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1. Introduction

We give a classification of p-harmonic morphisms between Riemannian manifolds of equal
dimensions (Theorem 3.1), which generalizes the corresponding results of B. Fuglede on
harmonic morphisms in [13] on one hand, and on p-harmonic morphisms between Euclidean
domains in [25] on the other. We also prove that pre- or post-composition by a horizontally
homothetic harmonic map makes a weakly conformal map a p-harmonic morphism, for p =
dim M or dim N . This can be used to construct infinitely many p-harmonic morphisms
which are not harmonic morphisms. Our examples include the well-known Hopf fibration ϕ :
S2n−1 −→ Sn (n = 2, 4, or 8), which becomes a p-harmonic morphism for p = 3, 4, 7, 8, or 15,
and thus solving globally the over-determined system

div
(
|dϕ|p−2 dϕ

)
= 0

gij
∂ϕα

∂xi

∂ϕβ

∂xj
= λ2(x)hαβ

of p-Laplace equations for maps between compact manifolds, after a suitable conformal change
of the metric on the domain or target manifold is made.
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A map ϕ : (Mm, g) −→ (Nn, h) between two Riemannian manifolds is called a harmonic
map if the divergence of its differential vanishes. Such maps are the extrema of the energy
functional

E2 (ϕ,Ω) =
1

2

∫
Ω

|dϕ|2 dx

for all compact subsets Ω in M . For a detailed account of harmonic maps we refer to
[10],[11],[12],[27] and the references therein.

Harmonic morphisms are a special subclass of harmonic maps which preserve solutions
of Laplace’s equation in the sense that, for any harmonic function f : U −→ R, defined on an
open subset U of N with ϕ−1(U) non-empty, f ◦ϕ : ϕ−1(U) −→ R is a harmonic function. In
other words, ϕ pulls back germs of harmonic functions onN to germs of harmonic functions on
M . In stochastic theory, harmonic morphisms are known as Brownian path preserving maps
meaning that they send a Brownian motion on M to a Brownian motion on N(see [6],[21]).
The following well-known characterization of harmonic morphisms is due to independently
B. Fuglede and T. Ishihara.

Theorem 1.1. ([13],[18]) A non-constant map ϕ : (M, g) −→ (N, h) is a harmonic mor-
phism if and only if it is a horizontally weakly conformal harmonic map.

In case of equal dimensions, B. Fuglede obtained the following classification:

Theorem 1.2. ([13]) Let dimM = dimN = n, and ϕ : (M, g) −→ (N, h) be a non-constant
C2 map. Then:

1) For 2 = n, ϕ is a harmonic morphism if and only if it is weakly conformal.

2) For 2 6= n, ϕ is a harmonic morphism if and only if it is weakly conformal with constant
dilation.

In recent years, much work has been done in constructing and classifying harmonic morphisms
between certain model spaces. Many interesting results (see the recent monograph [5]) have
shown that the study of such maps can help us to understand the topology and geometry of
the domain and target manifolds. For a complete bibliography of harmonic morphisms, see
[15].

A natural generalization of harmonic maps are p-harmonic maps which are critical points
of the p-energy functional (see Definition 2.1). Likewise, it is natural to define and study maps
between Riemannian manifolds which preserve the local solutions of p-Laplace’s equations.
This was first done in [25], in which the authors prove the following:

Theorem 1.3. ([25]) Let ϕ : U −→ V be a non-constant p-harmonic morphism between two
domains of the Euclidean space Rn.

1) If p = n and ϕ is sense-preserving, then ϕ is 1-quasiregular mapping. In particular, ϕ
is the restriction of a Möbius transformation when n ≥ 3.

2) If 1 < p < ∞ and p 6= n, and if ϕ is discrete, then it is the restriction of a Euclidean
similarity, i.e., ϕ(x) = λAx+ b for some λ ∈ (0,∞), b ∈ Rn and A ∈ O(n).
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Very recently, E. Loubeau [22] obtained the following characterization of a p-harmonic mor-
phism similar to that of harmonic morphisms given by B. Fuglede and T. Ishihara.

Theorem 1.4. ([22], [8]) A non-constant C2-map ϕ : (M, g) −→ (N, h) is a p-harmonic
morphism with p ∈ (1,∞) if and only if it is a horizontally weakly conformal p-harmonic
map.

Clearly, a harmonic morphism is a p-harmonic morphism with p = 2. It is natural and
important to ask if there can be any example of a p-harmonic morphism which is not a
harmonic morphism. It seems that few such examples have been found in the literature (see
[7], [19], [22], [23], and [26] for recent papers on p-harmonic morphisms). In this paper,
we first give a classification of p-harmonic morphisms between Riemannian manifolds of the
same dimension. Then we use the compositions of weakly conformal maps and horizontally
homothetic harmonic maps to construct many interesting p-harmonic morphisms which are
not harmonic morphisms.

2. Preliminaries

2.1. p-harmonic maps and morphisms

Definition 2.1. Let (M, g) and (N, h) be two Riemannian manifolds, Ω a compact subset in
M , and p ∈ (1,∞). For ϕ ∈ L1,p(Ω, N), we define the p-energy of ϕ by

Ep (ϕ,Ω) =
1

p

∫
Ω

|dϕ|p dx .

A map ϕ : (M, g) −→ (N, h) is called p-harmonic if ϕ|Ω is a critical point of the p-energy
for every compact subset Ω of M .

The striking difference between harmonic and p-harmonic (p 6= 2) maps is their behavior
with respect to regularity. For the regularity and the existence of p-harmonic maps we refer
to [9], [17], [24], [28], [29], [30], [31]. In this paper we assume that all our objects, manifolds,
vector fields, and maps are smooth, and p-harmonic maps are understood in the strong sense.

Lemma 2.2. (see e.g. [2]) A map ϕ : (M, g) −→ (N, h) is p-harmonic if and only if its
p-tension field τp(ϕ) ≡ 0, where

τp(ϕ) = |dϕ|p−2 τ2(ϕ) + (p− 2) |dϕ|p−3 dϕ(grad |dϕ|) (1)

with τ2(ϕ) = trace∇dϕ denoting the tension field of ϕ.

Notice that when |dϕ| 6= 0 we can write

τp(ϕ) = |dϕ|p−2 [τ2(ϕ) + (p− 2)dϕ(grad ln |dϕ|)] . (2)

As an immediate consequence, we have:
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Corollary 2.3. If ϕ : (M, g) −→ (N, h) is both a p1-harmonic and p2-harmonic map for
p1 6= p2, then it is a p-harmonic map for any p ∈ (1,∞).

Definition 2.4. A map ϕ : (M, g) −→ (N, h) is called a p-harmonic morphism if for any
p-harmonic function f : U ⊂ N −→ R, defined on an open subset U of N with ϕ−1(U)
non-empty, f ◦ ϕ : ϕ−1(U) ⊂M −→ R is a p-harmonic function.

From the definition we easily have:

Corollary 2.5. If ϕ : (M, g) −→ (N, h) and ψ : (N, h) −→ (Q, k) are p-harmonic mor-
phisms, then their composition ψ ◦ ϕ is a p-harmonic morphism.

A function f : (M, g) −→ R is called p-subharmonic (p-superharmonic, resp.) if τp(f) ≥ 0 (≤
0, resp.). We can prove the following:

Proposition 2.6. A map ϕ : (M, g) −→ (N, h) is a p-harmonic morphism if and only
if it pulls back germs of p-subharmonic (p-superharmonic) functions on N to germs of p-
subharmonic (p-superharmonic) functions on M .

Proof. If ϕ is a p-harmonic morphism, then by [22] we have τp(f ◦ ϕ) = λpτp(f) ◦ ϕ which
gives the “only if” part of the statement. To prove the “if” part of the statement, take any
p-harmonic function f locally defined on N then, by definition, it is p-subharmonic hence we
have, τp(f ◦ϕ) ≥ 0. Notice that −f is also p-harmonic, hence p-subharmonic. By assumption,
−f ◦ ϕ is p-subharmonic, thus

τp(−f ◦ ϕ)

= |d(−f ◦ ϕ)|p−2 [τ2(−f ◦ ϕ) + (p− 2)d(−f ◦ ϕ)(grad ln |−f ◦ ϕ|)]
=− τp(f ◦ ϕ) ≥ 0.

It follows that τp(f◦ϕ) ≤ 0. These two inequalities show that τp(f◦ϕ) = 0 for any p-harmonic
function f locally defined on N . Therefore, by definition, ϕ is a p-harmonic morphism. �

2.2 Horizontally weakly conformal maps

Let ϕ : (M, g) −→ (N, h) be a map and x ∈M . We call Vx = ker dϕx the vertical space at x
and its orthogonal complement Hx in TxM the horizontal space at x, to have TxM = Vx⊕Hx.
The map ϕ is called horizontally weakly conformal if, for each x ∈ M at which dϕx 6= 0, the
restriction dϕx|Hx : Hx −→ Tϕ(x)N is conformal and surjective. Thus it follows that there
is a number λ(x) ∈ (0,∞) such that h(dϕ(X), dϕ(Y )) = λ2(x)g(X, Y ) for any X, Y ∈ Hx.
Note that, at the point x ∈ M where dϕx = 0, we let λ(x) = 0 to obtain a continuous
function λ : M −→ R called the dilation of the horizontally weakly conformal map ϕ. A
non-constant horizontally weakly conformal map ϕ is called horizontally homothetic if the
gradient of λ2(x) is vertical i.e., H(gradλ2) ≡ 0, where H denotes the horizontal distribution.
One can easily check that (i) if dimM = dimN , horizontally weakly conformal is equivalent
to weakly conformal, meaning that ϕ is conformal away from the points at which dϕ = 0, (ii)
a Riemannian submersion is horizontally homothetic with λ ≡ 1, and (iii) if dimM < dimN
any horizontally weakly conformal map is constant.
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3. A classification of p-harmonic morphisms

In this section we prove the following theorem which gives a classification of p-harmonic
morphisms between Riemannian manifolds of the same dimension.

Theorem 3.1. Let ϕ : (M, g) −→ (N, h) be a non-constant map between Riemannian man-
ifolds with dimM = dimN = n ≥ 2. Then
1) ϕ is a p-harmonic morphism with p = n if and only if ϕ is weakly conformal,
2) ϕ is a p-harmonic morphism with p 6= n if and only if ϕ is weakly conformal with constant
dilation.

Remark 3.2. As special p-harmonic maps, p-harmonic morphisms for different values of
p ∈ (1,∞) can be very different. Theorem 3.1 gives a complete classification of all p-harmonic
morphisms between Riemannian manifolds of equal dimensions. That is, n-harmonic mor-
phisms, which are precisely weakly conformal mappings, or, “trivial” p-harmonic morphisms,
meaning that they are p-harmonic morphisms for any p ∈ (1,∞), i.e. weakly conformal
mappings with constant dilations.

To prove Theorem 3.1 we need the following:

Lemma 3.3. Let ϕ : (M, g) −→ (N, h) be a non-constant map with dimM = dimN = n ≥
2. Then ϕ is an n-harmonic morphism if and only if it is weakly conformal.

Proof. As we remark in Section 2.2, horizontal weak conformality is equivalent to weak
conformality since dimM = dimN . It follows from Theorem 1.4 that to prove the Lemma it
suffices to show that a weak conformal map is a p-harmonic map with p = dimM = dimN =
n. To this end, let ϕ : (M, g) −→ (N, h) be a non-constant map which is weakly conformal
with ϕ∗h = λ2g. We need to show that τn(ϕ) ≡ 0. For any x ∈ M , if dϕx = 0, then by (1)
we have τn(ϕ) = 0 at x. If dϕx 6= 0, then by the weak conformality of ϕ and the continuity of

λ = |dϕ|√
n

we can choose a coordinate neighborhood U of x such that ϕ : (U, g) −→ (N, h) is a

conformal diffeomorphism. This means that ϕ∗h = λ2g is a Riemannian metric on U . Let ∇
and ∇̃ be the Levi-Civita connections on U with respect to g and ϕ∗h = λ2g, respectively. Let
∇ϕ denote the pull-back connection on the pull-back bundle ϕ−1TN −→ M . By definition
of tension field, we have,

τ2(ϕ) =
n∑
i=1

{∇ϕ
ei
dϕ(ei)− dϕ(∇ei

ei)} (3)

for an orthonormal frame field {ei} in U ⊆M . Since the map ϕ : (U,ϕ∗h = λ2g) −→ (N, h)
becomes an isometry between manifolds of the same dimension it is totally geodesic. It
follows that

∇ϕ
ei
dϕ(ej) = dϕ(∇̃ei

ej) (4)

for any i, j = 1, 2, . . . , n. On the other hand, since ϕ∗h = λ2g is conformal to g on U we can
easily check that

∇̃X Y −∇X Y = (X(lnλ))Y + (Y (lnλ))X − g(X,Y )grad(lnλ) (5)
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holds for any vector fields X, Y on U . Substituting (4) into (3) and applying (5) we have

τ2(ϕ) = (2− n)dϕ(grad lnλ) (6)

on U . Since |dϕ| = λ
√
n 6= 0 on U , we see from (2) and (6) that

τn(ϕ) = |dϕ|n−2 [τ2(ϕ) + (n− 2)dϕ(grad ln |dϕ|)] ≡ 0

on U . Thus in either case we have τn(ϕ) = 0 at x. Since x ∈M is arbitrary we have τn(ϕ) ≡ 0
on M . This proves the lemma. �

Proof of Theorem 3.1. Clearly, statement 1) follows immediately from Lemma 3.3.

To prove statement 2), let us suppose that ϕ is a p-harmonic morphism with p 6= n. It follows
from Theorem 1.4 that ϕ is a horizontally weakly conformal p-harmonic map. In particular,
ϕ is weakly conformal since dimM = dimN = n. By Lemma 3.3, ϕ is an n-harmonic
morphism and hence an n-harmonic map. Since ϕ is both p-harmonic and n-harmonic with
p 6= n, we know from Corollary 2.3 that ϕ is harmonic. Therefore, it follows from (2) that

0 ≡ τp(ϕ) = |dϕ|p−2 [τ2(ϕ) + (p− 2)dϕ(grad ln |λ|)] (7)

=(p− 2) |dϕ|p−2 dϕ(grad ln |λ|).

Now if p = 2 then 2 6= n for p 6= n, and in this case we get statement 2) from B. Fuglede’s
Theorem 1.2. If p 6= 2, it follows from (6) that dϕ(grad ln |λ|) = 0, which implies that λ is a
constant since dimM = dimN and the horizontal subspace equals the whole tangent space.

Conversely, if ϕ : (M, g) −→ (N, h) is a weakly conformal map with constant dilation λ,
then it follows that

τp(ϕ) = |dϕ|p−2 [τ2(ϕ) + (p− 2)dϕ(grad ln |λ|)]
= |dϕ|p−2 τ2(ϕ).

This, together with Theorem 1.2 shows that ϕ is a p-harmonic morphism for any p, which
completes the proof of 2). Therefore, we obtain Theorem 3.1. �

Remark 3.4. 1) For p = 2, our Theorem 3.1 gives exactly B. Fuglede’s classification Theo-
rem 1.2 for harmonic morphisms between Riemannian manifolds of equal dimensions.

2) It is also clear that our Theorem 3.1 generalizes Manfredi and Vespri’s results (Theorem
1.3) which gave a partial classification of p-harmonic morphisms between domains of a Eu-
clidean space.

From Theorem 3.1 we can easily deduce the following two corollaries.

Corollary 3.5. Two Riemannian metrics g and h on the same manifold M determine the
same p-harmonic sheaf on M (that is, the same p-harmonic functions on open subsets of
M) if and only if they are conformally related, i.e., h = λ2g, with a constant λ > 0 in case
dimM 6= p.
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Corollary 3.6. a) A non-constant map ϕ : M2 −→ N2 between two Riemann surfaces is a
p-harmonic morphism if and only if:

(i) for p = 2, ϕ is holomorphic or anti-holomorphic;
(ii) for p 6= 2, ϕ is a homothety.

b) For n ≥ 3, any non-constant p-harmonic morphism with 1 < p <∞ from a domain of Rn

into Rn is the restriction of a Möbius transformation.

4. Constructions of p-harmonic morphisms

In this section, we will use the following composition theorem to construct examples of p-
harmonic morphisms which are not harmonic morphisms.

Theorem 4.1. Let ϕ : (Mm, g) −→ (Nn, h) (n ≥ 2) be a horizontally homothetic harmonic
map, and let ϕ1 : (Pm, g1) −→ (Mm, g) and ϕ2 : (Nn, h) −→ (Qn, h2) be weakly conformal
maps. Then ϕ ◦ ϕ1 : (Pm, g1) −→ (Nn, h) is an m-harmonic morphism, and ϕ2 ◦ ϕ :
(Mm, g) −→ (Qn, h2) is an n-harmonic morphism.

Proof. It follows from [22] that a horizontally homothetic harmonic map ϕ is also a p-
harmonic morphism for p 6= 2. Hence it is a p-harmonic morphism for any p ∈ (1,∞) by
Corollary 2.3. From this and Corollary 2.5 we get Theorem 4.1. �

As a consequence, we have:

Corollary 4.2. Let ϕ : (Mm, g) −→ (Nn, h) (n ≥ 2) be a horizontally homothetic harmonic
map with dilation λ1. Let i1 : (Mm, (λ2 ◦ ϕ)−2g) −→ (Mm, g) (resp. i2 : (Nn, h) −→
(Nn, λ2

2h)) be the identity map on M (resp. N), where λ2 : N −→ (0,∞) be a non-constant
function. Then,

(i) ϕ1 = ϕ ◦ i1 is an m-harmonic morphism which is not a harmonic morphism,

(ii) ϕ2 = i2 ◦ ϕ is an n-harmonic morphism which is not a harmonic morphism.

Proof. For Statement (i), we first note that ϕ1 is an m-harmonic morphism by Theorem
4.1. The dilation of ϕ1 is λ1(λ2 ◦ ϕ), since h(dϕ1(X), dϕ1(Y )) = λ1

2g(di1(X), di1(Y )) =
λ1(λ2◦ϕ)2g(X, Y ) for any horizontal vector fieldsX and Y . To show that ϕ1 is not a harmonic
morphism is equivalent to check that it is not horizontally homothetic by (1). To see this,
it is enough to show that there is a horizontal vector field X such that X(λ1(λ2 ◦ ϕ)) 6= 0
at some point. Now λ2 is not constant by our choice, there exists a vector field Y on N
such that Y (λ2) does not vanish identically. We notice that ϕ is submersive, and it is well
known (cf. e.g. [2]) that there is a horizontal vector field X on M which is ϕ-related to Y
i.e. dϕ(X) = Y . It follows that X(λ1(λ2 ◦ ϕ)) = λ1d(λ2 ◦ ϕ)(X) = λ1dϕ(X)(λ2) = λ1Y (λ2),
which is not identically zero by the assumption on λ2 and the choice of Y . Therefore, ϕ1 is
not horizontally homothetic and hence it can not be a harmonic morphism.

The proof of statement (ii) is similar and is omitted. �

Since the Hopf fibration S2n−1 −→ Sn (n = 2, 4, or 8) is a harmonic morphism with constant
dilation (hence a horizontally homothetic harmonic map) we get:
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Proposition 4.3. For n = 2, 4 or 8, the composition of any weakly conformal map of S2n−1

or of Sn with the Hopf fibration S2n−1 −→ Sn is a p-harmonic morphism with p = 2n− 1 or
n. In particular, the Hopf fibration H : S2n−1 −→ Sn becomes a p-harmonic morphism for
p = 3, 7, 15, 4 or 8 which is not a harmonic morphism after a suitable conformal change of
the standard metric on the domain or target sphere is made.

Example 4.4. We identify (S3, g3) with (R̂3, 4
(1+|u|2)2

∑i=3
i=1 dui

2) through stereographic pro-

jection, then it is not difficult to check that σ : (S3, g3) −→ (S3, g3) given by σ(u1, u2, u3) =
(u1 − u2, u1 + u2,

√
2u3) is a conformal diffeomorphism such that σ∗g3 = e2ψg3, where

ψ = 1
2
ln{ 2(1+

∑i=3
i=1 u

2
i )2

(1+2
∑i=3

i=1 u
2
i )2
}. Then by Proposition 4.3 we have a 3-harmonic morphism H ◦ σ :

(S3, g3) −→ (S2, g2). Using Corollary 4.2 we see that the Hopf fibration H : (S3, (λ2 ◦
H)2g3) −→ (S2, g2) is a 3-harmonic morphism which is not a harmonic morphism for any
non-constant function λ2 : S2 −→ (0,∞).

Remark 4.5. Note that in their effort to construct non-trivial (i.e., not harmonic) examples
of p-harmonic morphisms, the authors in [8] start with a horizontally weakly conformal map
φ : (S3, g3) −→ (S2, g2) given by

(cos seia, sin seib) −→ (cosα(s), sinα(s)ei(ka+lb)),

where the function α(s) is chosen such that φ is horizontally weakly conformal, where s ∈
[0, π/2], a, b ∈ [0, 2π[. Then they reduce the partial differential equations for p-harmonic
map to an ordinary differential equation which is solved to produce p-harmonic morphisms

φ : (S3,
(

sinα
sin2 2s

)2(p−2)/(p−3)
(k2 sin2 s + l2 cos2 s)(p−1)/(p−3)g3) −→ (S2, g2). Notice that in their

examples, if p 6= 2 then the metric, and hence the map, is not globally defined. By comparison,
our examples are globally defined 3-harmonic morphisms (S3, g3) −→ (S2, g2).

Example 4.6. Let F : R4 × R4 −→ R4 denote the standard multiplication in the real
algebra of quaternionic numbers. It is proved in [3] that this harmonic morphism restricts
to a harmonic morphism f : S3 × S3 −→ S3, where the target sphere is given the standard
metric g3 and the domain manifold is given the product metric g3 ⊗ g3. One can check that
the map f is non-trivial, i.e., it is not a projection, and that it has dilation λ =

√
2. Let

σ : (S3, g3) −→ (S3, g3) be given as in Example 4.4. Then, by Theorem 4.1, we have a
submersive 3-harmonic morphism between compact manifolds: σ ◦ f : (S3 × S3, g3 ⊗ g3) −→
(S3, g3). Here, p = n = 3, hence it follows from [23] that all the fibres of σ ◦ f are minimal
submanifolds of (S3×S3, g3⊗g3). Therefore σ ◦f determines a conformal foliation of S3×S3

with minimal leaves.

Using a result of N. H. Kuiper [20] on the existence of a conformal immersion from a simply
connected, conformally flat manifold (Mn, g) into the standard sphere Sn we have:

Corollary 4.7. For n = 2, 4 or 8, there exist (2n−1)-harmonic morphisms from any simply
connected, conformally flat space (M2n−1, g) into the standard sphere Sn. There also exist
n-harmonic morphisms from S2n−1 into any simply connected, conformally flat space (Mn, g).
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To construct more examples of p-harmonic morphisms which are not harmonic morphisms,
we first note that for k ≤ n, the map ρ : Rn −→ Rk given by ρ(x) = λAx+b with λ ∈ (0,∞),
b ∈ Rk and A a (k × n)-matrix satisfying AAt = Idk is a p-harmonic morphism for any
p. On the other hand, we know that the stereographic projection P : Sn\{N} −→ Rn is a
conformal map. Therefore, we have:

Example 4.8. 1) The map ρ ◦ P : Sn\{N} −→ Rk is an n-harmonic morphism for n ≥ 3,
where P denotes the stereographic projection and ρ the map defined above. In particular,
ϕ : S4 \ {N} −→ R2 with

ϕ(x) = (1− x5)
−1 (x1 + 2x2 + 3x3 − 2x4, −2x1 + x2 + 2x3 + 3x4)

is a 4-harmonic morphism.

2) The map P−1 ◦ ρ : Rn −→ Sk is a k-harmonic morphism for k ≥ 3, where P−1 denotes
the inverse of the stereographic projection and ρ the map defined above. In particular, for
ρ : R4 :−→ R3 with ρ(x1, x2, x3, x4) = (x1 − x3, x1 + x3, x2 + x4) and P−1 : R3 −→ S3 the
inverse of the stereographic projection, we have a 3-harmonic morphism R4 −→ S3 given by

ϕ(x1, x2, x3, x4) = ν−1(2x1 − 2x3, 2x1 + 2x3, 2x2 + 2x4, ν − 2),

where ν = 1 + 2x2
1 + 2x2

3 + (x2 + x4)
2.

Example 4.9. Let π : Rn × Rk −→ Rn be an orthogonal projection, σn : Rn −→ Rn be a
weakly conformal map. Then σ ◦ π is an n-harmonic morphism.

Finally, we remark that there are several other classes of horizontally homothetic harmonic
maps (see e.g. [1], [14]) including Riemannian submersions with minimal fibers and the ra-
dial projection Rn+1\{0} −→ Sn which can be used to construct non-trivial p-harmonic
morphisms.
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