following statement will be proved.

Theorem 2. Let k ≥ 2 and g be a mapping of Gk(f) to Gk(f
′) sending base subsets to base

subsets. Then g is induced by a strong embedding of P to P ′.

Theorem 2 and Proposition 2 give the following.

Corollary 1. Let k ≥ 2 and g be a surjection of Gk(f) to Gk(f
′) sending base subsets to base

subsets. Then g is induced by a collineation of P to P ′.

Remark 1. Adjacency preserving mappings of Grassmann spaces were studied by many
authors, see [6], [7], [11], [9], [10], [14]. These results are closely related with the discipline
known as characterizations of geometrical mappings under mild hypotheses, see [3].

Remark 2. Mappings of Grassmann spaces transferring base subsets to base subsets were
considered in author’s papers [15], [16], and [17].

Remark 3. Let G be the Grassmann space of m-dimensional subspaces of some (2m + 1)-
dimensional projective space. A. Blunck and H. Havlicek [5] have characterized the adjacency
relation on G in terms of non-intersecting subspaces; this result was exploited to study trans-
formations of G sending non-intersecting subspaces to non-intersecting subspaces.

5. Proof of Theorem 2

5.1.

Let S be a subspace belonging to Gk(f). Consider a base subset Bfk containing S (it is
trivial that this base set exists). By our hypothesis, g(Bfk) is a base subset of Gk(f

′) and
there exists U ′ ∈ g(Bfk) such that

g(S) ∩ U ′ = ∅.
Since U ′ = g(U) for some U ∈ Bfk, the mapping g satisfies the second condition of Theorem 1.
Thus we need to prove that g is adjacency preserving.

Now we want to show that g is injective. We will exploit the following statement which
is a simple consequence of more general results related with Tits buildings (see [4], [8], [18]
or [19]).

Lemma 2. For any two elements of Gk(f) there exists a base subset containing them.

Let S and U be distinct elements of Gk(f) and Bfk be a base subset of Gk(f) containing them.
If g(S) = g(U) then the cardinal number of g(Bfk) is less than the cardinal number of Bfk.
Then g(Bfk) is not a base subset of Gk(f

′); this contradicts to our hypothesis. Therefore, f
is injective.
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5.2.

Let B = {pi}i∈I be an f -base for P and Bfk be the base subset of Gk(f) associated with
B. We say that R ⊂ Bfk is an exact subset of Bfk if Bfk is unique base subset of Gk(f)
containing R; otherwise, the subset R is said to be inexact.

1) By our hypothesis, g(Bfk) is a base subset of Gk(f
′). The mapping g transfers inexact

subsets of Bfk to inexact subsets of g(Bfk).

Proof. If R is an inexact subset of Bfk then there is another base subset of Gk(f) containing
R. Since g is injective, there exist at least two distinct base subsets of Gk(f

′) containing
g(R); hence g(R) is inexact.

For any set R ⊂ Bfk and any number i ∈ I denote by Si(R) the intersection of all subspaces
U ∈ R containing pi. Clearly, R is exact if each Si(R) is a one-point set. Now we show that
the inverse statement holds true.

2) A subset R of Bfk is exact if and only if

Si(R) = {pi} ∀ i ∈ I.

Proof. If Si(R) 6= {pi} for some number i then one of the following possibilities is realized:

(A) Si(R) is empty,

(B) Si(R) contains a point pj, j 6= i.

We show that for each of these cases there exists an f -base B′
fk different from Bfk and such

that the base subset of Gk(f) associated with B′
fk contains R; this means that R is inexact.

Case (A): Let p′i be a point of the line pipσ(i) (spanned by the points pi and pσ(i)) such that
p′i 6= pi, pσ(i). Set

B′ := (B − {pi}) ∪ {p′i}.
Then

f(p′i) = (B − {pi, pσ(i)}) ∪ {p′i} = B′ − {pσ(i)}
and

f(pσ(i)) = B − {pi} = B′ − {p′i};
for any j 6= i, σ(i) we have

f(pj) = B − {pσ(j)} = (B − {pi, pσ(j)}) ∪ {p′i} = B′ − {pσ(j)}.

Therefore, B′ is an f -base. Each subspace S ∈ R is spanned by points of the set

B − {pi} = B′ − {p′i}

and R is contained in the base subset of Gk(f) associated with B′.

Case (B): Lemma 1 shows that j 6= σ(i). Besides pσ(i) belongs to Sσ(j)(R); indeed, if some
subspace U ∈ R does not contain pσ(i) then pi ∈ U (Lemma 1) and the condition (B)
guarantees that pj is a point of U , hence pσ(j) /∈ U . Now take two points

p′i ∈ pipj and p′σ(j) ∈ pσ(i)pσ(j)
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such that
p′i 6= pi, pj and p′σ(j) 6= pσ(i), pσ(j)

and set
B′ := (B − {pi, pσ(j)}) ∪ {p′i, p′σ(j)}.

Then
f(p′i) = (B − {pi, pσ(i)}) ∪ {p′i} =

(B − {pi, pσ(i), pσ(j)}) ∪ {p′i, p′σ(j)} = B′ − {pσ(i)} ,

f(pσ(i)) = B − {pi} = (B − {pi, pσ(j)}) ∪ {p′σ(j)} = B′ − {p′i}
and

f(pj) = B − {pσ(j)} = (B − {pi, pσ(j)}) ∪ {p′i} = B′ − {p′σ(j)} ,

f(p′σ(j)) = (B − {pj, pσ(j)}) ∪ {p′σ(j)} =

(B − {pi, pj, pσ(j)}) ∪ {p′i, p′σ(j)} = B′ − {pj};

if m 6= i, j, σ(i), σ(j) then

f(pm) = B − {pσ(m)} = (B − {pi, pσ(j), pσ(m)}) ∪ {p′i, p′σ(j)} = B′ − {pσ(m)}.

We have established that B′ is an f -base. Lemma 1 and the condition (B) show that each
subspace S ∈ R contains one of the lines pipj or pσ(i)pσ(j); i.e. S is spanned by one of these
lines and points of the set

B − {pi, pj, pσ(i), pσ(j)} = B′ − {p′i, pj, pσ(i), p
′
σ(j)}

This implies that R is contained in the base subset of Gk(f) associated with B′.

Let 0 ≤ m ≤ k and U be an m-dimensional subspace spanned by points of the base B (in
other words, U is an element of the base subset of Gm(P) associated with B or a point of B if
m = 0). Put Bfk(U) for the set of all subspaces belonging to Bfk and containing U . This set
is empty for the case when U /∈ Bfm. If U is an element of Bfm then Bfk(U) is not empty;
the cardinal number of this set will be denoted by tm (it does not depend on the choice of
U ∈ Bfm).

3) If i < j ≤ k then ti > tj.

Proof. Let us consider two subspaces T ∈ Bfi and U ∈ Bfj such that T ⊂ U . It is trivial
that Bfk(U) is a proper subspace of Bfk(T ). This implies the required inequality.

Now consider two distinct points pi and pj such that σ(i) 6= j. The line pipj belongs to Bf1

and the set

Bfk(pipj) ∪ Bfk(pσ(i)) (4)

is inexact (if some subspace S belongs to (4) and contains pi then pj ∈ S). Since Bfk(pipj)
and Bfk(pσ(i)) are non-intersecting sets, the cardinal number of (4) is equal to t0 + t1.
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4) If R is an inexact subset of Bfk containing t0 + t1 elements then there exist two distinct
numbers i and j such that σ(i) 6= j and

R = Bfk(pipj) ∪ Bfk(pσ(i)).

Proof. Since R is inexact, Si(R) 6= {pi} for some number i. If Si(R) is not empty then we
take any point pj, j 6= i belonging to Si(R); by Lemma 1, j 6= σ(i). For the case when Si(R)
is empty we can take an arbitrary point pj such that j 6= i, σ(i). Then for any subspace
U ∈ R one of the following possibilities is realized:

(A) pi ∈ U then U belongs to Bfk(pipj),

(B) pi /∈ U then pσ(i) ∈ U and U belongs to Bfk(pσ(i)).

Hence
R ⊂ Bfk(pipj) ∪ Bfk(pσ(i)).

These sets have the same cardinal number and the inclusion can be replaced by the equality.

5.3.

We say that R ⊂ Bfk is a c-subset of Bfk if its complement Bfk − R is an inexact subset
containing t0 + t1 elements.

5) The mapping g transfers c-subsets of Bfk to c-subsets of g(Bfk).

Proof. Since g is an injection, it is a direct consequence of the definition of c-subsets and the
statement 1).

6) For any set R ⊂ Bfk the following conditions are equivalent:

(A) R is a c-subset,

(B) there exists a line L ∈ Bf1 such that R = Bfk(L).

Proof. (A) ⇒ (B). Assume that R is a c-subset of Bfk. Then

R = Bfk − (Bfk(pipj) ∪ Bfk(pσ(i))) (5)

for some numbers i and j such that j 6= σ(i). We show that the line

L := pipσ(j)

has the required property.
Let S ∈ R. By (5), pσ(i) does not belong to S. Thus pi ∈ S. The equation (5) implies

also that the line pipj is not contained in S. Since pi is a point of S, pj /∈ S and pσ(j) belongs
to S. Therefore, S ∈ Bfk(L).

Consider a subspace S belonging to Bfk(L). Since pi ∈ S, S does not belong to Bfk(pσ(i)).
The condition pσ(j) ∈ S guarantees that pj /∈ S and the line pipj is not contained in S. Then
S does not belong to Bfk(pipj). By (5), S ∈ R.
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(B) ⇒ (A). Let L ∈ Bf1. Then L = pipj and j 6= σ(i). If some subspace S ∈ Bfk is not
contained in the set Bfk(L) then one of the following cases is realized:

— pi /∈ S then pσ(i) ∈ S and S belongs to Bfk(pσ(i)),

— pi ∈ S and pj /∈ S then pσ(j) ∈ S and S is an element of Bfk(pipσ(j)).

Therefore, Bfk − Bfk(L) is contained in

Bfk(pσ(i)) ∪ Bfk(pipσ(j)).

The arguments given above show that these sets are coincident.

Let R and R′ be distinct c-subsets of Bfk. Then

R = Bfk(L) and R′ = Bfk(L
′),

where L and L′ are distinct elements of Bf1. Denote by S the subspace spanned by L and
L′; the dimension of S is equal to 2 or 3.

Consider the case when k = 2. If S ∈ Bf2 then

R∩R′ = {S};

for this case we will say that our c-subsets form an (A)-pair. If S does not belong to Bf2

then R∩R′ is empty.
If k ≥ 3 then there are the following possibilities for the subspace S:

(A) S belongs to Bf2 then
R∩R′ = Bfk(S)

contains t2 elements,

(B) S belongs to Bf3 then
R∩R′ = Bfk(S)

contains t3 elements,

(C) S does not belong to Bf2 and Bf3, for this case the set R∩R′ is empty.

We say that our c-subsets form an (A)-pair or a (B)-pair if the corresponding case is realized.

7) The mapping g transfers any (A)-pair of c-subsets to an (A)-pair of c-subsets. If k ≥ 3
then g maps (B)-pairs to (B)-pairs.

Proof. Let R and R′ be distinct c-subsets of Bfk. By (5), g(R) and g(R′) are c-subsets of
g(Bfk). Since f is injective, R ∩R′ and g(R) ∩ g(R′) have the same cardinal numbers and
the arguments given before (7) imply the required.

8) Let S and S ′ be distinct elements of Bfk. Then the following statements are fulfilled:

(i) For the case when k = 2 the subspaces S and S ′ are adjacent if and only if there
exists a c-subset of Bfk containing them.

(ii) For the case when k = 2m > 2 our subspaces are adjacent if and only if there
exists a sequence R1, . . . ,Rm of c-subsets of Bfk such that any two Ri and Rj

form a (B)-pair if i 6= j and each Ri contains S and S ′.
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(iii) Let k = 2m + 1 ≥ 3. Then S and S ′ are adjacent if and only if there exists a
sequence R1, . . . ,Rm+1 of c-subsets of Bfk such that each Ri contains S and S ′

and the following conditions hold true:

— Ri and Rj form a (B)-pair if i 6= j and i, j are both less than m + 1,

— if i < m then Ri and Rm+1 is a (B)-pair,

— Rm and Rm+1 form an (A)-pair.

Proof. The statement (i) is trivial. For the case (ii) or (iii) the existence of a sequence of
c-subsets satisfying the corresponding conditions implies that the subspace S ∩ S ′ is (k− 1)-
dimensional (i.e. S and S ′ are adjacent).

Now assume that S and S ′ are adjacent. Then the dimension of S ∩ S ′ is equal to k− 1.
Clearly, we can restrict ourself to the case when S ∩ S ′ is spanned by p1, . . . , pk. If k = 2m
then the lines

Li := p2i−1p2i

i = 1, . . . ,m define a sequence of c-subsets satisfying the required conditions. For the case
when k = 2m + 1 we set

Li := p2i−1p2i if i = 1, . . . ,m and Lm+1 := pk−1pk.

It is easy to see that the c-subsets associated with these lines are as required.

The statements (7) and (8) show that the restriction of g to each base subset of Gk(f)
is adjacency preserving. Since for any two elements of Gk(f) there exists a base subset
containing them (Lemma 2), the mapping g preserves the adjacency.

Acknowledgment. The author thanks the referee for intent reading the paper and correc-
tions.
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