Mappings of the Sets of Invariant Subspaces of Null Systems

Mark Pankov

Institute of Mathematics NASU, Kiev e-mail: pankov@imath.kiev.ua

Abstract. Let \mathcal{P} and \mathcal{P}' be (2k+1)-dimensional Pappian projective spaces. Let also $f : \mathcal{P} \to \mathcal{P}^*$ and $f' : \mathcal{P}' \to \mathcal{P}'^*$ be null systems. Denote by $\mathcal{G}_k(f)$ and $\mathcal{G}_k(f')$ the sets of all invariant k-dimensional subspaces of f and f', respectively. In the paper we show that if $k \geq 2$ then any mapping of $\mathcal{G}_k(f)$ to $\mathcal{G}_k(f')$ sending base subsets to base subsets is induced by a strong embedding of \mathcal{P} to \mathcal{P}' .

MSC 2000: 51M35, 14M15

Keywords: Grassmann space, null system, base subset

1. Introduction

Let \mathcal{P} be an *n*-dimensional projective space. For each number $m = 0, 1, \ldots, n-1$ we denote by $\mathcal{G}_m(\mathcal{P})$ the Grassmann space consisting of all *m*-dimensional subspaces of \mathcal{P} . Then $\mathcal{G}_0(\mathcal{P}) = \mathcal{P}$. Note also that $\mathcal{G}_{n-1}(\mathcal{P})$ is an *n*-dimensional projective space; it is called *dual* to \mathcal{P} and denoted by \mathcal{P}^* .

A mapping $f: \mathcal{P} \to \mathcal{P}^*$ is called a *polarity* if

$$q \in f(p) \Rightarrow p \in f(q)$$

for any two points p and q of \mathcal{P} . It is well known that any polarity is a collineation of \mathcal{P} to \mathcal{P}^* .

A polarity $f: \mathcal{P} \to \mathcal{P}^*$ is said to be a *null system* if for each point p of \mathcal{P} the subspace f(p) contains p. Null systems of \mathcal{P} exist only for the case when n is odd and the projective space \mathcal{P} is Pappian, see [1], [2]. The last means that \mathcal{P} is isomorphic to the projective space

0138-4821/93 $2.50 \odot 2004$ Heldermann Verlag

of 1-dimensional subspaces of some (n + 1)-dimensional vector space over a field. For this case any null system of \mathcal{P} is associated with some non-degenerate alternating form, see [2] or [18].

From this moment we will assume that our projective space \mathcal{P} is Pappian and n = 2k+1.

Let $f : \mathcal{P} \to \mathcal{P}^*$ be a null-system. Since f is a collineation, for any m-dimensional subspace $S \subset \mathcal{P}$ the set f(S) is an m-dimensional subspace of \mathcal{P}^* . Then the principle of duality of projective geometry (see, for example, [2]) shows that f(S) can be considered as an (n - m - 1)-dimensional subspace of \mathcal{P} . Thus for each number $m = 0, 1, \ldots, n - 1$ the mapping f induces some bijection

$$f_m: \mathcal{G}_m(\mathcal{P}) \to \mathcal{G}_{n-m-1}(\mathcal{P})$$

clearly, $f_0 = f$ and f_k is a bijective transformation of $\mathcal{G}_k(\mathcal{P})$. If $m \leq k$ then we set

$$\mathcal{G}_m(f) := \{ S \in \mathcal{G}_m(\mathcal{P}) \mid S \subset f_m(S) \}.$$

In particular, $\mathcal{G}_0(f)$ coincides with \mathcal{P} and $\mathcal{G}_k(f)$ is the set consisting of all k-dimensional subspaces $S \subset \mathcal{P}$ such that $f_k(S) = S$.

Recall that two *m*-dimensional subspaces S and U of \mathcal{P} are called *adjacent* if the dimension of $S \cap U$ is equal to m-1 (this condition holds if and only if the subspace spanned by S and U is (m + 1)-dimensional). It is trivial that any two 0-dimensional or (n - 1)-dimensional subspaces are adjacent; for the general case this fails.

Adjacency preserving transformations of $\mathcal{G}_k(f)$ were studied by W.L. Chow [7] and W.-l. Huang [11], [12]. The classical Chow's theorem [7] states that any bijective transformation of $\mathcal{G}_k(f)$ preserving the adjacency relation in both directions is induced by a collineation of \mathcal{P} to itself. W.-l. Huang [12] has shown that any surjective adjacency preserving transformation of $\mathcal{G}_k(f)$ is a bijection which preserves the adjacency relation in both directions; a more general result was given in Huang's subsequent paper [13] (it will be formulated in Section 4).

Let \mathcal{P}' be another *n*-dimensional Pappian projective space and $f' : \mathcal{P}' \to \mathcal{P}'^*$ be a null system (\mathcal{P}'^* is the projective space dual to \mathcal{P}'). In the present paper we consider mappings of $\mathcal{G}_k(f)$ to $\mathcal{G}_k(f')$ which send base subsets of $\mathcal{G}_k(f)$ to base subsets of $\mathcal{G}_k(f')$ (the definition will be given in the next section) and show that these mappings are induced by strong embeddings of \mathcal{P} to \mathcal{P}' .

2. Base subsets of $\mathcal{G}_k(f)$

First of all we recall the concept of base subsets of Grassmann spaces (see [15], [16] and [17]). Let $I := \{1, \ldots, n+1\}$ and $\mathcal{B} = \{p_i\}_{i \in I}$ be a base for the projective space \mathcal{P} . For each natural number $m = 1, \ldots, n-1$ the finite set \mathcal{B}_m consisting of all *m*-dimensional subspaces

$$\{p_{i_1},\ldots,p_{i_{m+1}}\}$$

is called the *base subset* of $\mathcal{G}_m(\mathcal{P})$ associated with \mathcal{B} (for any set $X \subset \mathcal{P}$ we denote by \overline{X} the subspace of \mathcal{P} spanned by X).

We say that \mathcal{B} is an *f*-base if for all $i \in I$

$$f(p_i) = \overline{\mathcal{B} - \{p_{\sigma(i)}\}}$$

where

$$\sigma(i) = \begin{cases} i+k+1 & \text{if } 1 \le i \le k+1 \\ i-k-1 & \text{if } k+2 \le i \le 2k+2. \end{cases}$$

For this case

$$\mathcal{B}_{fm} := \mathcal{B}_m \cap \mathcal{G}_m(f), \quad m = 1, \dots, k$$

is said to be the *base subset* of $\mathcal{G}_m(f)$ associated with the *f*-base \mathcal{B} .

Lemma 1. The following statements hold true:

(1) The set \mathcal{B}_{fm} consists of all subspaces $U \in \mathcal{B}_m$ such that

$$p_i \in U \Longrightarrow p_{\sigma(i)} \notin U \quad \forall i \in I.$$

(2) For any subspace $U \in \mathcal{B}_{fk}$ and any $i \in I$ we have

$$p_i \in U$$
 or $p_{\sigma(i)} \in U$.

Proof. These statements are direct consequences of the definition.

Proposition 1. Any base subset of $\mathcal{G}_k(f)$ contains

$$\sum_{m=0}^{k+1} \binom{k+1}{m}$$

elements.

Proof. For any m = 0, 1, ..., k+1 we put \mathcal{B}_{fk}^m for the set of all subspaces $U \in \mathcal{B}_{fk}$ containing exactly m points p_i such that $i \leq k+1$. The second statement of Lemma 1 shows that for each set

$$\{i_1, \ldots, i_m\} \subset \{1, \ldots, k+1\}$$

there is unique subspace belonging to \mathcal{B}_{fk}^m and containing $p_{i_1}, \ldots p_{i_m}$. Hence

$$|\mathcal{B}_{fk}^m| = \binom{k+1}{m}$$
$$|\mathcal{B}_{fk}| = \sum_{m=0}^{k+1} |\mathcal{B}_{fk}^m| = \sum_{m=0}^{k+1} \binom{k+1}{m}.$$

and

3. Mappings of $\mathcal{G}_m(f)$ to $\mathcal{G}_m(f')$ induced by strong embeddings

An injective mapping $g : \mathcal{P} \to \mathcal{P}'$ is called an *embedding* if it is collinearity and noncollinearity preserving (g sends triples of collinear points and non-collinear points to collinear points and non-collinear points, respectively). Any surjective embedding is a collineation. An embedding is said to be *strong* if it transfers independent sets to independent sets (recall that a set $X \subset \mathcal{P}$ is independent if the subspace \overline{X} is not spanned by a proper subset of X). Since our projective spaces have the same dimension, any strong embedding of \mathcal{P} to \mathcal{P}' maps bases to bases.

For each number $m = 0, \ldots, n-1$ any strong embedding $g : \mathcal{P} \to \mathcal{P}'$ induces the injection

$$g_m: \mathcal{G}_m(\mathcal{P}) \to \mathcal{G}_m(\mathcal{P}')$$

which sends an *m*-dimensional subspace $S \subset \mathcal{P}$ to the subspace g(S). For the case when m = n - 1 it is a strong embedding of \mathcal{P}^* to \mathcal{P}'^* ; we will denote this embedding by g^* . If

$$f'g = g^*f \tag{1}$$

then for any $m \leq k$ the g_m -image of $\mathcal{G}_m(f)$ is contained in $\mathcal{G}_m(f')$, in other words, g induces an injection of $\mathcal{G}_m(f)$ to $\mathcal{G}_m(f')$.

Proposition 2. Let $g : \mathcal{P} \to \mathcal{P}'$ be a strong embedding satisfying (1) and such that the mapping

$$g_m: \mathcal{G}_m(f) \to \mathcal{G}_m(f')$$
 (2)

is bijective for some natural number $m \leq k$. Then g is a collineation.

Proof. We show that the mapping

$$g_{m-1}: \mathcal{G}_{m-1}(f) \to \mathcal{G}_{m-1}(f') \tag{3}$$

is bijective.

For any subspace S' belonging to $\mathcal{G}_{m-1}(f')$ there exist subspaces $U'_1, U'_2 \in \mathcal{G}_m(f')$ such that $S' = U'_1 \cap U'_2$. Then U'_1 and U'_2 are adjacent and the subspace spanned by them is (m+1)-dimensional. By our hypothesis, the mapping (2) is bijective and the equalities

$$\overline{g(U_1)} = U_1'$$
 and $\overline{g(U_2)} = U_2'$

hold for some subspaces U_1 and U_2 belonging to $\mathcal{G}_m(f)$. An immediate verification shows that

$$g(\overline{U_1 \cup U_2}) \subset \overline{g(U_1) \cup g(U_2)} \subset \overline{U_1' \cup U_2'}.$$

Since $\overline{U'_1 \cup U'_2}$ is (m + 1)-dimensional, the dimension of $\overline{U_1 \cup U_2}$ is not greater than k + 1; this dimension is equal to k + 1 (U_1 and U_2 are distinct k-dimensional subspaces). In other words, U_1 and U_2 are adjacent and

$$S := U_1 \cap U_2$$

belongs to $\mathcal{G}_{m-1}(f)$. Then

$$\overline{g(S)} = \overline{g(U_1) \cap g(U_2)} \subset \overline{g(U_1)} \cap \overline{g(U_2)} = U_1' \cap U_2' = S'.$$

The subspaces $\overline{g(S)}$ and S' are both (k-1)-dimensional, hence $\overline{g(S)} = S'$. We have established that (3) is surjective; but this mapping is injective and we get the required.

By induction, we can prove that the embedding g is surjective. This means that g is a collineation.

4. Result

Theorem 1. (W.-l. Huang [13]) Let g be an adjacency preserving mapping of $\mathcal{G}_k(f)$ to $\mathcal{G}_k(f')$ and suppose that for each $S \in \mathcal{G}_k(f)$ there exists $U \in \mathcal{G}_k(f)$ such that

$$g(S) \cap g(U) = \emptyset.$$

Then g is induced by a strong embedding of \mathcal{P} to \mathcal{P}' .

In the present paper the following statement will be proved.

Theorem 2. Let $k \ge 2$ and g be a mapping of $\mathcal{G}_k(f)$ to $\mathcal{G}_k(f')$ sending base subsets to base subsets. Then g is induced by a strong embedding of \mathcal{P} to \mathcal{P}' .

Theorem 2 and Proposition 2 give the following.

Corollary 1. Let $k \ge 2$ and g be a surjection of $\mathcal{G}_k(f)$ to $\mathcal{G}_k(f')$ sending base subsets to base subsets. Then g is induced by a collineation of \mathcal{P} to \mathcal{P}' .

Remark 1. Adjacency preserving mappings of Grassmann spaces were studied by many authors, see [6], [7], [11], [9], [10], [14]. These results are closely related with the discipline known as *characterizations of geometrical mappings under mild hypotheses*, see [3].

Remark 2. Mappings of Grassmann spaces transferring base subsets to base subsets were considered in author's papers [15], [16], and [17].

Remark 3. Let \mathcal{G} be the Grassmann space of *m*-dimensional subspaces of some (2m + 1)dimensional projective space. A. Blunck and H. Havlicek [5] have characterized the adjacency relation on \mathcal{G} in terms of non-intersecting subspaces; this result was exploited to study transformations of \mathcal{G} sending non-intersecting subspaces to non-intersecting subspaces.

5. Proof of Theorem 2

5.1.

Let S be a subspace belonging to $\mathcal{G}_k(f)$. Consider a base subset \mathcal{B}_{fk} containing S (it is trivial that this base set exists). By our hypothesis, $g(\mathcal{B}_{fk})$ is a base subset of $\mathcal{G}_k(f')$ and there exists $U' \in g(\mathcal{B}_{fk})$ such that

$$g(S) \cap U' = \emptyset.$$

Since U' = g(U) for some $U \in \mathcal{B}_{fk}$, the mapping g satisfies the second condition of Theorem 1. Thus we need to prove that g is adjacency preserving.

Now we want to show that g is injective. We will exploit the following statement which is a simple consequence of more general results related with Tits buildings (see [4], [8], [18] or [19]).

Lemma 2. For any two elements of $\mathcal{G}_k(f)$ there exists a base subset containing them.

Let S and U be distinct elements of $\mathcal{G}_k(f)$ and \mathcal{B}_{fk} be a base subset of $\mathcal{G}_k(f)$ containing them. If g(S) = g(U) then the cardinal number of $g(\mathcal{B}_{fk})$ is less than the cardinal number of \mathcal{B}_{fk} . Then $g(\mathcal{B}_{fk})$ is not a base subset of $\mathcal{G}_k(f')$; this contradicts to our hypothesis. Therefore, f is injective. 5.2.

Let $\mathcal{B} = \{p_i\}_{i \in I}$ be an *f*-base for \mathcal{P} and \mathcal{B}_{fk} be the base subset of $\mathcal{G}_k(f)$ associated with \mathcal{B} . We say that $\mathcal{R} \subset \mathcal{B}_{fk}$ is an *exact* subset of \mathcal{B}_{fk} if \mathcal{B}_{fk} is unique base subset of $\mathcal{G}_k(f)$ containing \mathcal{R} ; otherwise, the subset \mathcal{R} is said to be *inexact*.

1) By our hypothesis, $g(\mathcal{B}_{fk})$ is a base subset of $\mathcal{G}_k(f')$. The mapping g transfers inexact subsets of \mathcal{B}_{fk} to inexact subsets of $g(\mathcal{B}_{fk})$.

Proof. If \mathcal{R} is an inexact subset of \mathcal{B}_{fk} then there is another base subset of $\mathcal{G}_k(f)$ containing \mathcal{R} . Since g is injective, there exist at least two distinct base subsets of $\mathcal{G}_k(f')$ containing $g(\mathcal{R})$; hence $g(\mathcal{R})$ is inexact.

For any set $\mathcal{R} \subset \mathcal{B}_{fk}$ and any number $i \in I$ denote by $S_i(\mathcal{R})$ the intersection of all subspaces $U \in \mathcal{R}$ containing p_i . Clearly, \mathcal{R} is exact if each $S_i(\mathcal{R})$ is a one-point set. Now we show that the inverse statement holds true.

2) A subset \mathcal{R} of \mathcal{B}_{fk} is exact if and only if

$$S_i(\mathcal{R}) = \{p_i\} \qquad \forall \ i \in I$$

Proof. If $S_i(\mathcal{R}) \neq \{p_i\}$ for some number *i* then one of the following possibilities is realized: (A) $S_i(\mathcal{R})$ is empty,

(B) $S_i(\mathcal{R})$ contains a point $p_j, j \neq i$.

We show that for each of these cases there exists an f-base \mathcal{B}'_{fk} different from \mathcal{B}_{fk} and such that the base subset of $\mathcal{G}_k(f)$ associated with \mathcal{B}'_{fk} contains \mathcal{R} ; this means that \mathcal{R} is inexact. Case (A): Let p'_i be a point of the line $p_i p_{\sigma(i)}$ (spanned by the points p_i and $p_{\sigma(i)}$) such that $p'_i \neq p_i, p_{\sigma(i)}$. Set

$$\mathcal{B}' := (\mathcal{B} - \{p_i\}) \cup \{p'_i\}.$$

Then

$$f(p'_i) = \overline{(\mathcal{B} - \{p_i, p_{\sigma(i)}\}) \cup \{p'_i\}} = \overline{\mathcal{B}' - \{p_{\sigma(i)}\}}$$

and

$$f(p_{\sigma(i)}) = \overline{\mathcal{B} - \{p_i\}} = \overline{\mathcal{B}' - \{p'_i\}}$$

for any $j \neq i, \sigma(i)$ we have

$$f(p_j) = \overline{\mathcal{B} - \{p_{\sigma(j)}\}} = \overline{(\mathcal{B} - \{p_i, p_{\sigma(j)}\}) \cup \{p'_i\}} = \overline{\mathcal{B}' - \{p_{\sigma(j)}\}}.$$

Therefore, \mathcal{B}' is an f-base. Each subspace $S \in \mathcal{R}$ is spanned by points of the set

$$\mathcal{B} - \{p_i\} = \mathcal{B}' - \{p_i'\}$$

and \mathcal{R} is contained in the base subset of $\mathcal{G}_k(f)$ associated with \mathcal{B}' .

Case (B): Lemma 1 shows that $j \neq \sigma(i)$. Besides $p_{\sigma(i)}$ belongs to $S_{\sigma(j)}(\mathcal{R})$; indeed, if some subspace $U \in \mathcal{R}$ does not contain $p_{\sigma(i)}$ then $p_i \in U$ (Lemma 1) and the condition (B) guarantees that p_j is a point of U, hence $p_{\sigma(j)} \notin U$. Now take two points

$$p'_i \in p_i p_j$$
 and $p'_{\sigma(j)} \in p_{\sigma(i)} p_{\sigma(j)}$

such that

$$p'_i \neq p_i, p_j$$
 and $p'_{\sigma(j)} \neq p_{\sigma(i)}, p_{\sigma(j)}$

and set

$$\mathcal{B}' := (\mathcal{B} - \{p_i, p_{\sigma(j)}\}) \cup \{p'_i, p'_{\sigma(j)}\}$$

Then

$$f(p'_i) = (\mathcal{B} - \{p_i, p_{\sigma(i)}\}) \cup \{p'_i\} =$$

$$\overline{(\mathcal{B} - \{p_i, p_{\sigma(i)}, p_{\sigma(j)}\}) \cup \{p'_i, p'_{\sigma(j)}\}} = \overline{\mathcal{B}' - \{p_{\sigma(i)}\}},$$

$$f(p_{\sigma(i)}) = \overline{\mathcal{B} - \{p_i\}} = \overline{(\mathcal{B} - \{p_i, p_{\sigma(j)}\}) \cup \{p'_{\sigma(j)}\}} = \overline{\mathcal{B}' - \{p'_i\}}$$

and

$$f(p_j) = \overline{\mathcal{B} - \{p_{\sigma(j)}\}} = \overline{(\mathcal{B} - \{p_i, p_{\sigma(j)}\}) \cup \{p'_i\}} = \overline{\mathcal{B}' - \{p'_{\sigma(j)}\}},$$
$$f(p'_{\sigma(j)}) = \overline{(\mathcal{B} - \{p_j, p_{\sigma(j)}\}) \cup \{p'_{\sigma(j)}\}} =$$
$$\overline{(\mathcal{B} - \{p_i, p_j, p_{\sigma(j)}\}) \cup \{p'_i, p'_{\sigma(j)}\}} = \overline{\mathcal{B}' - \{p_j\}};$$

if $m \neq i, j, \sigma(i), \sigma(j)$ then

$$f(p_m) = \overline{\mathcal{B} - \{p_{\sigma(m)}\}} = \overline{(\mathcal{B} - \{p_i, p_{\sigma(j)}, p_{\sigma(m)}\}) \cup \{p'_i, p'_{\sigma(j)}\}} = \overline{\mathcal{B}' - \{p_{\sigma(m)}\}}.$$

We have established that \mathcal{B}' is an *f*-base. Lemma 1 and the condition (B) show that each subspace $S \in \mathcal{R}$ contains one of the lines $p_i p_j$ or $p_{\sigma(i)} p_{\sigma(j)}$; i.e. S is spanned by one of these lines and points of the set

$$\mathcal{B} - \{p_i, p_j, p_{\sigma(i)}, p_{\sigma(j)}\} = \mathcal{B}' - \{p'_i, p_j, p_{\sigma(i)}, p'_{\sigma(j)}\}$$

This implies that \mathcal{R} is contained in the base subset of $\mathcal{G}_k(f)$ associated with \mathcal{B}' .

Let $0 \leq m \leq k$ and U be an *m*-dimensional subspace spanned by points of the base \mathcal{B} (in other words, U is an element of the base subset of $\mathcal{G}_m(\mathcal{P})$ associated with \mathcal{B} or a point of \mathcal{B} if m = 0). Put $\mathcal{B}_{fk}(U)$ for the set of all subspaces belonging to \mathcal{B}_{fk} and containing U. This set is empty for the case when $U \notin \mathcal{B}_{fm}$. If U is an element of \mathcal{B}_{fm} then $\mathcal{B}_{fk}(U)$ is not empty; the cardinal number of this set will be denoted by t_m (it does not depend on the choice of $U \in \mathcal{B}_{fm}$).

3) If
$$i < j \leq k$$
 then $t_i > t_j$.

Proof. Let us consider two subspaces $T \in \mathcal{B}_{fi}$ and $U \in \mathcal{B}_{fj}$ such that $T \subset U$. It is trivial that $\mathcal{B}_{fk}(U)$ is a proper subspace of $\mathcal{B}_{fk}(T)$. This implies the required inequality. \Box

Now consider two distinct points p_i and p_j such that $\sigma(i) \neq j$. The line $p_i p_j$ belongs to \mathcal{B}_{f1} and the set

$$\mathcal{B}_{fk}(p_i p_j) \cup \mathcal{B}_{fk}(p_{\sigma(i)}) \tag{4}$$

is inexact (if some subspace S belongs to (4) and contains p_i then $p_j \in S$). Since $\mathcal{B}_{fk}(p_i p_j)$ and $\mathcal{B}_{fk}(p_{\sigma(i)})$ are non-intersecting sets, the cardinal number of (4) is equal to $t_0 + t_1$.

 \square

4) If \mathcal{R} is an inexact subset of \mathcal{B}_{fk} containing $t_0 + t_1$ elements then there exist two distinct numbers i and j such that $\sigma(i) \neq j$ and

$$\mathcal{R} = \mathcal{B}_{fk}(p_i p_j) \cup \mathcal{B}_{fk}(p_{\sigma(i)})$$

Proof. Since \mathcal{R} is inexact, $S_i(\mathcal{R}) \neq \{p_i\}$ for some number *i*. If $S_i(\mathcal{R})$ is not empty then we take any point p_j , $j \neq i$ belonging to $S_i(\mathcal{R})$; by Lemma 1, $j \neq \sigma(i)$. For the case when $S_i(\mathcal{R})$ is empty we can take an arbitrary point p_j such that $j \neq i, \sigma(i)$. Then for any subspace $U \in \mathcal{R}$ one of the following possibilities is realized:

(A) $p_i \in U$ then U belongs to $\mathcal{B}_{fk}(p_i p_j)$,

(B) $p_i \notin U$ then $p_{\sigma(i)} \in U$ and U belongs to $\mathcal{B}_{fk}(p_{\sigma(i)})$. Hence

$$\mathcal{R} \subset \mathcal{B}_{fk}(p_i p_j) \cup \mathcal{B}_{fk}(p_{\sigma(i)}).$$

These sets have the same cardinal number and the inclusion can be replaced by the equality.

5.3.

We say that $\mathcal{R} \subset \mathcal{B}_{fk}$ is a *c*-subset of \mathcal{B}_{fk} if its complement $\mathcal{B}_{fk} - \mathcal{R}$ is an inexact subset containing $t_0 + t_1$ elements.

5) The mapping g transfers c-subsets of \mathcal{B}_{fk} to c-subsets of $g(\mathcal{B}_{fk})$.

Proof. Since g is an injection, it is a direct consequence of the definition of c-subsets and the statement 1). \Box

- 6) For any set $\mathcal{R} \subset \mathcal{B}_{fk}$ the following conditions are equivalent:
 - (A) \mathcal{R} is a c-subset,
 - (B) there exists a line $L \in \mathcal{B}_{f1}$ such that $\mathcal{R} = \mathcal{B}_{fk}(L)$.

Proof. $(A) \Rightarrow (B)$. Assume that \mathcal{R} is a *c*-subset of \mathcal{B}_{fk} . Then

$$\mathcal{R} = \mathcal{B}_{fk} - (\mathcal{B}_{fk}(p_i p_j) \cup \mathcal{B}_{fk}(p_{\sigma(i)}))$$
(5)

for some numbers i and j such that $j \neq \sigma(i)$. We show that the line

$$L := p_i p_{\sigma(j)}$$

has the required property.

Let $S \in \mathcal{R}$. By (5), $p_{\sigma(i)}$ does not belong to S. Thus $p_i \in S$. The equation (5) implies also that the line $p_i p_j$ is not contained in S. Since p_i is a point of S, $p_j \notin S$ and $p_{\sigma(j)}$ belongs to S. Therefore, $S \in \mathcal{B}_{fk}(L)$.

Consider a subspace S belonging to $\mathcal{B}_{fk}(L)$. Since $p_i \in S$, S does not belong to $\mathcal{B}_{fk}(p_{\sigma(i)})$. The condition $p_{\sigma(j)} \in S$ guarantees that $p_j \notin S$ and the line $p_i p_j$ is not contained in S. Then S does not belong to $\mathcal{B}_{fk}(p_i p_j)$. By (5), $S \in \mathcal{R}$.

396

 $(B) \Rightarrow (A)$. Let $L \in \mathcal{B}_{f1}$. Then $L = p_i p_j$ and $j \neq \sigma(i)$. If some subspace $S \in \mathcal{B}_{fk}$ is not contained in the set $\mathcal{B}_{fk}(L)$ then one of the following cases is realized:

— $p_i \notin S$ then $p_{\sigma(i)} \in S$ and S belongs to $\mathcal{B}_{fk}(p_{\sigma(i)})$,

 $-p_i \in S$ and $p_j \notin S$ then $p_{\sigma(j)} \in S$ and S is an element of $\mathcal{B}_{fk}(p_i p_{\sigma(j)})$.

Therefore, $\mathcal{B}_{fk} - \mathcal{B}_{fk}(L)$ is contained in

$$\mathcal{B}_{fk}(p_{\sigma(i)}) \cup \mathcal{B}_{fk}(p_i p_{\sigma(j)})$$

The arguments given above show that these sets are coincident.

Let \mathcal{R} and \mathcal{R}' be distinct *c*-subsets of \mathcal{B}_{fk} . Then

$$\mathcal{R} = \mathcal{B}_{fk}(L)$$
 and $\mathcal{R}' = \mathcal{B}_{fk}(L')$,

where L and L' are distinct elements of \mathcal{B}_{f1} . Denote by S the subspace spanned by L and L'; the dimension of S is equal to 2 or 3.

Consider the case when k = 2. If $S \in \mathcal{B}_{f^2}$ then

$$\mathcal{R} \cap \mathcal{R}' = \{S\};$$

for this case we will say that our *c*-subsets form an (*A*)-*pair*. If *S* does not belong to \mathcal{B}_{f_2} then $\mathcal{R} \cap \mathcal{R}'$ is empty.

If $k \geq 3$ then there are the following possibilities for the subspace S:

(A) S belongs to \mathcal{B}_{f2} then

$$\mathcal{R} \cap \mathcal{R}' = \mathcal{B}_{fk}(S)$$

contains t_2 elements,

(B) S belongs to
$$\mathcal{B}_{f3}$$
 then

$$\mathcal{R} \cap \mathcal{R}' = \mathcal{B}_{fk}(S)$$

contains t_3 elements,

(C) S does not belong to \mathcal{B}_{f2} and \mathcal{B}_{f3} , for this case the set $\mathcal{R} \cap \mathcal{R}'$ is empty.

We say that our c-subsets form an (A)-pair or a (B)-pair if the corresponding case is realized.

7) The mapping g transfers any (A)-pair of c-subsets to an (A)-pair of c-subsets. If $k \ge 3$ then g maps (B)-pairs to (B)-pairs.

Proof. Let \mathcal{R} and \mathcal{R}' be distinct *c*-subsets of \mathcal{B}_{fk} . By (5), $g(\mathcal{R})$ and $g(\mathcal{R}')$ are *c*-subsets of $g(\mathcal{B}_{fk})$. Since *f* is injective, $\mathcal{R} \cap \mathcal{R}'$ and $g(\mathcal{R}) \cap g(\mathcal{R}')$ have the same cardinal numbers and the arguments given before (7) imply the required.

- 8) Let S and S' be distinct elements of \mathcal{B}_{fk} . Then the following statements are fulfilled:
 - (i) For the case when k = 2 the subspaces S and S' are adjacent if and only if there exists a c-subset of \mathcal{B}_{fk} containing them.
 - (ii) For the case when k = 2m > 2 our subspaces are adjacent if and only if there exists a sequence $\mathcal{R}_1, \ldots, \mathcal{R}_m$ of c-subsets of \mathcal{B}_{fk} such that any two \mathcal{R}_i and \mathcal{R}_j form a (B)-pair if $i \neq j$ and each \mathcal{R}_i contains S and S'.

(iii) Let $k = 2m + 1 \ge 3$. Then S and S' are adjacent if and only if there exists a sequence $\mathcal{R}_1, \ldots, \mathcal{R}_{m+1}$ of c-subsets of \mathcal{B}_{fk} such that each \mathcal{R}_i contains S and S' and the following conditions hold true:

$$- \mathcal{R}_i \text{ and } \mathcal{R}_j \text{ form } a (B) \text{-pair if } i \neq j \text{ and } i, j \text{ are both less than } m+1, - if i < m \text{ then } \mathcal{R}_i \text{ and } \mathcal{R}_{m+1} \text{ is } a (B) \text{-pair,} - \mathcal{R}_m \text{ and } \mathcal{R}_{m+1} \text{ form } an (A) \text{-pair.}$$

Proof. The statement (i) is trivial. For the case (ii) or (iii) the existence of a sequence of c-subsets satisfying the corresponding conditions implies that the subspace $S \cap S'$ is (k-1)-dimensional (i.e. S and S' are adjacent).

Now assume that S and S' are adjacent. Then the dimension of $S \cap S'$ is equal to k-1. Clearly, we can restrict ourself to the case when $S \cap S'$ is spanned by p_1, \ldots, p_k . If k = 2m then the lines

$$L_i := p_{2i-1}p_{2i}$$

 $i = 1, \ldots, m$ define a sequence of *c*-subsets satisfying the required conditions. For the case when k = 2m + 1 we set

$$L_i := p_{2i-1}p_{2i}$$
 if $i = 1, ..., m$ and $L_{m+1} := p_{k-1}p_k$.

It is easy to see that the *c*-subsets associated with these lines are as required.

The statements (7) and (8) show that the restriction of g to each base subset of $\mathcal{G}_k(f)$ is adjacency preserving. Since for any two elements of $\mathcal{G}_k(f)$ there exists a base subset containing them (Lemma 2), the mapping g preserves the adjacency.

Acknowledgment. The author thanks the referee for intent reading the paper and corrections.

References

- [1] Artin, E.: Geometric Algebra. Interscience, New York 1957. Zbl 0077.02101
- [2] Baer, R.: Linear Algebra and Projective Geometry. Academic Press, New York 1952. Zbl 0049.38103
- Benz, W.: Geometrische Transformationen. B.I. Wissenschaftsverlag, Mannheim Leipzig Wien Zürich 1992.
 Zbl 0754.51005
- [4] Handbook of incidence geometry. Buildings and foundations. Edited by F. Buekenhout, North-Holland, Amsterdam 1995.
 Zbl 0821.00012
- [5] Blunck, A.; Havlicek, H.: On bijections that preserve complementarity of subspaces. Submitted for publication.
- [6] Brauner, H.: Über die von Kollineationen projektiver Räume induzierten Geradenabbildungen. Sitz. Ber. Akad. Wiss., math-naturw. Kl. Abt. II 197 (1988), 327–332.

Zbl 0668.51002

398

- [7] Chow, W. L.: On the geometry of algebraic homogeneous spaces. Ann. of Math. 50 (1949), 32–67.
 Zbl 0040.22901
- [8] Garrett, P.: Buildings and classical groups. Chapman & Hall, London 1997.

- [9] Havlicek, H.: On Isomorphisms of Grassmann Spaces. Mitt. Math. Ges. Hamburg. 14 (1995), 117–120.
 Zbl 0877.51001
- [10] Havlicek, H.: Chow's Theorem for Linear Spaces. Discrete Math. 208–209 (1999), 319–324.
 Zbl 0943.51015
- [11] Huang, W.-l.: Adjacency preserving transformations of Grassmann spaces. Abh. Math. Sem. Univ. Hamburg 68 (1998), 65–77.
- [12] Huang, W.-l.: Adjacency preserving mappings of invariant subspaces of a null system. Proc. Amer. Math. Soc. 128(8) (2000), 2451–2455.
 Zbl 0955.51004
- [13] Huang, W.-l.: Characterization of the transformation group of the space of a Null System. Result. Math. 40 (2001), 226–232.
 Zbl 0999.51003
- [14] Kreuzer, A.: On isomorphisms of Grassmann spaces. Aequationes Math. 56(3) (1998), 243-250.
 Zbl 0927.51001
- [15] Pankov, M.: Transformations of Grassmannians and automorphisms of linear groups. J. Geometry 75 (2002), 132–150. cf. Transformations of Grassmannians and automorphisms of classical groups. ibidem Zbl pre01941625
- [16] Pankov, M.: Transformations of Grassmannians preserving the class of base subsets. J. Geometry (to appear).
- [17] Pankov, M.: A characterization of geometrical mappings of Grassmann spaces. Preprint 2002.
- [18] Taylor, D. E.: The Geometry of the classical groups. Helderman-Verlag, Berlin 1992. Zbl 0767.20001
- [19] Tits, J.: Buildings of spherical type and finite BN-pairs. Lect. Notes Math. 386, Springer-Verlag, 1974.
 Zbl 0295.20047

Received May 15, 2003

Zbl 0933.20019